AVALIAÇÃO DE APRENDIZADO DE AULA PRÁTICA EM ALUNOS DO ENSINO FUNDAMENTAL

MARCOS, Françoise.¹ ZANDER, Leiza Daniele.²

RESUMO

Ao longo dos anos escolares, estudantes passam por processos de aprendizagem que apresentam como objetivo, estimular seu desenvolvimento, seja no âmbito social, como cidadão, ou na sua formação para o trabalho. Para o ensino de Ciências, as aulas práticas foram citadas como parte fundamental do aprendizado. Nestas aulas, são proporcionados meios vantajosos de assimilação do conteúdo, mais eficientes do que apenas a aula teórica. Considerando a aula prática, àquela que permite ao aluno sair da situação de apenas observador, deixando de ser um agente passivo e se torne mais ativo. Objetivou-se com o presente estudo levantar quais fatores relacionados às aulas práticas colaboram com o aprendizado da disciplina de Ciências em alunos do Ensino Fundamental. Para isso, foi realizada uma aula prática de Ciências com 60 alunos do Ensino Fundamental vespertino de uma escola estadual, no laboratório de um centro universitário e, posteriormente, aplicado um questionário com perguntas relativas às atividades práticas realizadas. A partir da tabulação dos dados, obtiveram-se respostas positivas dos alunos referentes à facilitação do aprendizado com a aula prática. Contudo, para uma melhor validação deste processo de transposição didática, perguntas mais complexas e uma avaliação posterior seriam de grande valia para obtenção de mais insumos para a validação da facilitação que a aula prática proporciona para o ensino de Ciências.

PALAVRAS-CHAVE: Método de ensino; Ciências; atividade prática; laboratório.

INTRODUÇÃO

Conforme o artigo 205 da Constituição Federal, a educação é definida como: "[...] Direito de todos, dever do Estado e da família [...]". Com nível de importância social, a educação faz parte do cotidiano da população. São em média 12 anos dentro da escola para os que completam o Ensino Fundamental e Médio. No decorrer desses anos, os estudantes passam por processos de aprendizagem que apresentam como objetivo, estimular seu desenvolvimento, seja no âmbito social, como cidadão, ou na sua formação para o trabalho.

Bueno (2001) fala sobre também ser atribuição da escola "a formação das novas gerações em termos de acesso à cultura, de formação do cidadão e de constituição do sujeito social". O estudioso sobre educação, Freire (2001), elucida que a educação escolar tem como objetivo a formação do cidadão em termos de edificação dos seus conhecimentos, atitudes e valores de solidariedade, ética e participação na sociedade. Especificamente, a matéria de Ciências no Ensino Fundamental, conforme os PCNs (Parâmetros Curriculares Nacionais),

¹ Acadêmica de Ciências Biológicas – Licenciatura – Centro Universitário Fundação Assis Gurgacz, Cascavel, PR. f.j.mm@hotmail.com.

² Bióloga. Docente do Centro Universitário Fundação Assis Gurgaz, Cascavel, PR. leizadz@hotmail.com.

tem como objetivo proporcionar um conhecimento sobre o mundo e sobre as transformações que nele ocorrem, permitindo a percepção do homem como parte integrante do universo. (BRASIL, 1998)

Assim, muitos debates sobre os índices de desempenho dos alunos são realizados, sendo discutidos desde o sistema de ensino, horas na escola e os métodos. Ainda, segundo o professor de física e estudioso de neurolinguística, Piazzi (2010), os alunos encontraram uma maneira de passar por avaliações sem necessariamente aprender o conteúdo. Ele afirma que "O aluno estuda para tirar boa nota, passar na matéria e depois esquece tudo" (PIAZZI, 2010).

Portanto, são diversos os estudos sobre educação que são realizados com a tentativa de se levantar informações a cerca do processo de aprendizagem a fim de melhorá-lo. O foco é tornar o ensino mais eficiente, retomando o interesse dos alunos sobre o aprender. Pensando nisso, são introduzidas diversas formas de se alcançar conhecimentos escolares.

As aulas práticas entram como uma variedade de modalidade didática essencial para o ensino de Ciências, sendo definida por Krasilchik (2004) como "as aulas que requerem a participação do aluno com seu envolvimento direto na obtenção de dados". O que facilita a captação de sua atenção, pois além de colocar o aluno como peça chave para a elaboração da aula, tornando-o protagonista de todo o processo, possibilita a ele o vislumbre participativo de uma situação cotidiana, mas com enfoque científico.

