CENTRO UNIVERSITÁRIO ASSIS GURGACZ

Curso de Arquitetura e Urbanismo

RELATÓRIO DE ESTÁGIO SUPERVISIONADO OBRIGATÓRIO

Magda Pereira Tres

Cascavel Abril 2017

MAGDA PEREIRA TRES

RELATÓRIO DE ESTÁGIO SUPERVISIONADO OBRIGATÓRIO

Relatório apresentado como conclusão do Estágio Supervisionado da disciplina de Tecnologia da Construção do Curso de Arquitetura e Urbanismo do Centro Universitário Assis Gurgacz.

Professor Supervisor: Mse. Prof. Arq. Heitor Othelo Jorge Filho 10° Período noturno.

IDENTIFICAÇÃO DO CAMPO DE ESTÁGIO

Identificação da Empresa:

Nome: Tombini Arquitetura e Construção Ltda

Bairro: Centro

Cep: 85.810-220

Endereço: Rua Jorge Lacerda, 595 – Cascavel- PR

Telefone: (45)3035-3025

Área Onde foi Realizado o Estagio: Edificio Residencial Delucci

Rua Parana, 4337 – Centro Cascavel – Pr

Data de Inicio: 09/03/2017

Data de termino: 25/05/2017

Duração em Horas: 72 horas

Nome do Profissional responsável: Eng. Nilton Carlos Rodrigues Crea -Pr 24073

APRESENTAÇÃO DA EMPRESA

A empresa Tombini Arquitetura atua no mercado de administração de obras e projetos desde 1988 em Cascavel e região. Sua equipe é constituída por 03 arquitetos, sendo Gabriela Tombini, Bruna Tombini e Anestor Tombini e 01 Engenheiro. Nilton Carlos Rodrigues, Localizada na Rua Jorge Lacerda , 595 Centro — Cascavel — Pr . O escritório a mais de 10 anos administra obras de condomínios edifícios, e atua como escritório de Arquitetura reconhecido na cidade de Cascavel.

LISTA DE FIGURAS

Figura 01 – Parede com aplicação de emboço	07
Figura 02 – Aplicação do reboco	8
Figura 03 – Uso de EPIs Funcionário	09
Figura 04 – Uso de EPIs Estagiários	09
Figura 05 –Armazenamento de material hidráulico	10
Figura 06 – Preparo de Base para Pingadeira	11
Figura 07- Ranhura no verso da Pingadeira	11
Figura 08- Assentamento da Pingadeira	11
Figura 09- Pingadeira Instalada	11
Figura 10- Referencia de Nivel (Taliscas)	12
Figura 11- Preparo da base para contrapiso	12
Figura 12- Quadro de Passagem e Instalação elétrica	13
Figura 13- Montagem da Caixaria para concretagem da Verga	14
Figura 14- Aplicação de Textura	15
Figura 15- Aplicação de Projetado	15
Figura 16- Recomendações do fabricante	15
Figura 17- Preparo de massa Pronta para reboco	16
Figura 18 – Requadro de Esquadrias	17
Figura 19 – Requadro de vigas com argamassa	18
Figura 20 – Fechamento em Alvenaria	18
Figura 21 – Instalação de Churrasqueiras Pre moldadas	19
Figura 22 – Instalação de caixa de espera de ar condicionado	19
Figura 23 – Estrutura Metálica para Bandeião	20

SUMÁRIO

.

	Pg.
1. INTRODUÇÃO	06
2. ATIVIDADES DESENVOLVIDAS	07
2.1. EMBOÇO	07
2.2. REBOCO	08
2.3. EQUIPAMENTOS DE SEGURANÇA	09
2.4. ARMAZENAMENTO DE MATERIAIS	10
2.5. INSTALAÇÃO PINGADEIRAS	10
2.6. PREPARO DA BASE E AJUSTE NIVEL CONTRAPISO	12
2.7. INSTALAÇÃO ELÉTRICA	13
2.8. CAIXARIA PARA CONCRETAGEM VERGA	14
2.9. TESTES DE PINTURA PARA FACHADA	14
2.10. PREPARAÇÃO DE ARGAMASSA PRONTA	15
2.11. REQUADRO DE ESQUADRIAS	16
2.12. REQUADRO DE VIGAS	17
2.13. FECHAMENTO DE ALVENARIA	17
2.14. MONTAGEM DAS CHURRASQUEIRAS	18
2.15. INSTALAÇÃO DAS CAIXAS DE ESPERA AR CONDICIONADO	19
2.16. BANDEJÃO	20
3. CONCLUSÕES	21
REFERÊNCIAS	22
ANEXOS	23

