CENTRO UNIVERSITÁRIO FAG GUSTAVO NIEDERMAYER WAGNER

DIMENSIONAMENTO DE UM COLETOR DE RADIAÇÃO SOLAR SEMICILÍNDRICO PARABÓLICO PARA AQUECIMENTO DE ÁGUA

CASCAVEL

CENTRO UNIVERSITÁRIO FAG GUSTAVO NIEDERMAYER WAGNER

DIMENSIONAMENTO DE UM COLETOR DE RADIAÇÃO SOLAR SEMICILÍNDRICO PARABÓLICO PARA AQUECIMENTO DE ÁGUA

Trabalho apresentado na disciplina de Trabalho de Conclusão de Curso II, do Curso de Engenharia Mecânica, do Centro Universitário FAG, como requisito parcial para obtenção do título de Bacharel em Engenharia Mecânica.

Professor Orientador: Me. Eng. Eliseu Avelino Zanella Júnior

CASCAVEL

FACULDADE ASSIS GURGACZ - FAG GUSTAVO NIEDERMAYER WAGNER

DIMENSIONAMENTO DE UM COLETOR DE RADIAÇÃO SOLAR SEMICILÍNDRICO PARABÓLICO

Trabalho apresentado no Curso de Engenharia Mecânica, da FAG, como requisito parcial para obtenção do título de Bacharel em Engenharia Mecânica, sob orientação do Professor Eliseu Avelino Zanella Júnior

BANCA EXAMINADORA

Orientador Pros. Msc. Eliseu Avelmo Zanella Júnior Centro Universitário – FAG

Engenheiro Mecânico

Professor Msc. Roberson Roberto Parizotto

Centro Universitário FAG Engenheiro Mecânico

Professor Msc. Sergio Henrique Rodrigues Mota Centro Universitário – FAG

Engenheiro Mecânico

Cascavel, 26 de junho de 2017.

DEDICATÓRIA Dedico este trabalho aos meus pais, que sempre prezaram pela minha educação formação pessoal, sendo meus exemplos de vida e fonte de inspiração.

AGRADECIMENTOS

Agradeço a meus pais pelo tempo, recursos e compreensão durante a minha graduação, pelas oportunidades de estudo, crescimento pessoal, dedicação e carinho durante toda a minha vida acadêmica.

Aos meus amigos João Pezzini Motta Junior, Valdemir de Quadros Junior e Willyan Cesar Pivotto Rodrigues pelo apoio e companheirismo durante a graduação.

A todos os professores do curso pelas horas de dedicação, paciência e atenção sendo essenciais e indispensáveis para o meu crescimento acadêmico.

Ao professor Me. Eng. Roberson Roberto Parizotto pelo apoio e orientação concedidos durante a graduação.

Ao meu orientador Me. Eng. Eliseu Avelino Zanella Júnior pelo apoio e incentivo no desenvolvimento deste projeto, pela paciência nas orientações, ao senhor, meu reconhecimento e infindável gratidão.

LISTA DE FIGURAS

Figura 1: Usina solar de Frank Shuman, 1913	13
Figura 2: Demonstração de regimes de escoamento.	17
Figura 3: Conceito de coletor parabólico.	25
Figura 4: Concentrador de receptor central paraboloide.	25
Figura 5: Concentrador de receptor central de campo heliostático.	26
Figura 6: Concentrador parabólico de foco linear.	26
Figura 7: Concentrador plano de foco linear.	27
Figura 8: Insolação em kJ/m²h em Foz do Iguaçu	28
Figura 9: Esquematização de um espelho côncavo.	29
Figura 10: Esquema de pintura da superfície externa do tubo	36
Figura 11: Design da parábola	39
Figura 12: Setor do refletor	40
Figura 13: Layout final da parábola do refletor	40
Figura 14: Configuração Única	41
Figura 15: Configuração em 4 unidades dispostas em paralelo	41
Figura 16: Protótipo construído	43

LISTA DE TABELAS

Tabela 1: Estados termodinâmicos inicial e final.	32
Tabela 2: Valores de temperatura e entalpia do fluido	33
Tabela 3: Propriedades da temperatura de filme do fluido	34
Tabela 4: Propriedades do Tubo	34
Tabela 5: Propriedades e dimensões do refletor	40
Tabela 6: Especificações do projeto final	42
Tabela 7: Dimensões e especificações do protótipo	42
Tabela 8: Dados coletados durante o teste do protótipo	44

LISTA DE EQUAÇÕES

Equação 1 — Número de Reynolds	16
Equação 2 – Calor de um corpo	18
Equação 3 – Primeira lei da termodinâmica	18
Equação 4 — Potência térmica	19
Equação 5 — Transferência de calor por condução	19
Equação 6 – Transferência de calor por convecção	20
Equação 7 — Transferência de calor por radiação	21
Equação 8 — Lei de Stefan-Boltzman	21
Equação 9 — Absorção de radiação solar	22
Equação 10 – Transferência de calor através de um tubo	22
Equação 11 – Número de Nusselt	23
Equação 12 – Número de Nusselt para convecção forçada interna	23
Equação 13 – Número de Nusselt para escoamento externo a cilindros	23
Equação 14 — Temperatura externa do tubo em um ponto qualquer	23
Equação 15 – Posição do foco real do espelho	29

SUMÁRIO

1 INTRODUÇÃO	13
2 OBJETIVOS	15
2.1 OBJETIVO GERAL	15
2.2 OBJETIVOS ESPECÍFICOS	15
3 REVISÃO BIBLIOGRÁFICA	16
3.1 MECÂNICA DOS FLUIDOS	16
3.1.1 Definição de Fluido	16
3.1.2 Viscosidade	16
3.1.2 Número de Reynolds	16
3.1.3 Tipos de Escoamento	17
3.2 TERMODINÂMICA	17
3.2. Calor específico de uma substância:	17
3.2.1 Calor acrescido a um corpo	17
3.2.2 Energia Interna	18
3.2.3 Entalpia	18
3.2.4 Primeira Lei da Termodinâmica	18
3.2.5. Potência Térmica	19
3.3 TRANSFERÊNCIA DE CALOR	19
3.3.1 Transferência de calor por condução	19
3.3.2 Transferência de calor por convecção	20
3.3.3 Transferência de calor por radiação	20
3.3.4 Transferência de calor em um tubo	22
3.3.5 Transferência de calor por convecção forçada interna	22
3.3.6 Número de Nusselt	23
3.3.7 Temperatura interna do tubo em um ponto qualquer	23
3.4 AQUECEDORES SOLARES	24
3.4.1 Técnicas de conversão de energia	24

3.5 MATERIAIS	27
3.5.1 Alumínio	27
3.5.2 Aço AISI 430	27
3.6 INCIDÊNCIA SOLAR	27
3.7 FÍSICA ÓTICA	28
3.7.1 Reflexão e Refração	28
3.7.2 Espelhos	28
3.7.3 Espelhos Esféricos	28
4 METODOLOGIA	30
4.1 MATERIAIS	30
4.1.1 Literatura	30
4.1.2 Microsoft Office Excel	30
4.1.3 SolidWorks	30
4.2 MÉTODOS	30
4.2.1 Projeto conceitual	30
4.2.2 Realização dos cálculos	30
4.2.3 Projeto Detalhado	31
5 RESULTADOS E DISCUSSÕES	32
5.1 DETERMINAÇÃO DOS ESTADOS TERMODINÂMICOS	32
5.2 GANHO DE CALOR NECESSÁRIO PARA A MUDANÇA DE ESTADO	32
5.3 ESTIMATIVA DE POTÊNCIA DO EQUIPAMENTO	32
5.4 ENTALPIA DA MASSA DE FLUIDO DESLOCADA E SUA TEMPERATU	JRA32
5.5 DETERMINAÇÃO DA TEMPERATURA DE FILME	33
5.6 DETERMINAÇÃO DAS PROPRIEDADES TERMODINÂMICAS DA TEMPERATURA DE FILME	
5.7 DETERMINAÇÃO DAS PROPRIEDADES DO TUBO	34
5.8 CÁLCULO DO NÚMERO DE REYNOLDS	35
5.9 NÚMERO DE NUSSELT	35

5.10 COEFICIENTE DE TRANSFERÊNCIA DE CALOR POR CONVECÇÃO	35
5.11 DETERMINAÇÃO DA TEMPERATURA DO TUBO NA SAÍDA	35
5.12 TRANSFERÊNCIA DE CALOR ATRAVÉS DA PAREDE DO TUBO	35
5.13 ABSORVEDOR	36
5.14 PERDAS DE CALOR PARA O AMBIENTE	37
5.14.1 Perdas por convecção	37
5.14.2 Perdas por radiação	38
5.15 POTÊNCIA REQUERIDA	38
5.16 ÁREA DO REFLETOR	38
5.17 PARÁBOLA	39
5.18 REFLETOR	39
5.19 PROJETO FINAL	41
5.20 TESTES COM PROTÓTIPO	42
6 CONSIDERAÇÕES FINAIS	45
7 SUGESTÕES PARA TRABALHOS FUTUROS E MELHORIAS	46
8 REFERÊNCIAS BIBLIOGRÁFICAS	47
ANEXO 1	49
ANEXO 2	50
ANEXO 3	51
ANEXO 4	52
ANEXO 5	53
ANEXO 6	54
ANEXO 7	55
ANEXO 8	56
ANEXO 9	57
ANEXO 10	58

RESUMO

O presente trabalho compõe o dimensionamento de um aquecedor solar, que possui como objetivo o aquecimento de água de uma piscina em um tempo determinado e criar uma alternativa para o aproveitamento da energia solar disponível. Primeiramente é construído um embasamento bibliográfico nas áreas de física óptica, mecânica dos fluidos, termodinâmica e transferência de calor, explorando conceitos de regime de fluxo de fluidos, transferência de calor por condução, convecção e radiação, bem como as características de espelhos e superfícies empregadas. Os cálculos e conceitos e equações relacionados aos itens citados acima também serão abordados.