Bizzo (2009) descreve sobre a importância de se proporcionar condições que incentivem o questionamento crítico dos alunos, considerando o seu conhecimento do cotidiano como algo relevante. O mesmo autor ainda cita, como de grande valor, a concepção sobre o que deve ser requerido dos alunos, os seus significados e suas interpretações de tal conhecimento no momento presente, e não um resultado específico já esperado pelo professor.

Delizoicov e Angotti (1994) falam sobre momentos pedagógicos no processo de ensino e relatam sobre o processo de tornar o tema proposto na aula como um assunto comum do dia a dia do aluno, cativando o mesmo. Conjuntamente, cita que atividades práticas devem estar situadas em um contexto de ensino e aprendizagem em que se desenvolvem tarefas de compreensão, interpretação e reflexão.

Os PCNs também elucidam sobre a experimentação (aulas práticas) como metodologia para o ensino de Ciências, falando que "é fundamental que as atividades práticas tenham garantido o espaço de reflexão, desenvolvimento e construção de ideias, ao lado de conhecimentos de procedimentos e atitudes".

Portanto, deve-se ter uma maior preocupação com a forma de envolver o aluno com o estudo, fazendo com que ele perceba o conteúdo da sala de aula como algo próximo à sua realidade e não como um conhecimento apenas essencial para o seu desempenho escolar. Assim, busca-se com o presente trabalho levantar dados sobre como as aulas práticas proporcionam a facilitação do ensino de Ciências.

MATERIAIS E MÉTODOS

Para a realização do presente trabalho, foram selecionados 60 participantes que atenderam aos critérios de inclusão. Todos os participantes são alunos devidamente matriculados no 9º ano do Ensino Fundamental, vespertino, de uma escola estadual. Os pais autorizaram a participação por meio do TCLE - Termo de Consentimento Livre e Esclarecido - e, após receber a devida orientação, aceitaram o termo de consentimento. Os alunos são do sexo feminino e masculino, da faixa etária de 14 anos.

Estes alunos participaram de uma oficina de aulas práticas sobre separação de misturas, da disciplina de Ciências, e posteriormente, responderam ao questionário (APÊNDICE A) sobre essas aulas. As atividades foram desenvolvidas no mês de outubro após a aprovação do comitê de ética.

As perguntas escolhidas foram formuladas em relação às atividades executadas, tendo por objetivo captar informações sobre o aproveitamento das práticas desenvolvidas e se consideraram que a aprendizagem foi facilitada por meio delas. Após a coleta de dados, as informações referentes aos alunos foram mantidas em sigilo e foram tornados públicos apenas os resultados dos questionários que foram tabulados e apresentados nos gráficos deste artigo.

As aulas práticas foram realizadas no laboratório de química cedido pelo Centro Universitário FAG, Instituição de Ensino Superior. As atividades desenvolvidas durante a pesquisa não proporcionaram riscos aos participantes, apenas na esfera de timidez ou vergonha que puderam sentir pela interação com pessoas diferentes do seu convívio na escola ou fora dela. Já os benefícios são relacionados ao aprendizado que a aula prática pode acarretar. A partir do momento que algum participante não quisesse mais participar da pesquisa, o mesmo estava livre para a desistência.

RESULTADOS E DISCUSSÕES

Com a observação dos dados, pode-se notar que a aula prática influenciou positivamente o processo de aprendizagem dos alunos. O questionário inicia perguntando se os alunos gostaram da aula prática ou não. Esse questionamento teve por intuito obter opiniões sobre a aula prática desenvolvida, se foi produtiva e interessante para os alunos, a fim de captar a atenção deles.

A demonstração do quão positivo pode ser uma atividade prática é exposta com o resultado desta primeira pergunta, na qual todos os 60 alunos participantes responderam "Sim" à questão, conforme é apresentado na Figura 1. Ademais, sem que exista essa motivação, o conteúdo poderia ser visto como maçante e os alunos, consequentemente, bloqueariam sua disposição para os conhecimentos possíveis do conteúdo proposto.

Você gostou da aula prática de Ciências?

FIGURA 1 – Gráfico ilustrando o percentual das respostas da pergunta nº 1.