1. INTRODUÇÃO

Este relatório tem por objetivo descrever as atividades desenvolvidas no período de estagio obrigatório de Tecnologia da Construção, acompanhado pelo Engenheiro Civil Nilton Carlos Rodrigues – Crea No. . Realizado pela acadêmica Magda Pereira Tres do curso de Arquitetura e Urbanismo do 10° período – Noturno, da disciplina de Estagio Supervisionado na Área de Tecnologias, como parte dos requisitos do curso para obtenção do grau de bacharel em Arquitetura e Urbanismo.

O estagio tem por objetivo apresentar o conhecimento adquirido durante o período estagiado, onde acompanhamos na prática, o conhecimento teórico adquirido durante o curso de graduação, diante de objetivo do relatório, para maior clareza serão apresentadas as atividades desenvolvidas e acompanhadas durante o período do estagio e suas aplicações.

O Período do estagio teve duração de 72 horas, horas estas divididas em visitas agendas e acompanhadas pelo Engenheiro da obra e desenvolvimento do relatório. Sendo 60 horas em obra e 12 horas desenvolvimento do relatório. O estágio realizou-se em uma das obras do Escritório Tombini Arquitetura e Construção, empresa administradora da obra do Condomínio Edifício Delucci. As orientações referente a elaboração do relatório aconteceram no LabPro- CAUFAG, sob orientação do Me. Prof^o. Arq^o. Heitor Jorge Filho.

2. ATIVIDADES DESENVOLVIDAS

2.1 EMBOÇO

A construtora utiliza para o emboço, a massa pronta, sua mistura acontece de forma mecânica, ate ficar numa consistência macia, a construtora optou por esta massa pronta devido a melhor aproveitamento do material e garantia de mistura da massa, no preparo somente foi adicionado a agua na proporção exigida pelo fabricante. A aplicação foi realizada com uma colher de pedreiro, prumo, e sua regularização foi feita com a "régua". A espessura final ficou em media de 1,5 cm a 2,5cm.

Segundo Azeredo (2004) o emboço é uma argamassa de regularização. Ela atua como uma capa que evita infiltração de águas, é um regularizador e uniformizador da superfície, corrigindo irregularidades, primos, alinhamentos dos painéis. Para execução onde houver chapisco, não é necessário molhar a alvenaria, em seguida executar placas de argamassa mista de cimento e areia, onde serão fixadas pequenas taliscas de madeira, por onde será fixado os prumos e alinhamentos. Milito (2000) esclarece que no caso de paredes, quando forem colocadas as taliscas, é preciso fixar uma linha na sua parte superior e ao longo de seu comprimento. A distância entre a linha e a superfície da parede deve ser na ordem de 1,5cm. As taliscas (calços de madeira de aproximadamente 1x5x12cm, ou cacos cerâmicos)devem ser assentados com argamassa mista de cimento e cal para emboço, com a superfície superior faceando a linha.

Figura 1: Parede com aplicação de Emboço.

2.1 REBOCO

O reboco, nesta obra foi aplicado com desempenadeira em movimentos circulares, de baixo para cima e tem cerca de 2,5cm, Sua cura total foi em media 28 dias. O apartamento tipo é entregue nesta etapa para o cliente, ele poderá escolher qual o acabamento final ira fazer, ou seja, massa corrida, revestimento e ou pintura. Foi usado argamassa pronta tipo ACIII, flexível, om granulometria bem mais fina que a do emboço para ficar com aspecto mais liso e regular. Aplicada com desempenadeira em movimentos circulares, e seu tempo de cura em torno de 25 dias.