Palavras chave: Transferência de Calor, Termodinâmica, Energia Solar.

ABSTRACT

The present work composes the design of a solar heater, whose objective is to heat the water of a swimming pool in a certain time and to create an alternative for the use of available solar energy. First, a bibliographic base is built in the areas of optical physics, fluid mechanics, thermodynamics and heat transfer, exploring concepts of fluid flow regime, conduction heat transfer, convection and radiation, as well as the characteristics of mirrors and surfaces used . The calculations and concepts and equations related to the items mentioned above will also be addressed.

Keywords: Heat Transfer, Thermodynamics, Solar Energy

1 INTRODUÇÃO

Rahgeb (2014) afirma que entre 1912 e 1913, o engenheiro estadunidense e pioneiro em energia solar Frank Shuman, idealizou e construiu na cidade de Maadi, no Egito o primeiro equipamento que pode ser considerado uma usina solar, o equipamento consistia em um conjunto de espelhos que focavam a luz solar recebida para uma tubulação de vapor d'água, fornecendo energia térmica ao fluido de trabalho de um motor responsável por irrigar plantações de algodão, bombeando água proveniente do Rio Nilo. O projeto de Schuman, posteriormente abandonado devido ao início da Primeira Guerra Mundial e ao início da exploração massiva do petróleo na década de 30, será abordado neste documento.

Figura 1: Usina solar de Frank Shuman, 1913.

Fonte: Rahgeb (2014)

De acordo com o Balanço da Matriz Energética Brasileira de ano base 2014, publicado em julho de 2015 a matriz energética brasileira é composta por 60,6% de energia não renovável e 39,4% é representada por meios renováveis de geração de energia, e destes, apenas 0,003% de energia produzida a partir de luz solar, fonte de energia selecionada para este estudo por possuir confiabilidade, homogeneidade e potencial pouco explorado pelo mercado energético brasileiro, o balanço de ano base 2015 atualiza a porcentagem de utilização de energia solar para um total de 0,01% do total de energia produzida a partir de

fontes renováveis demonstrando um crescimento de 333% na utilização desta fonte de energia.

Pretende-se explorar a incidência de luz solar em um local 'propício para a instalação de um equipamento CSP "concentrated solar power" com o objetivo de aquecer água, focalizando a luz solar em um ponto específico para o ganho de calor, determinando a eficiência dos espelhos focalizadores em horário de incidência de luz solar escolhido para funcionamento e dimensionar o equipamento e por fim determinar a sua capacidade de absorção de calor durante seu tempo de funcionamento, utilizando-se de luz solar como fonte alternativa de energia térmica. Palz (1978) considera que a utilização do equipamento idealizado é limitada pela carga solar que pode ser absorvida no local de implantação e pelo tempo de incidência da mesma.

A busca por novas formas de obtenção de energia é devida à crescente demanda por energia elétrica para uso residencial e industrial, imprevisibilidade do aumento das tarifas sobre o consumo de energia elétrica, e a procura de empresas por sistemas que possibilitem economia de energia e confiabilidade no seu fornecimento. Este novo cenário no mercado incrementa a necessidade do estudo de novas fontes de energia renovável bem como a descentralização de sua geração e sua exploração da maneira mais eficiente e econômica possível.

Coleta de dados acerca da incidência de radiação solar no local escolhido para estudo, estimar os parâmetros de funcionamento do equipamento, desenvolver a metodologia de cálculo e realizar o dimensionamento do equipamento e determinar a capacidade de absorção de energia solar de um equipamento do gênero e determinar as dimensões do equipamento com um fim específico ao final da pesquisa.

Esta análise englobará o estudo da incidência de luz solar em um local estabelecido baseando-se em dados do INMET e o dimensionamento dos espelhos direcionadores de luz bem como tubulação, determinando a potência do equipamento, condições do fluido e sua vazão mássica de água quando em regime de funcionamento. Os fenômenos térmicos estudados serão vedados ao equipamento, não se estendendo a equipamentos e ambientes que não o objeto de estudo. Serão descartados os elementos estruturais, equipamentos periféricos como sistema de bombeamento de água, limpeza, orientação automática do equipamento, não serão levados em consideração os fenômenos fluidodinâmicos, esforços mecânicos dentro e fora do sistema.

2 OBJETIVOS

2.1 OBJETIVO GERAL

Dimensionamento de um sistema de aquecimento de água por focalização de luz solar por meio da utilização de espelhos, afim de criar uma alternativa para o consumo de energia elétrica e combustíveis fósseis, reduzindo o custo operacional de equipamentos de mesma finalidade.

2.2 OBJETIVOS ESPECÍFICOS

- Identificar as variáveis necessárias para o estudo;
- Escolher de um local para implantação e realizar a coleta de dados a partir de dados históricos disponíveis;
- Estabelecer os parâmetros de funcionamento do equipamento;
- Delimitar as condições ambientais de funcionamento;
- Dimensionar o equipamento para aquecer um volume de 25 m³ de água em 15°C,
 partindo da temperatura de 10°C até a temperatura final de 25°C.

3 REVISÃO BIBLIOGRÁFICA

3.1 MECÂNICA DOS FLUIDOS

3.1.1 Definição de Fluido

Para Brunetti (2008), um fluido é uma substância que adota as características geométricas do recipiente no qual é inserido, podem ser considerados como fluidos as substâncias líquidas e gasosas, excluindo aquelas que se encontram em estado sólido no meio observado.

3.1.2 Viscosidade

Segundo Potter (2004), a viscosidade é a medida de resistência ao fluxo das moléculas de um líquido ao se deslizarem uma sobre as outras, sendo uma medida inversa a de fluidez.

3.1.2 Número de Reynolds

Segundo Fox (1988), ao final do século XIX, o engenheiro britânico Osborne Reynolds estudou a transição entre os escoamentos de regimes de fluxo laminar e turbulento em um tubo, detectando o parâmetro pelo qual o estado do escoamento pode ser definido pela equação 2.

$$Re = \frac{\rho VD}{\mu} = \frac{VD}{v} \tag{1}$$

Em que:

Re: Número de Reynolds

 ρ : Massa específica

V: Velocidade

D: Diâmetro do tubo

μ: Viscosidade dinâmica do fluido

v: Viscosidade cinemática do fluido

,

3.1.3 Tipos de Escoamento

Fialho (2004) ressalta baseando-se no número de Reynolds, pode se verificar o comportamento de fluidos, ao passo que sua velocidade é incrementada, seu fluxo passa a ser cada vez mais desordenado, passando de um fluxo organizado e contínuo chamado laminar, ao ponto que se torna desorganizado, ponto em que é considerado turbulento, a figura 2 exemplifica o comportamento dos fluidos.

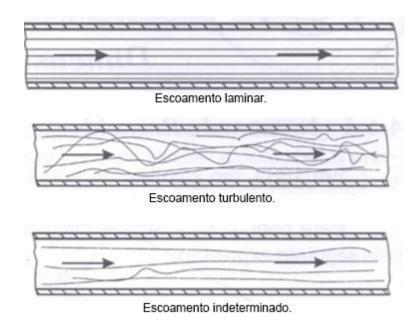


Figura 2: Demonstração de regimes de escoamento.

Fonte: FIALHO (2004)

3.2 TERMODINÂMICA

3.2. Calor específico de uma substância:

Halliday (1996) afirma que o calor específico parametriza a quantidade de calor absorvida por um corpo ou substância para que sua temperatura aumente em uma determinada grandeza.

3.2.1 Calor acrescido a um corpo

Como explica Halliday (1996), podemos encontrar a quantidade de calor necessária a um corpo de determinada massa e calor específico para que sua temperatura seja elevada a uma determinada grandeza. No caso da água, a variação de seu calor específico na faixa de

ć

0°C a 100°C é inferior a 1%, desse modo, em pequenas variações podemos utilizar a equação 3 para determinar o calor acrescido:

$$Q=mc_{p}\Delta T$$
 (2)

Em que:

Q: Calor acrescido

m: Massa do corpo

c_p: Calor específico do material

 ΔT : Diferença de temperatura

3.2.2 Energia Interna

De acordo com Borgnakke (2009) a energia interna é uma propriedade termodinâmica considerada como a soma das energias de uma substância descartando-se as energias potencial e cinética, vistos que as mesmas devem ser avaliadas individualmente. É uma propriedade extensiva dependente da massa do sistema.