Essa questão é preocupante, já que o desinteresse pelos estudos pode contribuir para o fracasso da aprendizagem escolar e, em alguns casos, pode levar à evasão escolar no Ensino Médio, conforme demonstrou a pesquisa "Motivos da Evasão Escolar" feita pela Fundação Getúlio Vargas do Rio de Janeiro (FGV-RJ) em 2009, apontando que 40% dos jovens de 15 a 17 anos deixam de estudar porque acreditam que a escola é desinteressante.

Partindo disso, para que ocorra de forma eficiente a elaboração das aulas, devem ser considerados os fatores que influenciam os alunos a querer aprender e também o que motiva os alunos a estudar, abordando aqui a explicação de Hersey e Blanchard (1986) sobre o interesse e as motivações humanas, que a motivação é definida como:

A vontade que uma pessoa tem de fazer as coisas, e ela depende da intensidade dos seus motivos. Os motivos podem ser definidos como necessidades, desejos ou impulsos oriundos do indivíduo e dirigidos para objetivos, que podem ser conscientes ou subconscientes.

Visto que as aulas em laboratório, em sua maioria, despertam o interesse dos alunos, a motivação aqui presente surge decorrente da curiosidade dos próprios alunos a fim de conhecer os equipamentos e estruturas presentes no laboratório, bem como o interesse de desenvolver as práticas propostas, manipulando reagentes entre outras substâncias incomuns fora deste local.

O autor Vygotsky (1991) propõe que seja responsabilidade do professor motivar o aluno a aprender, já que é de seu encargo o desenvolvimento da aula. A forma como o conteúdo será abordado, de maneira que prenda a atenção e produza o interesse dos alunos. O autor também declara que o desenvolvimento do aluno acontece no decorrer de sua vida, em que este se coloca em interação com situações propostas na sua rotina, dentro e fora da sala de aula, proporcionando assim sua aprendizagem. A partir desta declaração, as aulas práticas ficam em destaque, pois se mostram como um canal que facilmente proporciona uma melhor interação entre o aluno e o conteúdo abordado.

Somando isso à eficácia que as atividades práticas demonstram ter ao permitir que o aluno se sinta instigado a interagir com as atividades propostas, ainda há facilitação para que este se coloque na posição de um sujeito crítico e questionador como a matéria de Ciências tem por objetivo, como descrito nos Parâmetros Curriculares Nacionais (1998). Desse modo, fica evidente a importância dessas atividades práticas no processo de ensino.

Com as respostas referentes à segunda pergunta, que se referia à diferença que a aula prática de Ciências tem sobre o aprendizado do aluno, podem ser citados diversos fatores que esse tipo de aula possui, os quais contribuem para a facilitação da aprendizagem. Zago (2004) elucida sobre como o enfrentamento de determinado problema pode provocar o raciocínio do estudante, de forma a gerar maiores questionamentos sobre situações diversas, compreendendo melhor o que realmente acontece, tendo uma efetiva construção e apropriação do conhecimento se comparar apenas com a aula teórica sozinha.

Concordando com este fator de facilitação que as atividades práticas fornecem para o ensino de Ciências, Farias e Assis (2012) discorrem sobre o modo que as aulas de laboratório podem ser utilizadas como complementares à teórica, por conseguirem proporcionar uma maior quantia de indagações sobre determinada situação, possibilitando assim, a assimilação desses conteúdos a mais, pois a interação do sujeito com o objeto de estudo funciona como

um catalisador sobre a aprendizagem, permitindo que a fixação do conteúdo se dê de forma mais fácil.

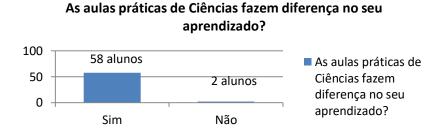


FIGURA 2 – Gráfico ilustrando o percentual das respostas da pergunta nº 2.

O processo de desenvolver as habilidades críticas nos alunos, possibilitando a formação de sujeitos reflexivos e questionadores, é outro fator que deve ser ressaltado sobre as possibilidades de resultados de atividades práticas. Demonstrando como este processo torna a aprendizagem facilitada, fazendo a diferença na apropriação que aluno realiza do conteúdo exposto, parte-se do pressuposto que suas conclusões serão derivadas da maneira como o sujeito construirá suas dúvidas, pois partindo disso, será concretizado de forma significativa o seu ensinamento sobre determinado conteúdo. Assim, a complexidade de suas reflexões está diretamente relacionada ao seu processo de aprendizagem (FERNANDES *et al.*, 2005).