A argamassa de acabamento, ou seja, o reboco, atua como superfície, que exibe um aspecto agradável, perfeitamente lisa e regular, com pouca porosidade e de pequena espessura (AZEVEDO, 2004).

Figura 2: Aplicação do Reboco

2.3 EPIS – EQUIPAMENTO DE SEGURANÇA

Uso Obrigatório pelos funcionários e pelos estagiários durante o período de estagio para o acompanhamento da obra, os seguintes EPI, capacete, calçado fechado e Cabelo preso, Foi possível observar que os funcionários faziam uso dos mesmos, de acordo com tarefa executada, como mostra a figura 3, onde o operário está usando capacete, calçado fechado, Cinto de segurança e uniforme da construtora.

Para Yazigi (2009) equipamento de proteção individual (EPI) é todo dispositivo de uso individual destinado a proteger a saúde e a integridade física do trabalhador. A construtora é obrigada a fornecer gratuitamente para seus operários. O EPI é necessário nas seguintes circunstâncias:

 Sempre que medidas coletivas forem inviáveis ou não oferecerem completa proteção;

Figura 4: Uso de EPIs Estagiários

- Enquanto as medidas de proteção coletiva estiverem sendo implantadas;
- Para atender situações de emergência

Figura 3.: Uso de EPIs Funcionário

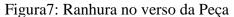
2.4 ARMAZENAMENTO DE MATERIAIS

Indispensável na obra um espaço destinado ao armazenamento de materiais, nesta obra o material hidráulico, tubos e conexões foram armazenados no piso térreo, de fácil acesso para descarga e retirada para uso. O armazenamento deu-se por tamanhos de bitolas das conexões distribuídos em prateleiras montadas na obra com caibros de madeira, tornando o manuseio mais fácil. Também observou-se que não existe uma placa legível, de identificação dos materiais e nem separação por cores.. Carvalho Junior (2013) as tubulações terão pesos e dimensões diferenciadas correspondentes as funções dos sanitários que alimentam.

Figura: 5 Armazenamento de material hidráulico

Fonte: Autor, 2017.

2.5 INSTALAÇÃO DAS PINGADEIRAS EM JANELAS.


Após o requadro das alvenarias, inicou a etapa de reguarização dos peitoris das janelas para a instalação das pingadeiras. Na obra foi utlizada pingadeiras de granito com uma linha ranhurada, abaixo dos peitoris, que intercepta a lâmina d'água, resultando pingos que se projetam afastados da fachada como pode observar na figura .

As peças de granito, mármore, arenito etc., aparelhadas como revestimento, com espessura de 2 cm a 4 cm, terão de ser assentadas sobre contra piso, com argamassa de cimento com areia no traço 1:4, em volume (YAZIGI, 2009).

De acordo com Azeredo (2004) a espessura das peças de marmore e granito para revestimento, normalmente são 2cm, e são executados os detalhes dos paineis partindo-

se das mediadas sobre alvenaria sem revestimento, para ter as divisões das placas mais uniformes possiveis, assim como as disposições das manchas e veios das placas.

Figura 6. Preparo da base, requadro.

Fonte: Autor, 2017.

Fonte: Autor, 2017.

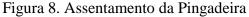


Figura 9: Pingadeira Instalada

Fonte: Autor, 2017. Fonte: Autor, 2017.

2.6 PREPARO DA BASE E AJUSTES DO NIVEL DE CONTRAPISO

Após limpar a base e retirar os restos de argamassa de argamassa e entulhos e material aderido, foi utilizado um nivel a lazer apartir do nivel de referencia, em seguida foi fixada as taliscas, quw é o nivel de referencia, e então a laje esta pronta para

receber o Contrapiso que deve ter em media nesta obra, aproximado 3,5 a 5 cm . Ate a conclusão deste relatorio não teve inicio a aplicação do contrapiso.

Segundo o Engenheiro Nilton, responsavel pela obra, os cuidados com detalhamento de contrapisos já foram previstos já na etapa de concepção do projeto estrutural, para favorecer a diminuição do consumo de argamassas para camadas de regularização do contrapiso. Souza (2005), esclarece que ao fazer o dimensionamento, projetar rebaixos para varandas e banheiros na própria estrutura dos pavimentos garantirá camadas mínimas de regularização de contrapiso em todos os ambientes ou na maior parte deles, a fim de que os desníveis entre ambientes previstos no projeto arquitetônico sejam atendidos.