3.2.3 Entalpia

Borgnakke (2009) explanam que a entalpia é também uma propriedade extensiva que é observada quando há variação de fronteira em um regime quase estático, onde não há variação significativa na energia potencial e cinética do sistema, e sim variação da energia interna e realização de trabalho da substância sob a forma de variação de volume.

3.2.4 Primeira Lei da Termodinâmica

A primeira lei da termodinâmica de acordo com Borgnakke (2009) pode ser representada como o balanço energético entre dois estados de uma substância em que se relacionam a energia da substância e o calor e trabalho aplicados, matematicamente representado pela equação 3:

$$\Delta E = Q + W$$
 (3)

Onde:

ΔE: Variação da energia do fluido

Q: Calor

W: Trabalho

3.2.5. Potência Térmica

Halliday (1996) diz que a potência térmica pode ser descrita como a quantidade de calor de calor fornecida por um corpo em um intervalo de tempo determinado, ou seja, a rapidez com que o calor é trocado entre dois corpos, dada pela equação 4:

$$P = \frac{Q}{\Lambda t} \tag{4}$$

Onde:

P: Potência térmica

Q: Quantidade de calor

 Δt :Intervalor de tempo

3.3 TRANSFERÊNCIA DE CALOR

3.3.1 Transferência de calor por condução

Incropera (2007) afirma que a transferência de calor por condução se dá por meio de um diferencial de temperatura entre duas extremidades ou superfícies de um corpo, com o fluxo de calor direcionado do ponto com maior temperatura ao ponto de menor energia, exige um meio físico para que possa ser observada, sendo este um meio sólido ou mesmo um meio fluídico encarcerado para que seu conteúdo seja considerado estagnado, a condução é dada pela equação 4:

$$Q = \frac{-kA}{L} \Delta T \tag{5}$$

Onde:

Q: Calor trocado

k: Constante de transferência de calor

A: Área de troca térmica

L: Espessura da parede

 ΔT : Diferencial de Temperatura

3.3.2 Transferência de calor por convecção

De acordo com Incropera (2007), a transferência de calor por convecção é definida como a transferência de energia das porções mais quentes para as mais frias de um fluido, e é também observada nas porções de um fluido que entram em contato com uma determinada superfície, assim como a condução, a convecção necessita de um meio físico para que ocorra. Dada pela equação 6:

$$Q=hA\Delta T \tag{6}$$

Onde:

Q: Calor trocado

h: Coeficiente de película

A: Área de troca térmica

 ΔT : Diferenciial de temperatura

3.3.3 Transferência de calor por radiação

Também de acordo com Incropera (2007) transferência de calor entre corpos pode ser dar na ausência de um meio físico, que é o caso da radiação, e por definição, todos os corpos com temperatura acima do zero absoluto emitem calor na forma de radiação térmica, em que um corpo com menor temperatura recebe radiação térmica de um corpo com maior temperatura, também é importante analisar os conceitos de corpo negro e corpo cinzento:

• Corpo negro: É todo aquele que absorve toda a radiação que nele incide

• Corpo cinzento: É todo aquele que reflete parcialmente a radiação incidente.

ć

A radiação térmica é dada pela equação 7:

$$Q = \sigma A F_{12} (T_1^4 - T_2^4)$$
 (7)

Onde:

Q: Calor trocado

σ: Constante de Boltzmann (5,97 x 10^-8)

A: Área da placa

 F_{12} : Absortividade ou emissividade da superfície

 T_1 : Temperatura da superfície 1

 T_2 : Temperatura da superfície 2

Çengel(2012) traz duas propriedades importantes para o estudo da radiação, são a emissividade e absortividade relacionadas abaixo:

- Emissividade: A emissividade é uma propriedade radioativa que é representada pela quantidade de calor que um corpo emite a uma determinada temperatura quando comparado a um corpo negro.
- Absortividade: A absortividade é a propriedade que implica ao corpo a quantidade de radiação que é absorvida pela superfície
- Lei de Stefan-Boltzmann

A lei de Stefan-Boltzmann diz que a radiação emitida por um corpo é definida pelo produto sua temperatura, da constante de Stefan-Boltzmann e a emissividade de um corpo, definida pela equação 8:

$$Q = \varepsilon \sigma \left(T_{\infty}^4 - T_s^4 \right) \tag{8}$$

Em que:

Q: Calor Perdido por emissividade

 ε : Emissividade do corpo

 T_{∞} : Temperatura do ambiente em Kelvin

 T_s : Temperatura da superfície do corpo em Kelvin

ć

Enquanto a quantidade de calor absorvida por um corpo por radiação solar é igual à carga solar incidente multiplicada pela sua absortividade, matematicamente definida pela equação 9:

$$Q=q\alpha A_{s}$$
 (9)

Em que:

Q: Calor absorvido

Q: carga incidente

∝: Absortividade do corpo

A_s: Área Superficial

3.3.4 Transferência de calor em um tubo

Considerando um tubo como um cilindro vazado e submetendo-o a um diferencial de temperatura entre as superfícies interna e externa, e considerando uma espessura entre as superfícies, obtemos a seguinte equação 10:

$$Q = \frac{k2\pi L}{(\ln\frac{r^2}{r^1})} (T1-T2)$$
 (10)

Onde:

Q: Calor Trocado

k: Constante de transferência de calor

L: Comprimento do tubo

r2: Raio externo

r1: Raio Interno

T1: Temperatura Externa

3.3.5 Transferência de calor por convecção forçada interna

Çengel (2012) disserta que a transferência de calor por convecção forçada interna ocorre quando há escoamento de fluidos em ambientes limitados por superfícies havendo um diferencial de temperatura entre as faces da superfície.

3.3.6 Número de Nusselt

Çengel(2012) afirma que o número de Nusselt é uma forma adimensional do coeficiente de transferência de calor h criando uma relação entre os coeficientes de transferência de calor por convecção e condução como demonstra a equação 11:

$$\frac{\dot{q}_{conv}}{\dot{q}_{cond}} = \frac{h\Delta T}{\frac{k\Delta T}{I}} = \frac{hl}{k} = \frac{hD}{k} = Nu$$
(11)

Çengel(2012) também expõe que quando se trata de transferência de calor por convecção forçada interna o número de Nusselt pode ser expresso pela equação 12:

$$Nu=0.023Re^{0.8}Pr^n$$
 (12)

Em que:

n=0,3 para resfriamento do fluido

n=0,4 para aquecimento do fluido

O número de Nusselt para situações em que o ar escoa de maneira forçada ao redor de um cilindro pode ser definido pela equação 13:

$$Nu=0.193Re^{0.618}Pr^{1/3}$$
 (13)

3.3.7 Temperatura interna do tubo em um ponto qualquer

Çengel diz que a temperatura da superfície interna de um tubo pode ser determinada como define a equação 14:

$$T_{S} = T_{M} + \frac{\dot{q}_{s}}{h} \tag{14}$$

Onde:

Ts: Temperatura superficial do tubo em um ponto qualquer

Tm: Temperatura média do fluido em um ponto qualquer

 \dot{q}_s : Fluxo de calor

h: Coeficiente de transferência de calor por convecção

3.4 AQUECEDORES SOLARES

3.4.1 Técnicas de conversão de energia

Palz (1978) afirma que existem os seguintes processos de geração de energia solar indireta demonstrados pelo quadro 1:

Os coletores solares parabólicos são equipamentos compostos por uma superfície refletiva, denominada refletor que segue a geometria de um espelho esférico e um elemento absorvedor responsável por coletar a radiação refletida pelo refletor posicionado no foco do espelho ponto de incidência máxima de radiação. A figura 3 ilustra o conceito de coletor parabólico buscado por este trabalho.

A forma de geração escolhida é concentração elevada, pois possui grande capacidade de absorção de radiação solar e utiliza coletores parabólicos para seu funcionamento.

Quadro 1- Processos de geração de energia solar

GERAÇÃO INDIRETA	
Energia convertida de radiação para calor	Conversão de Calor em eletricidade
	Conversão mecânica
Coletor de Chapa Plana	Motor de combustão interna.
	Ciclo Rankine
Concentração Mediana	Ciclo Brayton
	Motor Stirling
	Conversão estática
	Efeito termoelétrico em semicondutores
Concentração Elevada	Emissão térmica de elétrons em superfícies metálicas
	Conversores magneto-hidrodinâmicos

Fonte: Editada pelo autor, retirada de Palz (1978).

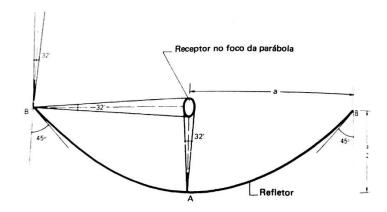


Figura 3: Conceito de coletor parabólico.