No que se refere à pergunta número três, que questionou se as atividades práticas estão relacionadas aos conteúdos aplicados na sala de aula, as respostas foram unânimes sobre a afirmação da questão. Os conteúdos abordados durante as aulas teóricas e práticas, devem estar relacionados, a fim de que uma aula complemente a outra. Igual importância deve ser dada para que esses conteúdos possuam, além de caráter investigativo, relação com assuntos do cotidiano dos alunos, de modo a facilitar uma relação de aproximação entre o aluno e o objeto de estudo (KRASILCHIK, 2000).

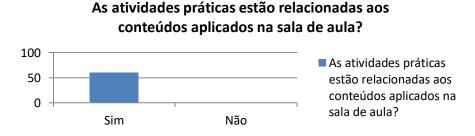


FIGURA 3 – Gráfico ilustrando o percentual das respostas da pergunta nº 3.

Em relação à pergunta número quatro, sobre a aula prática permitir ou não a comprovação do que foi estudado na aula teórica, novamente obteve-se a unanimidade dos alunos em relação à afirmação da resposta.

Com a aula prática de Ciências você consegue comprovar o que foi estudado na aula teórica?

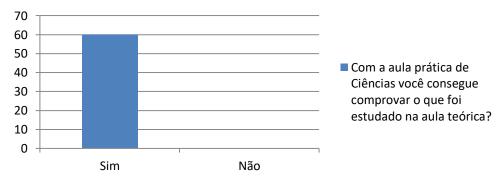


FIGURA 4 – Gráfico ilustrando o percentual das respostas da pergunta nº 4.

Na experiência da aula prática, o foco da ação do aluno deve ocorrer através da experiência física, podendo ela ser desenvolvida de modo manual, com o próprio aluno manipulando o objeto de estudo, ou vislumbrando a demonstração do professor, mas sempre de maneira que o objeto de estudo esteja presente materialmente (ANDRADE e MASSABNI, 2011).

Por conseguinte, a verificação e a concepção de ciência é apresentada por Chalmers, (1993) e Cachapuz e colaboradores (2005): "Toda investigação e mesmo a procura de dados vêm marcadas por paradigmas teóricos, ou seja, por visões coerentes, articuladas, que orientam a dita investigação", considerando aqui a aula teórica como uma investigação.

Portanto, essa atividade, que permite a averiguação para saber se determinado conteúdo é real ou não, é de suma importância para que o aluno se sinta satisfeito e seguro sobre o que tem estudado. Ademais, as aulas práticas tem o objetivo de comprovar o que foi estudado em sala de aula.

Conforme a pergunta número cinco, 90% dos alunos tiveram maior facilidade de assimilação do conteúdo abordado em sala de aula após a aula prática de Ciências. Quando proporcionamos certa liberdade aos alunos, como em uma aula experimental em um laboratório, onde estes estão responsáveis pela realização dos procedimentos, o debate entre os alunos do mesmo grupo é facilitado. Estes debates cooperam juntamente com a aula prática ao proporcionar a troca de informações entre os alunos. Diferentemente do modo como é

estipulada a conduta em sala de aula, onde o aluno deve se portar de forma menos ativa, aqui a conversação é vista como auxiliar quando construída sobre o que está sendo praticado durante a aula prática (OLIVEIRA, 2005).

Você acha que as aulas práticas são úteis para fixar o

conteúdo? 54 alunos 60 50 ■ Você acha 40 que as aulas práticas são 30 úteis para 20 fixar o 6 alunos 10 conteúdo? 0

Não

FIGURA 5 – Gráfico ilustrando o percentual das respostas da pergunta nº 5.

Sim

Logo, observamos e comprovamos, como todas essas interações, aluno-professor, aluno-conteúdo, aluno-aluno, aluno-ambiente, são importantes fatores possibilitados pelas aulas práticas, desenvolvendo maiores situações de conflito e reflexão sobre o assunto abordado nas aulas, desencadeando assim uma maior chance de assimilação por parte dos alunos (PIAGET, 1973).

Complementando a ideia de que o conhecimento adquirido pelo aluno deriva das interações que este desenvolve, Giani (2010) enfatiza que a forma como determinado conteúdo será interpretado depende das observações empíricas que são desenvolvidas anteriormente. Pode-se salientar então a importância de uma boa introdução ao assunto que o aluno deve ser conduzido a ter, conforme as aulas teóricas, ou conforme as suas interações cotidianas com familiares e outras pessoas do seu convívio.