Figura 10: Referência de Nível

Figura 11: Limpeza da Base

Fonte: Autor, 2017. Fonte: Autor, 2017.

2.7 INSTALAÇÃO ELÉTRICA

Confome o projeto eletrico do edificio, os fios estao sendo passados pela tubulação ate o quadro de disjuntores, para tomadas e interruptores para atender individualmente os apartamentos, cada qual com sua espessura e cor, criando circuitos terminais. Neste pavimento o eletrecista teve dificuldades para passagens dos fios,

porque uma das tubulações, "eletrodutos" deixadas para passagem estava obstruida. Foi necessario quebrar a alvenaria para correção. Os fios que estao sendo passado estava estabelecidos da seguinte forma:

Vermelho – Fase , Azul – neutro , Amarelo – Retorno, Verde – Fio terra.

Os circuitos terminais partem dos quadros de distribuição, chamados de quadros terminais, que são montagens que reunem chaves, fusiveis, barramentos, disjuntores e relés, que se destinam a concentração dos meios de proteção e seccionamento dos circuitos que deles partem para a alimentação dos pontos de iluminação e tomadas de uso geral (TUGs) e especifico (TUEs). Segundo Carvalho Junior, 2014.

Figura 12: Quadros e passagem Instalação Eletrica.

Fonte: Autor, 2017.

2.8 CAIXARIA PARA A CONCRETAGEM DE VERGA

A equipe composta por pedreiro e ajudante montou o escoramento e a estrutura para execução da verga. As ferramentas demandadas são martelo, marreta, colher de

pedreiro e régua de medição. Para esta montagem , a verga exige uma escora de madeira com a mesma altura do vão apoiada na contraverga ou no piso. Por isso, foi necessario esperar que o concreto endureça e ganhe resistência. Depois da secagem com a colher de pedreiro, foi aplicado a argamassa sobre o escoramento.

Sendo as vergas instaladas na parte superior das aberturas para resistir aos esforços de tração na flexão, as contravergas são colocadas na parte inferior das aberturas a fim de distribuir os esforços concentrados que ali surgem. Recomendase que as vergas e contravergas devem avançar no mínimo um bloco e meio na parede (SILVA, 2007).

Figura 13: Montagem da caixaria para concretagem de verga

Fonte: Autor, 2017.

2.9 TESTES DE PINTURA DA FACHADA

No periodo do estagio foi possivel acompanhar o teste de pintura para a fachada externa do predio. Foram testados dois tipos de acabamento, tipo projetado e tipo textura em rolo. Para a textura foi aplicado um primer impermeabilizante e em seguida a textura aplicada a rolo já na cor escolhida. Para aplicação do projetado foi utilizado um equipamento eletrico tipo comprensor que projeta a massa já colorida na parede.

Segundo CHING (2017), A finalidade da Pintura é proteger, preservar ou melhorar visualmente a superficiea qual ela e aplicada. Os principais tipos de materiais usados para pintura são as tintas, os stains e os vernizes.

Figura 14: Aplicação Textura

Figura 15: Aplicação projetado

Figura 16: Recomendações do fabricante

2.10 PREPARAÇÃO DA ARGAMASSA PRONTA

O preparo da massa pronta para o reboco foi feito na proporção suficiente para o ambiente que esta sendo aplicado, ou seja, para uso imediato, o mestre sabe quantos metros ele vai produzir e a equipe preparou a quantidade a ser utilizada. Neste dia, devido ao clima conforme o senhor Jose falou, em dias úmidos, a massa não da "liga". Azeredo (2004) explica os diferentes tipos de argamassa que podem ser utilizados na construção civil: Argamassa de aderência, de junta, de regularização e de acabamento. Cada uma apresenta um tipo de granulometria e função diferente para etapas da obra.