Fonte: Palz (1978)

Os aquecedores solares se apresentam em determinadas configurações, Anjos (2008) apresenta quatro principais configurações de equipamentos apresentados nas figuras 5 a 7, apresentando sempre a presença de duas unidades, o conjunto refletor concentrador de luz e a unidade absorvedora de radiação, diferenciando se principalmente em relação ao conjunto concentrador.

O concentrador exibido na figura 4 é composto por um refletor paraboloide único e uma unidade absorvedora de foco central.

Figura 4: Concentrador de receptor central paraboloide.

Fonte: Rigotti (2008)

O conjunto exibido na figura 5 é composto por um campo heliostático, ou seja, diversos refletores fixos orientados para o topo de uma torre onde se encontra um receptor, este modelo permite uma maior área de reflexão, portanto maior potência do equipamento por unidade absorvedora.

O sistema exemplificado na figura 6 apresenta um refletor único com formato de um semicilindro parabólico, esta configuração conta com um receptor de radiação linear usualmente sob a forma de um tubo metálico, já o sistema ilustrado na figura 7 demonstra o sistema de concentrador de foco linear semelhante ao anterior quanto à unidade absorvedora, porém com diversos espelhos facetados orientados para o absorvedor dispostos em um plano.

Figura 5: Concentrador de receptor central de campo heliostático.

Fonte: Rigotti (2008)

Figura 6: Concentrador parabólico de foco linear.

Fonte: Rigotti (2008)

Figura 7: Concentrador plano de foco linear.

Fonte: Rigotti (2008)

3.5 MATERIAIS

3.5.1 Alumínio

Çengel expõe que o alumínio é um material leve, e de alto coeficiente de transferência de calor por condução sendo este de 237 W/m°C justificando sua utilização como tubulação para o absorvedor.

3.5.2 Aço AISI 430

De acordo com Anjos (2008) as chapas comerciais de aço AISI 430 quando polidas, possuem reflexibilidade estimada de 80-90% sendo esta uma alternativa para utilização como material de construção para a unidade refletora.

3.6 INCIDÊNCIA SOLAR

O local escolhido para obtenção dos dados de incidência solar foi a cidade de Foz do Iguaçu, situada no oeste do estado do Paraná, devido à disponibilidade de dados solares de radiação e tempo de incidência solar. Os anexos 7 a 10, retirados do Atlas Solarimétrico do Brasil expõe que Foz do Iguaçu recebe no verão, uma média mensal diária de insolação de 7 horas e para fins de cálculo este valor será reduzido para 6 horas uma vez que este índice é variável. A taxa média de insolação direta por hora foi obtida do INMET, optou-se por recolher os dados de insolação do primeiro dia primeiro de cada mês no período de um ano nos horários entre 12:00 e 17:00 h e calculou-se a média entre eles obtendo-se o gráfico da figura 8, sendo esta de 1828 kJ/m²h ou, em W, 507 W/m².



Figura 8: Insolação em kJ/m²h em Foz do Iguaçu

Fonte: Autor com dados retirados da página do INMET.

3.7 FÍSICA ÓTICA

3.7.1 Reflexão e Refração

Pela definição de Halliday (2009) o fenômeno da reflexão ocorre juntamente com a refração uma vez que um raio luminoso passa por uma interface entre dois meios, gerando um raio luminoso refletido cujo ângulo de reflexão é igual ao de incidência e um raio luminoso refratado, possuindo um ângulo de refração dependente dos índices de refração de dois meios.

3.7.2 Espelhos

A definição de espelho de acordo com Halliday (2009) é uma superfície capaz de refletir um raio luminoso em uma direção definida ao invés de realizar a absorção do mesmo ou mesmo difundi-lo no ambiente de maneira desordenada.

3.7.3 Espelhos Esféricos

Halliday (2009) expõe que os espelhos esféricos são assim chamados por possuírem a geometria de uma pequena seção transversal de uma esfera, gerados por um raio que circunda um eixo de curvatura, a seção da esfera pode possuir refletividade na sua superfície interior ou exterior sendo chamados respectivamente de côncavos ou convexos, o primeiro cujo esquema é demonstrado na figura 8.

Os espelhos côncavos possuem a propriedade refletir raios luminosos paralelos ao eixo principal em direção ao foco real do espelho situado em r/2, a equação 15 determina a posição do foco exemplificada pela figura 9:

ć

$$f = \frac{r}{2} \tag{15}$$

Em que:

f: Posição do foco real do espelho

r: raio de geração da parábola

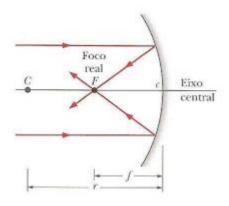


Figura 9: Esquematização de um espelho côncavo.

Fonte: Halliday (2009)

4 METODOLOGIA

4.1 MATERIAIS

Os estudos e análises serão realizados com base em conceitos literários, os cálculos serão realizados com auxílio de softwares.

4.1.1 Literatura

As pesquisas serão baseadas em literaturas que abordem os conceitos de energia solar, física, mecânica dos fluidos, transferência de calor e termodinâmica.

4.1.2 Microsoft Office Excel

O Microsoft Office Excel é um software que permite a criação de planilhas eletrônicas e dispõe de diversas funções pré-programadas que podem ser utilizadas nas células afim de realizar diversos cálculos, sendo estes matemáticos, estatísticos trigonométricos entre outros.

4.1.3 SolidWorks

Após o dimensionamento do coletor, o layout do mesmo será elaborado através do software SolidWorks, o qual auxilia na criação de desenhos em 3D, as peças, facilitando assim a visualização do conceito do aquecedor.

4.2 MÉTODOS

4.2.1 Projeto conceitual

O primeiro passo será a determinação das exigências de funcionamento do equipamento. Como o estudo é voltado para um aquecedor de água, a obtenção de dados físicos do fluido será feita por meio de literaturas, encontrando assim os requisitos de funcionamento do equipamento para o objetivo.

4.2.2 Realização dos cálculos

A realização dos cálculos se dará baseando-se na literatura com o auxílio do software Microsoft Office Excel, serão determinados a vazão mássica e volumétrica de fluido de trabalho no interior do absorvedor, os números adimensionais de Reynolds e Nusselt, bem como as transferências de calor por condução interna em um tubo e através do mesmo, as

ć

perdas de calor para o ambiente por convecção e radiação térmica, a temperatura superficial externa do tubo, o tipo de revestimento externo bem como suas respectivas absortividade e emissividade, em seguida será determinada a superfície do refletor, o layout da parábola e o posicionamento da unidade absorvedora.

4.2.3 Projeto Detalhado

Uma vez realizados os cálculos e um layout preliminar estiver concluído um projeto detalhado com as dimensões da parábola, e especificações para o tubo será elaborado para a visualização final do layout da máquina.

5 RESULTADOS E DISCUSSÕES

5.1 DETERMINAÇÃO DOS ESTADOS TERMODINÂMICOS

As propriedades dos estados termodinâmicos, inicial e final foram encontradas com base na tabela do anexo 1, os dados foram coletados baseando-se na temperatura e os dados são correspondentes aos de água líquida saturada, dados estes relacionados na tabela 1.

Tabela 1: Estados termodinâmicos inicial e final.

Estado Inicial	Estado Final
$T1 = 10^{\circ}C$	$T2 = 25^{\circ}C$
U = 41,99 kJ/kg	U = 104,86 kJ/kg
$v = 0.001 \text{ m}^3/\text{kg}$	$v = 0.001003 \text{ m}^3/\text{kg}$
$p = 1000 \text{ kg/m}^3$	$p = 997,008 \text{ kg/m}^3$

Fonte: Dados recolhidos do Anexo 1

5.2 GANHO DE CALOR NECESSÁRIO PARA A MUDANÇA DE ESTADO

Para que se atinja o estado termodinâmico final, faz se necessário que sua energia interna seja incrementada, dessa forma, pela primeira lei da termodinâmica é possível calcular o ganho de calor desejado.

Q=25000kg
$$\left(104,86 \frac{kJ}{kg} - 41,99 \frac{kJ}{kg}\right)$$

5.3 ESTIMATIVA DE POTÊNCIA DO EQUIPAMENTO

Com o tempo de ciclo estimado em 6 horas correspondente a 21600 segundos, a potência térmica desta forma é calculada:

$$P = \frac{1571750 \text{ kJ}}{21600 \text{ s}}$$

$$P = 72.76 \text{ kW}$$

5.4 ENTALPIA DA MASSA DE FLUIDO DESLOCADA E SUA TEMPERATURA

Com o ciclo de aquecimento fixado em 6 h, e considerando que se aquecerá apenas metade da massa de água a uma temperatura de modo que a vazão volumétrica seja de 2.08

m³/h de água através do aquecedor, desse modo, pela primeira lei da termodinâmica é possível calcular a entalpia da massa deslocada para que o aquecimento da massa total seja realizado.