Sobre a necessidade de se dar importância aos conhecimentos anteriores que o aluno possui, o autor Ausubel (2003) *apud* Souza (2011) enfatizou em seus estudos:

(...) uma relutância muito grande em reconhecer-se que os pré-requisitos (...) para a aprendizagem significativa também se aplicam aos métodos de resolução de problemas e laboratoriais. Contudo, deveria ser bastante evidente que o desempenho de experiências laboratoriais com base num livro de instruções, sem se compreenderem os princípios substantivos e metodológicos subjacentes envolvidos, confere muito pouca compreensão genuína e que muitos estudantes de matemática e de ciências consideram relativamente simples 'descobrir' respostas correctas a problemas 'tipo' sem compreenderem realmente o que estão a fazer. Alcançam a última proeza através da mera memorização destes 'problemas tipo' e dos

procedimentos adequados para manipularem os símbolos de cada tipo. Não obstante, ainda não se considera, de um modo geral, que o trabalho laboratorial e a resolução de problemas não são experiências genuinamente significativas, a não ser que se construam numa base de conceitos e de princípios claramente compreendidos na disciplina em questão e a não ser que as operações constituintes sejam, elas próprias, significativas.

O relato de Rosa (2012) confirma essa conclusão, pois é dito que a aula prática serve de método adicional ao tradicional, pois permite a assimilação das questões propostas, nas quais o aluno é convidado a sair da condição de passivo de ouvinte, tornando-se assim ativo sobre o que lhe é somado durante a aula.

Além disso, o êxito sobre a utilidade que a aula prática teve para a fixação do conteúdo exposto pode ser complementado com o que o autor Carraher (1986) descreveu sobre o destaque que merece o reconhecimento da forma como cada aluno pode aprender, de maneira diferente entre si, sendo de suma importância à valorização da diversidade de métodos para se transmitir um conteúdo proposto.

CONSIDERAÇÕES FINAIS

Sendo a aula expositiva dialogada o método mais utilizado desde o princípio da educação até hoje, verifica-se uma dissonância entre a inovação dos métodos de ensino com a modificação pela qual passou a sociedade, considerando os avanços da tecnologia, e a quantidade de novas informações que a população, incluindo os estudantes, está exposta com muita facilidade.

O método tradicional baseia-se no processo em que o conteúdo a ser aprendido é transmitido pelo professor, com apoio de materiais didáticos que raramente se estendem além do livro didático, deixando o aluno sempre como um sujeito passivo do conhecimento a ser adquirido. Fato este que demonstra como devem ser propostos novos métodos, que facilitem a interação do aluno, retendo sua atenção, levando em conta o cotidiano em que se encontra este novo aluno, além de considerar os fatores que dificultam seu foco durante a aula, como os crescentes casos de hiperatividade e/ou TDAH (transtorno de déficit de atenção e hiperatividade) entre outros contextos que devem ser levados em conta para que seja direcionada a melhor maneira para se trabalhar os mais diversos conteúdos.

Portanto, faz-se necessário o resgate do interesse do aluno, observando seu contexto atual, em que uma grande quantidade de novas informações estão continuamente presentes no

seu dia a dia e, diante disso, não se pode negar que também pode ocorrer uma nova forma de aprendizado, com a ação do aluno sendo instruída não apenas por quadros e giz.

Contudo, mesmo que os resultados obtidos com o presente trabalho sejam positivos em relação à facilitação da aprendizagem de Ciências com aulas práticas, uma maior complexidade de perguntas, juntamente com uma avaliação que serviria para comprovar a aprendizagem dos alunos, seria de melhor aplicação para uma conclusão mais concreta sobre o assunto abordado.

REFERÊNCIAS

ANDRADE, M. L. F.; MASSABNI, V. G. O desenvolvimento de atividades práticas na escola: um desafio para os professores de ciências. **Ciência & Educação.** v.17, n.4, p.835-854, 2011.

AUSUBEL. D. P. Aquisição e Retenção de Conhecimentos: Uma Perspectiva Cognitiva. In: SOUZA, R. A., **Teoria da aprendizagem significativa e experimentação em sala de aula: integração teoria e prática**. 139f. Dissertação (Mestrado) — Programa de Pós-Graduação em Ensino, Filosofia e História das Ciências, Universidade Federal da Bahia/ Universidade Estadual de Feira de Santana, Salvador, 2011.