Figura 17: Preparo de massa para reboco

2.11 REQUADRO DE ESQUADRIAS

A colocação do Contramarco é a moldura, pré-moldada, de alumínio, foi utilizada como definição do vão para a instalação da esquadria, para que esta não seja chumbada diretamente na alvenaria. Como gabarito, é uma peça que foi usada para racionalizar o processo construtivo, pois permite que se faça a parede sem interrupção. A esquadria que será instalada ali vai ter as medidas menores do que as do contramarco, admitindo-se apenas as tolerâncias mínimas (folgas) para que a peça se encaixe com precisão. Esse contramarco instalado permitiu ao construtor fazer o acabamento ao redor do vão sem se preocupar em danificar a esquadria, pois ela só será instalada no final.

A NBR 10821 especifica que o caixilho ensaiado no teste de estanqueidade a água não pode apresentar infiltração que cause escorrimento pela parede na sua face interna".

Figura 18: Requadro de esquadrias e instalação de contra-marco.



2.12 REQUADRO DE VIGAS

Em sequencia da montagem da viga, foi necessário requadrar porque o apartamento e entregue em fase de reboco, corrigindo irregularidades apresentadas depois de tirar a caixaria. Foi usado a mesma argamassa de reboco para requadrar e um apoio de madeira com ganchos para segurar o requadro. Borges (2009), diz que certas etapas da obra devem ser bem observadas no momento da caixaria das vigas, entre eles estão: pilares em prumo, seguir as medidas e escoramento dos pontaletes.

Figura 19: Requadro de vigas com argamassa

Fonte: Autor, 2017.

2.13 FECHAMENTO DE ALVENARIAS

As vedações neste ambiente são somente para vedação, Não tendo função estrutural. Sua montagem foi feita com bloco cerâmico tradicional de 6 furos e camada de argamassa, atenderam a requisitos mínimos para que possam ser utilizados, conforme estabelecido pelas normas técnicas específicas.

Várias empresas construtoras, já se deram conta da necessidade da coordenação para a integração de projeto e execução da alvenaria estrutural, desde seu início. Sobre esta constatação, Almeida (2002, p. 85) escreveu:

"Nos projetos de alvenaria estrutural, muito mais que nas obras convencionais, é fundamental e definitivo que haja uma completa interação entre os envolvidos na concepção do empreendimento, pois o resultado final é baseado na interdependência dos diversos projetos e na harmonia do conjunto."

Figura 20: Fechamento em Alvenaria

2.14 MONTAGEM DAS CHURRASQUEIRAS

Foi possível acompanhar a montagem do inicio ao fim das churrasqueiras que ficam localizadas na cozinha do apartamento. Sua montagem é rápida, devido a mesma ser uma churrasqueira pré -moldada, é instalado uma chaminé metálica, que liga a saída da fumaça para o duto já existente, após sua instalação foi feito o fechamento em bloco cerâmico para uniformizar a fachada da churrasqueira para ficar com a aparência de embutida. Após o fechamento, foi feito o reboco e a aplicação das plaquetas refratarias na face interna da mesma, após o reboco, a churrasqueira pronta para receber qualquer tipo de revestimento externo.

"Os dutos de exaustão de lareiras, churrasqueiras e similares devem ser integralmente compostos por materiais incombustíveis, ou seja, Classe I, conforme Tabela 2, devem ser dispostos de forma a não implicarem em risco de propagação de incêndio entre pavimentos, ou no próprio pavimento onde se originam, e devem atender apenas uma lareira ou churrasqueira e/ou as conexões com prumada coletiva". ABNT NBR 10636.

Figura 21: Instalação de churrasqueiras Pre- moldadas.

2.15 INSTALAÇÃO DAS CAIXAS DE ESPERA PARA AR CONDICIONADO

Preparo da Infraestrutura do ar condicionado foi instalada abaixo do forro de gesso, depois de rebocado, é utilizada para proteger a fiação e melhorar o acabamento. Foram feito mudanças através de recortes na alvenaria para a passagem dos conduítes e caixas para energia elétrica, utilizando a maquita.