12500 kg . 41,99
$$\frac{kJ}{kg}$$
 +12500 kg . h=25000 . 104,86 $\frac{kJ}{kg}$

$$h=167,73 \text{ kJ/kg}$$

Uma vez encontrado o valor, por meio de interpolações da tabela do anexo 1, é possível encontrar a temperatura correspondente a esta entalpia demonstrada na tabela 2:

Tabela 2: Valores de temperatura e entalpia do fluido

Entalpia	Temperatura
167,53	40
167,73	40,03
188,41	45

Fonte: Anexo 1

Com a temperatura encontrada de 40,03°C pode-se dar início ao processo de cálculo de transferência de calor.

5.5 DETERMINAÇÃO DA TEMPERATURA DE FILME

Considerando a temperatura de entrada do fluido no equipamento como 10°C e a temperatura de saída como 40,03°C por meio da média entre as temperaturas é possível determinar a temperatura de filme, média entre as temperaturas e é aquela utilizada em cálculos práticos.

$$Tf = \frac{10^{\circ}C + 40,03^{\circ}C}{2}$$

Tf=25,019°C

5.6 DETERMINAÇÃO DAS PROPRIEDADES TERMODINÂMICAS DA ÁGUA EM TEMPERATURA DE FILME

Diversas propriedades termodinâmicas são necessárias para que sejam realizados os cálculos de transferência de calor, as propriedades foram coletadas a um valor de 25°C a partir das tabelas dos anexos 1 e 4. Estas relacionadas na tabela 3

Tabela 3: Propriedades da temperatura de filme do fluido

Propriedades da Temperatura de Filme	
Volume Específico	0,001003 m³/kg
Massa Específica	997,0089731 kg/m³
Prandt	6,14
Viscosidade Dinâmica	0,000891 kg/m*s
Condutividade Térmica	0,607 W/m°C
Calor Específico	4180 J/kg°C

Fonte: Anexos 1 e 4

5.7 DETERMINAÇÃO DAS PROPRIEDADES DO TUBO

O elemento selecionado para ser utilizado como unidade absorvedora é um tubo de alumínio de diâmetro interno de 1 polegada (1"), e parede de espessura 1 mm, resultando em um diâmetro externo de 27,4 mm, o comprimento escolhido para o início dos cálculos será de 40m, resultando nas dimensões e propriedades exibidas pela tabela 4:

Tabela 4: Propriedades do Tubo

Propriedades do Tubo	
Diâmetro Interno	0,0254 m
Diâmetro Externo	0,0274 m
Espessura da Parede	0,001 m
Comprimento	40 m
Área Interna	3,1918 m²
Área Externa	3,4431 m²
Material	Alumínio
Condutividade Térmica	237 W/m°C

Fonte: Dados do autor e obtidos do anexo 3

ć

5.8 CÁLCULO DO NÚMERO DE REYNOLDS

O número de Reynolds é diretamente proporcional à taxa de transferência de calor, e envolve as condições de fluxo do fluido e propriedades físicas.

Por meio da equação 1 o número de Reynolds será calculado tomando como base a velocidade de 1,142 m/s correspondente à vazão de 0,000578 m³/s. O diâmetro é correspondente ao diâmetro interno do tubo.

$$Re = \frac{997,008 \frac{kg}{m^3}.1,142 \frac{m}{s}.0,0254 m}{0,000891 \frac{kg}{m.s}}$$

Nota-se que o valor de Reynolds encontrado é superior a 10.000, desse modo, assumese que o fluxo é de regime turbulento.

5.9 NÚMERO DE NUSSELT

5.10 COEFICIENTE DE TRANSFERÊNCIA DE CALOR POR CONVECÇÃO

$$h = \frac{194,467 \cdot 0,607}{0.0254}$$

$$h=4647,311743 \frac{W}{m^{2} {}^{\circ}C}$$

5.11 DETERMINAÇÃO DA TEMPERATURA DO TUBO NA SAÍDA

$$T_S$$
=40,03+ $\frac{22797.44 \text{ W/m}^2}{4647,311 \text{ W/m}^2 \text{°C}}$

5.12 TRANSFERÊNCIA DE CALOR ATRAVÉS DA PAREDE DO TUBO

Utilizando a equação da transferência de calor através de um tubo podemos determinar a temperatura externa do tudo necessária para que ocorra a passagem de calor desejada por meio da equação 10.

$$72766,2037W = \frac{237W/m^{\circ}C \cdot 2 \cdot \pi \cdot 40m}{(\ln \frac{0,0274m}{0,0254m})} \cdot (T2-44,975^{\circ}C)$$

5.13 ABSORVEDOR

O tubo utilizado como absorvedor sofre perdas de calor para o ambiente por radiação e convecção, desse modo coberturas ou tratamentos superficiais são indicado para otimizar o absorvedor quanto à sua absortividade e emissividade, desse modo, optou-se por uma aplicação de pintura exemplificada na figura 9, sendo esta preta na parte inferior do tubo, onde receberá a reflexão de luz solar vinda da unidade refletora e um polimento na região superior, onde não receberá reflexão direta e visa-se minimizar a perda de calor por radiação.

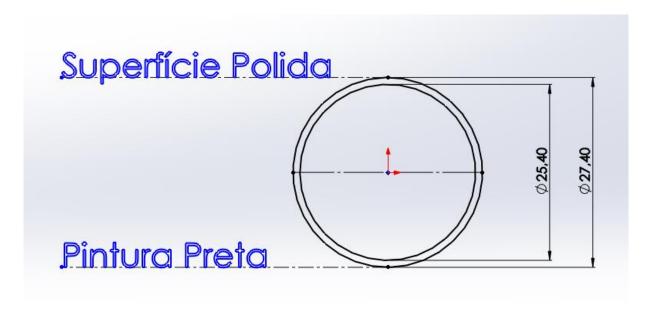


Figura 10: Esquema de pintura da superfície externa do tubo.

Fonte: Autor.

De acordo com o Anexo 6 o alumínio polido possui emissividade e absortividade equivalentes a 0,03 e 0,09 respectivamente enquanto que a tinta preta possui estes coeficientes a 0,98 e 0,98, respectivamente.

5.14 PERDAS DE CALOR PARA O AMBIENTE

5.14.1 Perdas por convecção

A perda de calor da parede externa do tubo para o ambiente ocorre de duas maneiras, por convecção forçada externa e radiação. Para isso, também foram definidas hipoteticamente as condições climáticas do local: sendo elas temperatura a 20°C e vento a uma velocidade de 4m/s.

• Número de Reynolds do Ar calculado pela equação 1:

O número de Reynolds é calculado:

$$Re = \frac{4m/s \cdot 0,027m}{0,00001516m^2/s}$$

Número de Nusselt calculado pela equação 12

O número de Nusselt calculado para convecção forçada externa ao cilindro é:

Nu=0,193 .
$$7234,32^{0,618}$$
 . $0,7309^{\frac{1}{3}}$

$$Nu=42,197$$

• Coeficiente de transferência de calor por convecção pela equação 10:

$$h = \frac{42,197 \cdot 0,02514}{0,0274m}$$

h=38,716
$$\frac{W}{m^{2}{}^{\circ}C}$$

• O calor total perdido por convecção para o ambiente é, pela equação 6:

Q=-38,716W/m
2
 . 3,4431m 2 . (45,067°C-20°C)

$$O = -3341,75W$$

5.14.2 Perdas por radiação

As perdas de calor por radiação são dadas pela lei de Stefan-Boltzmann, sendo primeiramente as perdas pela parte revestida:

Q=0,98 . 5,67 .
$$10^{-8}$$
 . $(293,15K^4-318,12K^4)$
Q=-167,15 W

Em seguida são calculadas as perdas por radiação da parte polida:

Q=0,03 . 5,67 .
$$10^{-8}$$
 . (293,15 K^4 -318,12 K^4)
Q=-5,11 W

Desse modo as perdas por radiação somam ao total

$$Q_{radiação}$$
=(-167,5W-5,11W)
 $Q_{radiacão}$ =-172,26 W

5.15 POTÊNCIA REQUERIDA

A potência total requerida da máquina corresponde ao calor necessário para o funcionamento do equipamento, adicionado as perdas por convecção e radiação para o ambiente, desse modo, obtém-se a potência necessária para o funcionamento ideal do equipamento, outro fator é o calor necessário para manter o aquecimento da placa, desse modo

$$\sum_{} Q = Q_{\text{funcionamento}} + Q_{\text{convecção}} + Q_{\text{radiação}}$$

$$\sum_{} Q = 72766,37W + 3341,75W + 172,26W$$

$$\sum_{} Q = 75935,69 \text{ W}$$

5.16 ÁREA DO REFLETOR

De acordo com os dados do INMET, a incidência solar na cidade de Foz do Iguaçu é de 507 W/m², no período correspondente a 01/12/2015 a 01/11/2016 coletando dados de um dia aleatório por mês para que se estabeleça um parâmetro de incidência solar para o estudo.