BRASIL. Constituição da república federativa do brasil. 1988

Brasil. Secretaria de Educação Fundamental. **Parâmetros curriculares nacionais:** Ciências Naturais/Secretaria de Educação Fundamental. Brasília: MEC/SEF, 1998. 138 p. Disponível em: http://portal.mec.gov.br/seb/arquivos/pdf/ciencias.pdf Acesso em: 16 de agosto de 2016.

BUENO, J. G. S. Função social da escola e organização do trabalho pedagógico. **Educar.** n.17, p.101-110, 2001.

CACHAPUZ, A.; GIL-PEREZ, D.; CARVALHO, A. M. P.; PRAIA, J.; VILCHES, A. A necessária renovação do ensino de ciências. 2ed. São Paulo: Cortez, 2005, 264 p.

CHALMERS, A. F. O que é ciência afinal? 2ed. São Paulo: Brasiliense, 1993, 210 p.

FARIAS, P. M. A.; ASSIS, J. P. C. A importância das aulas práticas experimentais de Ciência no ensino fundamental II. In: 52° Congresso Brasileiro de Química, 2012, Recife. **Artigo**. UNIVERSIDADE NILTON LINS/ UNINORTE-CEL-SEDUC, 2012.

FERNANES, J. D.; FERREIRA, S. L. A.; OLIVA, D. S. R.; SANTOS, M. P.; COSTA HOG. Diretrizes estratégicas para a implantação de uma nova proposta pedagógica na Escola de Enfermagem da Universidade Federal da Bahia. **Rev Bras Enferm**. v.39, n.4, p.443-449, 2005.

FREIRE, P. **Pedagogia da Autonomia:** Saberes necessários à prática educativa. 25ed. São Paulo: Paz e Terra, 2001, 54 p.

GIANI, K. A experimentação no Ensino de Ciências: possibilidades e limites na busca de uma Aprendizagem Significativa. Dissertação (Mestrado) — Programa de Pós Graduação em Ensino de Ciências, Universidade de Brasília, Brasília, 2010.

HERSEY, P.; BLANCHARD, K. H. **Psicologia para administradores:** A teoria e as técnicas de liderança situacional. Ed. São Paulo: EPU, 1986, 428 p.

KRASILCHIK, M. Reformas e realidade: o caso do ensino de ciências. **São Paulo em Perspectiva**. v.14, n.1, p.85-93, 2000.

KRASILCHIK, M. Prática de Ensino de Biologia. 4ed. São Paulo: EdUSP, 2004, 197 p.

OLIVEIRA, S. S. Concepções alternativas e ensino de biologia: como utilizar estratégias diferenciadas na formação inicial de licenciados. **Educar**. n.26, p233-250, 2005.

PIAGET, J. **Psicologia e epistemologia:** Por uma teoria do conhecimento. 1 ed. Rio de Janeiro: Forense Universitária. 1973. 158 p.

PIAZZI, P. **Aprendendo Inteligência**: Manual de instruções do cérebro para estudantes em geral. 3ed. São Paulo: Aleph, 2015, 144 p.

ROSA, **Aula diferenciada e seus efeitos na aprendizagem dos alunos:** O que os professores de Biologia têm a dizer sobre isso? 43f. Trabalho de conclusão de curso (Graduação). Comissão de Graduação do Curso de Ciências Biológicas — Licenciatura. Universidade Federal do Rio Grande do Sul, Porto Alegre, 2012. Disponível em: https://www.lume.ufrgs.br/bitstream/handle/10183/72356/000872151.pdf?sequence=1 Acesso em 19 de novembro de 2016.

VYGOTSKY, L. S. **A formação Social da mente.** 4ed. São Paulo: Martins Editora, 1991. 90p.

APÊNDICE A – QUESTIONÁRIO UTILIZADO NA PESQUISA

Referente às **AULAS PRÁTICAS DE CIÊNCIAS** responda:

1-	Você gostou da aula prática de Ciências?		
	() sim	() não
2-	As aulas práticas de Ciências faz	zem	diferença no seu aprendizado?
	() sim	() não
3-	As atividades práticas estão relac	cior	nadas aos conteúdos aplicados na sala de aula?
	() sim	() não
4-	Com a aula prática de Ciências, teórica?	vo	cê consegue comprovar o que foi estudado na aula
	() sim	() não
5-	Você acha que as aulas práticas	são	o úteis para fixar o conteúdo?
	() sim	() não
	Obrigado ©		