Segundo Yazigi (2009) em casos onde não for possível colocar a tubulação nos furos dos blocos de alvenaria, devem-se deve-se efetuar os rasgos nas paredes com máquita elétrica portátil cortadora de parede munida de aspirador de pó. É preciso ter o máximo cuidado na hora dos cortes, com o objetivo de causar o menor dano possível nos serviços já executados. Precauções têm de ser tomadas para que a tubulação não venha a sofrer esforços não previstos, decorrentes de recalques ou deformações da estrutura e para que fique assegurada a possibilidade de suas dilatações e contrações.

Figura 22: Recorte de alvenaria

2.16 BANDEJÃO

Para obras acima de 4 pavimentos é obrigatório o uso de plataformas de proteção, nesta obra foi instalada uma espera metálica e sua base foi feita de tapumes estruturados resistentes, tiveram a função de proteção e impediram que objetos chegem ao chão em caso de queda. Atualmente o bandejão só esta instalado na Primeira laje, os demais já foram retirados.

"Em todo perímetro da construção com mais de 4 (quatro) pavimentos ou altura equivalente, é obrigatória a instalação da plataforma principal de proteção na altura da primeira laje. A plataforma principal foir instalada logo após a concretagem da 1° laje e será retirada somente quando terminado o revestimento externo da estrutura. A plataforma secundaria instalada acima da principal de três (três) em 3 andares e poderá ser retirada somente quando a vedação da periferia estiver concluída, segundo a NR 18.

Figura 23: Estrutura metálica do Bandejão

Fonte: Autor, 2017

3. CONCLUSÕES

No canteiro de obra, o controle das atividades desenvolveu-se através de anotações de procedimentos e relatório fotográfico. Acompanhando o passo a passo de diversas etapas da obra. O objetivo de tal acompanhamento é referenciar a pratica com a teoria plicada em sala de aula e a execução das etapas conforme as informações que constam nos projetos.

O estágio permitiu verificar diferenças entre a teoria e a prática. O fato mais marcante dessas diferenças é o de que na prática, os resultados são bem menos previsíveis, mesmo com o cronograma da obra, pois sempre ocorrem imprevistos, como: períodos intenso de chuvas não previstas, equipamentos que quebram, funcionários que faltam, ou materiais que são entregue atrasados.

Além do conhecimento técnico, o estágio propicia ao estagiário, uma série de outras experiências, como interação com diferentes classes sociais, liderança de grupo, e a própria gestão e administração da obra. Melhorar as capacidade projetuais, entendendo o canteiro de obras . Considero indispensável o estágio para uma formação completa acadêmica do aluno.

REFERÊNCIAS

AZEREDO, Helio Alves. O edifício e seu acabamento. São Paulo, Blucher, 2004.

BAUER, L.A.F. Materiais de Construção, volume 2,5. Ed. Rio de Janeiro, 1994. 523p.

FALCÃO BAUER, L. A. Materiais de Construção. Ed. Livros Técnicos e Científicos Ltda., 5. Ed., V. 1 e 2, 1997, 951 p.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS – ABNT NBR Edificações Habitacionais – Desempenho Parte 4: Requisitos para os sistemas de vedações verticais internas e externas. ABNT NBR 15.575 – 4. Rio de Janeiro, 2013.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TECNICAS. NBR 6118: Projeto de Estruturas de Concreto – Procedimentos – Rio de Janeiro, 2002.221

CHING, Francis D.K. Tecnicas de Construção Ilustradas. São Paulo: Bookman,2010.

MARCONI, M. de A.; LAKATOS; E. M. (1985) Fundamentos de metodologia científica. São Paulo: Atlas, 2003.

MILITO, José Antonio. Prof. Dr., Técnicas de construção civil e construção de edifícios, 2009.

NEVES, F. N. Edificações em Alvenaria Estrutural: ADEQUAÇÕES À NBR 15.575. Santa Maria, RS – 2015.

SILVA, P. Acústica Arquitetônica e Condicionamento de Ar. 4.ed. Belo Horizonte: EDTAL E.T. Ltda., 2002.

_____. Bandejas de proteção. 2013. Disponivel em : http://equipedeobra.pini.com.br/construcao-reforma/55/artigo275579-1.aspx. Acesso em maio de 2017.

ANEXOS