A área considerada para os cálculos foi a de seção retangular da maior abertura da parábola, uma vez que o comprimento inicial da máquina foi fixado em 40m pode se calcular a largura deste retângulo para que a partir daí a parábola possa ser desenvolvida.

Como a potência requerida para o equipamento totaliza 75935.69 W e a refletividade do Aço AISI 430 quando polido é de 0,9, obtém-se a área necessária para a obtenção da radiação necessária.

$$\text{Área} = \frac{75935,69\text{W}}{507\text{W/m}^2 \cdot 0.9} = 166.42 \text{ m}^2$$

Calcula-se em seguida a largura da parábola

$$L = \frac{A}{C} = \frac{166,42 \text{m}^2}{40 \text{m}} = 4,1604 \text{ m}$$

5.17 PARÁBOLA

O perfil da parábola foi desenvolvido com o auxílio do software SolidWorks, optou-se por utilizar um setor de 120° da circunferência para a parábola, pois como exemplifica a figura 10 o foco real do espelho encontra-se horizontalmente alinhado com os vértices da parábola independentemente das dimensões da mesma.

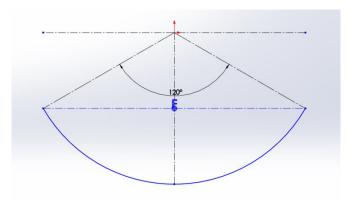


Figura 11: Design da parábola

Fonte: Autor

5.18 REFLETOR

Uma vez determinada a Parábola é possível criar um modelo em 3D com o auxílio do software SolidWorks, inserindo as dimensões de largura de 4.16m. O modelo de um setor de

10m da máquina é exemplificado na figura 12 suas propriedades da tabela 5 e as dimensões do perfil na figura 13.

Figura 12: Setor do refletor

Fonte: Autor

Tabela 5: Propriedades e dimensões do refletor

Propriedade	es do Refletor
Ângulo de Geração	120°
Largura	4160.4 mm
Distância Focal	1201 mm
Material	Aço AISI 430 Polido
Refletividade	0.9 - 90%

Fonte: Autor

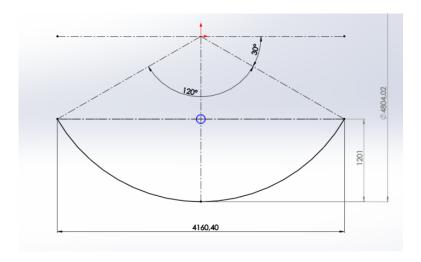


Figura 13: Layout final da parábola do refletor

Fonte: Autor

5.19 PROJETO FINAL

As figuras 14 e 15 exemplificam o layout final do projeto, sob as configurações de uma unidade ou quatro unidades dispostas de maneira que seu comprimento não seja um empecilho para sua instalação.

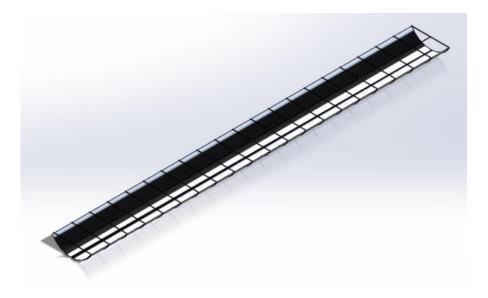


Figura 14: Configuração Única

Fonte: Autor

Figura 15: Configuração em 4 unidades dispostas em paralelo

Fonte: Autor

O projeto final resultou nas dimensões de comprimento, largura e área e especificações de potências tanto teórica como absorvida exibidas na tabela 6,

c

Tabela 6: Especificações do projeto final

Potência total teórica	75935,69 W
Potência absorvida pelo fluido	72766,37 W
Comprimento	40 m
Largura	4,1604 m
Ângulo de geração	120°
Diâmetro da circunferência geradora	4,804m
Área útil de reflexão	166,42m²
Área total do refletor	201,23m²
Material do Refletor	Aço AISI 430 Polido
Área total de absorção da unidade	1,721 m²
absorvedora	
Revestimento da área de absorção	Pintura Preta Fosca
Tratamento superficial da parte superior do	Polimento
absorvedor	
Material do Absorvedor	Alumínio

Fonte: Autor

5.20 TESTES COM PROTÓTIPO

De forma a confirmar a teoria aplicada no projeto um protótipo foi construído e testado sob condições de incidência solar direta e de céu nublado na data de Três de Junho de dois mil e dezessete na cidade de Cascavel – Paraná, apesar dos dados de insolação terem sido coletados na cidade de Foz do Iguaçu, não houve disponibilidade de deslocamento. O protótipo apresentado na figura 16 consiste em um coletor de radiação solar, tubulação isolada, bomba d'água e um reservatório para o líquido e possuí as especificações da tabela 7:

Tabela 7: Dimensões e especificações do protótipo

Comprimento	1 m
Largura	0,48 m
Ângulo de geração	120°
Diâmetro da circunferência geradora	0,54 m
Área útil de reflexão	0,48m²
Área total do refletor	0,6m²
Espessura da chapa do refletor	1,2 mm
Material do Refletor	Aço AISI 430 Polido
Área total de Absorção	0,01884 m²
Diâmetro externo do tubo absorvedor	12 mm
Diâmetro interno do tubo absorvedor	6 mm
Revestimento da área de absorção	Pintura Preta Fosca
Material do Absorvedor	Aço

Fonte: Autor

Figura 16: Protótipo construído.

Fonte: Autor

O teste foi realizado inserindo o volume de água de 3 litros no sistema e mantendo o equipamento em funcionamento no intervalo das 11h00min e 14h00min, intervalo este escolhido devido à disponibilidade de incidência solar em seu início e o optou-se pelo horário de término devido as condições de céu nublado e início de chuvas, e também pela temperatura limite de trabalho da bomba de 40°C, a coleta de dados foi realizada a cada 15 minutos e o realinhamento manual do equipamento foi efetuado a cada 10 minutos, resultando nos valores da tabela 8:

Tabela 8: Dados coletados durante o teste do protótipo

Horário	Temperatura Ambiente °C	Temperatura da Água °C	Luminosidade (Lux)	Condição Solar
11h00min	19,7	19,7	86500	Incidência Direta
11h15min	22,2	27,6	90600	Incidência Direta
11h30min	24,2	32,1	102600	Incidência Direta
11h45min	22	32,1	30200	Nublado
12h00min	21,6	32,1	45220	Nublado
12h15min	23,8	35,6	107200	Incidência Direta
12h30min	23,8	35,8	51200	Nublado
12h45min	24,2	35,0	46900	Nublado
13h00min	25	36,4	56200	Nublado
13h15min	26	38,1	98700	Incidência Direta
13h30min	25,4	38,9	53100	Nublado
13h45min	26	39,1	54400	Nublado
14h00min	25,8	39,2	53900	Nublado

Fonte: Autor

6 CONSIDERAÇÕES FINAIS

O projeto proposto por este trabalho visou a utilização de energia solar disponível para o fim de aquecer a água de uma piscina de volume total de 25m³ partindo da temperatura inicial de 10°C para a final de 25°C em um tempo pré-determinado de 6 horas.

Por meio dos conceitos de física óptica, mecânica dos fluidos, termodinâmica e transferência de calor foi possível dimensionar um equipamento capaz de realizar o objetivo proposto de utilizar a luz solar disponível para realizar uma tarefa que utilizaria como fonte de energia térmica a energia elétrica ou a queima de combustíveis.

Ao final do desenvolvimento, obteve-se um equipamento com um comprimento total de 40 m, uma área superficial de 166,42 m² de recepção de luz solar e um total de 201,23 m² de área de reflexão, capaz de gerar uma potência de 75,935 kW, suficiente para executar o objetivo proposto, suprindo a carga térmica principal e as perdas de calor do equipamento.

Por meio do teste com protótipo pode-se comprovar a teoria de funcionamento do sistema elevando-se a temperatura de um volume de 3 litros de água em 19,5°C em um período de três horas mesmo com condições instáveis de incidência solar no local, pôde-se também observar a estagnação da temperatura imediatamente após a queda de incidência solar devido à presença de nuvens em alguns instantes do teste, revelando o quão sensível é o equipamento a variações da quantidade de variação recebida,

A união dos conceitos de engenharia com a óptica permitiu elaborar o conceito de um equipamento capaz de aproveitar a energia solar, cuja disponibilidade e falta de aproveitamento são chamarizes para a indústria e sob um ponto de vista ecológico, uma energia limpa livre de emissão de gases do efeito estufa e sem geração de ruídos.

Verifica-se a necessidade de um aprofundamento nos conceitos de incidência solar e orientação dos espelhos para que o desempenho seja otimizado e assim se possa desenvolver de maneira mais eficiente o projeto e aumentar os benefícios do mesmo.

O protótipo utilizado nos testes foi entregue à instituição de ensino com o objetivo de que sejam realizadas novas pesquisas na área de aproveitamento de energia solar e inspirar outros a desenvolver novos conceitos, utilidades e pesquisas da área.

7 SUGESTÕES PARA TRABALHOS FUTUROS E MELHORIAS

Aqui seguem algumas sugestões para trabalhos a ser realizados que abordem conceitos não aprofundados neste documento:

- Automatização do sistema de posicionamento;
- Utilização de isolamento para aumentar o desempenho do equipamento;
- Desenvolvimento de um sistema de limpeza automático;
- Encontrar finalidades para o equipamento idealizado.

8 REFERÊNCIAS BIBLIOGRÁFICAS

BORGNAKKE, C, R.E., **Fundamentos de Termodinâmica**, Ed. Edgard Blucher Ltda., 7a ed., 2009.

BRUNETTI, Franco. Mecânica dos Fluidos, 1. ed. São Paulo: Pearson Prentice Hall, 2005.

ÇENGEL, Yunus A. **Transferência de calor e massa: uma abordagem prática,** 4ed. Porto Alegre: AMGH, 2012.

FIALHO, Arivelto B.. **Automação Hidráulica** : projetos, dimensionamento e análise de circuitos, 2a ed. São Paulo 2004. Editora Érica.

FOX, Robert W. et. al. **Introdução à Mecânica dos Fluidos**, 6. ed. Rio de Janeiro: LTC, 1988.

HALLIDAY, David. Fundamentos da física, volume 2, 4a ed. Rio de Janeiro: LTC 1996

HALLIDAY, David. **Fundamentos da física, volume 4 : óptica e física moderna** 8a ed. Rio de Janeiro: LTC 2009

INCROPERA, Frank P.; et. al. **Fundamentos da Transferência de Calor e Massa,** 6ª.ed., Rio de Janeiro: LTC, 2007.

Instituto Nacional de Meteorologia

http://www.inmet.gov.br/sonabra/pg_dspDadosCodigo_sim.php?QTg0Ng==

Dados consultados em 21/11/2016

PALZ, Wolfgang, Energia Solar e Fontes Alternativas, 1ª Edição 1978 Editora Hemus.

POTTER, Merle C. et. al. **Mecânica dos Fluidos,** 1. ed. São Paulo: Pioneira Thomson Learning, 2004.

Resenha Energética Brasileira - Ministério de Minas e Energia Exercício de 2014, Edição de junho de 2015.

Resenha Energética Brasileira - Ministério de Minas e Energia Exercício de 2015, Edição de junho de 2016.

RIGOTI, V. L. A. **Análise experimental dos Processos de Transferência de calor aplicados à concentração solar**. Dissertação. Universidade Federal do Espírito Santo. Vitória. 2008.

576 Fundamentos da Termodinâmica

Tabela B.1 — Propriedades termodinâmicas da água

label		ropnedad	les termod	inamicas	oa agua							
	a B.1.1 saturada:	tabela em	função da	temperat	tura							
		Valume e (m²)		En	ergia inte (kJ/kg)	rna		Entalpia {kJ/kg}			Entropia (kJ/kg K)	
Temp.	Pressão kPa	Líquido sat.	Vapor sat.	Liquido sat	Evap.	Vapor sat.	Liquido sat	Evap.	Vapor sat.	Liquido sat.	Evap.	Vapor sat.
T	Р	V _j	$V_{\rm p}$	46	u_{tr}	и,	h_{t}	h_{br}	h,	s,	s_{iv}	S _v
0,0	0,6113	0,001000	206,132	0,00	2375,33	2375,33	0,00	2501,25	2501,35	0,0000	9,1562	9,1562
5	0,8721	0,001000	147,118	20,97	2361,27	2392,24	20,98	2499,57	2510,54	0,0761	8,9496	9,0257
10	1,2276	0,001000	106,377	41,99	2347,16	2399,15	41,99	2477,75	2519,74	0,1510	8,7498	8,9007
15	1,705	0,001001	77,925	62,98	2333,06	2396,04	62,98	2465,93	2528,91	0,2245	8,5569	8,7813
20	2,339	0,001002	57,7897	83,94	2318,98	2402,91	83,94	2454,12	2538,06	0,2966	8,3706	8,6871
25	3,169	0,001003	43,3593	104,88	2304,90	2409,78	104,87	2442,30	2547,17	0,3673	8,1905	8,5579
30	4,246	0,001004	32,8922	125,77	2290,81	2416,58	125,77	2430,48	2556,25	0,4369	8,0164	8,4533
35	5,628	0,001006	25,2158	146,65	2276,71	2423,36	146,68	2418,62	2565,28	0,5052	7,9478	8,3530
40	7,394	0,001008	19,5229	167,53	2262,57	2430,11	167,54	2406,72	2574,28	0,5724	7,6945	8,2569
45	9,593	0,001010	15,2581	199,41	2249,40	2436,81	188,42	2394,77	2583,19	0,6396	7,5261	8,1647
50	12,350	0,001012	12,0318	209,30	2234,17	2443,47	209,31	2392,75	2592,06	0,7037	7,3725	8,0762
55	15,758	0,001015	9,58835	230,19	2219,89	2450,08	230,20	2370,68	2600,86	0,7679	7,2234	7,9912
60	19,941	0,001017	7,67071	251,09	2205,54	2456,63	251,11	2358,48	2609,59	0,8311	7,0794	7,9095
65	25,03	0,001020	6,19658	272,00	2191,12	2463,12	272,03	2346,21	2618,24	0,8934	6,9375	7,8309
70	31,19	0,001023	5,04217	292,93	2176,62	2469,55	292,96	2333,85	2626,80	0,9548	6,9004	7,7552
75	38,58	0,001026	4,13123	313,87	2162,03	2475,91	313,91	2321,37	2635,28	1,0154	6,6670	7,6824
80	47,39	0,001029	3,40715	334,84	2147,36	2492,19	334,88	2309,77	2643,68	1,0752	6,5369	7,6121
85	57,83	0,001032	2,82757	355,82	2132,58	2499,40	355,88	2296,05	2651,93	1,1342	6,4102	7,5444
90	70,14	0,001036	2,36058	376,82	2117,70	2494,52	376,90	2283,19	2660,09	1,1924	6,2966	7,4790
95	84,55	0,001040	1,98186	397,86	2102,70	2500,58	397,94	2270,19	2668,13	1,2500	6,1659	7,4158
100	101,3	0,001044	1,67290	418,91	2097,58	2506,50	419,02	2257,03	2676,05	1,3068	6,0490	7,3548
105	120,8	0,001047	1,41938	440,00	2072,34	2512,34	440,13	2243,70	2683,83	1,3629	5,9328	7,2958
110	143,3	0,001052	1,21014	461,12	2056,96	2518,09	481,27	2230,20	2691,47	1,4184	5,8202	7,2396
115	169,1	0,001056	1,03658	492,28	2041,44	2523,72	482,48	2216,50	2698,96	1,4733	5,7100	7,1832
120	198,5	0,001060	0,89186	503,48	2025,76	2529,24	503,69	2202,61	2706,30	1,5275	5,6020	7,1295
125	232,1	0,001065	0,77059	524,72	2009,91	2534,63	524,96	2199,50	2713,48	1,5812	5,4962	7,0774
130	270,1	0,001070	0,66850	546,00	1993,90	2539,90	546,29	2174,16	2720,48	1,6343	5,3925	7,0269
135	313,0	0,001075	0,58217	567,34	1977,69	2545,03	587,67	2159,58	2727,28	1,6969	5,2907	6,9777
140	361,3	0,001090	0,50685	599,72	1961,30	2550,02	589,11	2144,75	2733,87	1,7390	5,1908	6,9298
145	415,4	0,001095	0,44832	610,16	1944,69	2554,86	610,61	2129,65	2740,28	1,7906	5,0926	6,8832
150	475,9	0,001090	0,39278	631,68	1927,97	2559,54	632,18	2114,28	2746,44	1,8417	4,9960	6,8378
155	543,1	0,001096	0,34676	653,23	1910,82	2564,04	653,82	2099,58	2752,39	1,8924	4,9010	6,7934
160	617,8	0,001102	0,30706	674,85	1993,52	2568,37	675,53	2092,55	2758,09	1,9426	4,9075	6,7501
165	700,5	0,001108	0,27289	696,55	1875,97	2572,51	697,32	2066,20	2763,53	1,9924	4,7153	6,7078
170	791,7	0,001114	0,24283	718,31	1959,14	2576,48	719,20	2049,50	2768,70	2,0418	4,6244	6,6863
175	892,0	0,001121	0,21680	740,16	1940,03	2590,19	741,16	2032,42	2773,58	2,0909	4,5347	6,6256
180	1002,2	0,001127	0,19405	762,08	1821,62	2583,70	783,21	2014,96	2778,16	2,1395	4,4461	6,5857

	APÊNDICE 1	NAMES OF TAXABLE PARTY.	NAME OF THE PERSON OF THE PERS	RESIDENCE PROPERTY.	THE REAL PROPERTY.	and the second second second second second	
ABELA A	The state of the s			And the second second second second second	71	Heat Wall St	Total of
ropriedad	es do ar a 1 atm d	Calor específico	Condutividade térmica	Difusividade térmica	Viscosidade dinâmica μ, kg/m·s	Viscosidade cinemática u, m²/s	Número de Prand Pr
, °C	ρ , kg/m ³	c_p , J/kg · K	<i>k</i> , W/m ⋅ K	α , m ² /s ²		10-6	0,724
		000	0.01171	$4,158 \times 10^{-6}$	$8,636 \times 10^{-6}$	$3,013 \times 10^{-6}$	0,726
-150	2,866	983	0,01171 0,01582	$8,036 \times 10^{-6}$	1.189×10^{-6}	$5,837 \times 10^{-6}$	0,744
-100	2,038	966		$1,252 \times 10^{-5}$	1.474×10^{-5}	$9,319 \times 10^{-6}$	0,743
-50	1,582	999	0,01979	$1,356 \times 10^{-5}$	1.527×10^{-5}	$1,008 \times 10^{-5}$	0,742
-40	1,514	1002	0,02057	$1,465 \times 10^{-5}$	1.579×10^{-5}	$1,087 \times 10^{-5}$	
-30	1,451	1004	0,02134	$1,465 \times 10^{-5}$ $1,578 \times 10^{-5}$	$1,630 \times 10^{-5}$	$1,169 \times 10^{-5}$	0,740
-20	1,394	1005	0,02211	$1,696 \times 10^{-5}$	$1,680 \times 10^{-5}$	$1,252 \times 10^{-5}$	0,738
-10	1,341	1006	0,02288	1,696 X 10 -5	$1,729 \times 10^{-5}$	$1,338 \times 10^{-5}$	0,736
0	1,292	1006	0,02364	$1,818 \times 10^{-5}$	$1,754 \times 10^{-5}$	1.382×10^{-5}	0,735
5	1,269	1006	0,02401	$1,880 \times 10^{-5}$	$1,778 \times 10^{-5}$	1.426×10^{-5}	0,733
10	1,246	1006	0,02439	$1,944 \times 10^{-5}$	$1,802 \times 10^{-5}$	$1,470 \times 10^{-5}$	0,732
15	1,225	1007	0,02476	$2,009 \times 10^{-5}$	$1,802 \times 10^{-5}$	$1,516 \times 10^{-5}$	0,730
20	1,204	1007	0,02514	$2,074 \times 10^{-5}$	$1,825 \times 10^{-5}$ $1,849 \times 10^{-5}$	$1,562 \times 10^{-5}$	0,729
25	1,184	1007	0,02551	$2,141 \times 10^{-5}$	1,849 × 10	$1,608 \times 10^{-5}$	0,728
30	1,164	1007	0,02588	$2,208 \times 10^{-5}$	$1,872 \times 10^{-5}$	$1,655 \times 10^{-5}$	0,726
35	1,145	1007	0,02625	$2,277 \times 10^{-5}$	$1,895 \times 10^{-5}$	$1,702 \times 10^{-5}$	0,725
40	1,127	1007	0,02662	$2,346 \times 10^{-5}$	$1,918 \times 10^{-5}$	$1,750 \times 10^{-5}$	0,724
45	1,109	1007	0,02699	$2,416 \times 10^{-5}$	$1,941 \times 10^{-5}$	1,750 × 10 5	0,722
50	1,092	1007	0,02735	$2,487 \times 10^{-5}$	$1,963 \times 10^{-5}$	$1,798 \times 10^{-5}$	
60	1,059	1007	0,02808	$2,632 \times 10^{-5}$	$2,008 \times 10^{-5}$	$1,896 \times 10^{-5}$	0,720
70	1,028	1007	0,02881	$2,780 \times 10^{-5}$	$2,052 \times 10^{-5}$	$1,995 \times 10^{-5}$	0,717
80	0,9994	1008	0,02953	$2,931 \times 10^{-5}$	$2,096 \times 10^{-5}$	$2,097 \times 10^{-5}$	0,715
90	0,9718	1008	0,03024	$3,086 \times 10^{-5}$	$2,139 \times 10^{-5}$	$2,201 \times 10^{-5}$	0,713
100	0,9458	1009	0,03095	$3,243 \times 10^{-5}$	$2,181 \times 10^{-5}$	$2,306 \times 10^{-5}$	0,71
120	0,8977	1011	0,03235	$3,565 \times 10^{-5}$	$2,264 \times 10^{-5}$	$2,522 \times 10^{-5}$	0,707
140	0,8542	1013	0,03374	$3,898 \times 10^{-5}$	$2,345 \times 10^{-5}$	$2,745 \times 10^{-5}$	0,704
160	0,8148	1016	0,03511	$4,241 \times 10^{-5}$	$2,420 \times 10^{-5}$	$2,975 \times 10^{-5}$	0,70
180	0,7788	1019	0,03646	$4,593 \times 10^{-5}$	$2,504 \times 10^{-5}$	$3,212 \times 10^{-5}$	0,699
200	0,7459	1023	0,03779	$4,954 \times 10^{-5}$	$2,577 \times 10^{-5}$	$3,455 \times 10^{-5}$	0,697
250	0,6746	1033	0,04104	$5,890 \times 10^{-5}$	$2,760 \times 10^{-5}$	$4,091 \times 10^{-5}$	0,694
300	0,6158	1044	0,04418	$6,871 \times 10^{-5}$	$2,934 \times 10^{-5}$	$4,765 \times 10^{-5}$	0,693
350	0,5664	1056	0,04721	$7,892 \times 10^{-5}$	$3,101 \times 10^{-5}$	$5,475 \times 10^{-5}$	0,693
400	0,5243	1069	0,05015	$8,951 \times 10^{-5}$	$3,261 \times 10^{-5}$	$6,219 \times 10^{-5}$	0,69
450	0,4880	1081	0,05298	$1,004 \times 10^{-4}$	$3,415 \times 10^{-5}$	$6,997 \times 10^{-5}$	0,69
500	0,4565	1093	0,05572	$1,117 \times 10^{-4}$	$3,563 \times 10^{-5}$	$7,806 \times 10^{-5}$	0,698
600	0,4042	1115	0,06093	$1,352 \times 10^{-4}$	$3,846 \times 10^{-5}$	$9,515 \times 10^{-5}$	
700	0,3627	1135	0,06581	$1,598 \times 10^{-4}$	$4,111 \times 10^{-5}$	$1,133 \times 10^{-4}$	0,70
800	0,3289	1153	0,07037	$1,855 \times 10^{-4}$	4,362 × 10 ⁻⁵	$1,335 \times 10^{-4}$ $1,326 \times 10^{-4}$	0,70
900	0,3008	1169	0,07465	$2,122 \times 10^{-4}$	$4,600 \times 10^{-5}$	1,320 X 10 ⁻⁴	0,71
1000	0,2772	1184	0,07868	$2,398 \times 10^{-4}$	$4,826 \times 10^{-5}$	$1,529 \times 10^{-4}$	0,72
1500	0,1990	1234	0,09599	$3,908 \times 10^{-4}$	$5,817 \times 10^{-5}$	$1,741 \times 10^{-4}$	0,72
2000	0,1553	1264	0,11113	$5,664 \times 10^{-4}$	$6,630 \times 10^{-5}$	$2,922 \times 10^{-4}$ $4,270 \times 10^{-4}$	0,74

Nota: Para os gases ideais, as propriedades c_{ρ} , k, μ e Pr são independentes da pressão. As propriedades ρ , ν e α em uma pressão P (em atm) diferente de 1 atm são calculadas multiplicando-se os valores de ρ na temperatura dada por P e dividindo ν e α por P.

Fonte: Dados gerados a partir do programa EES desenvolvido por S. A. Klein e F. L. Alvarado. Fontes originais: Keenan, Chao, Keyes, Gas Tables, Wiley, 198; e P. Hestermans, IFI/Plenun, NY, 1970, ISBN 0-306067020-8.

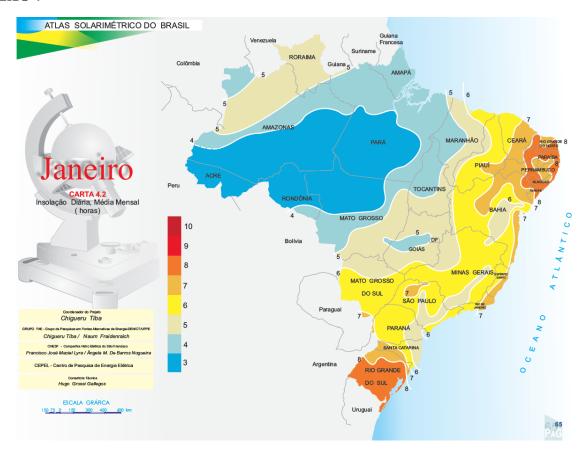
	8	4	4		
۸D	ÊN	n	ıc	6	

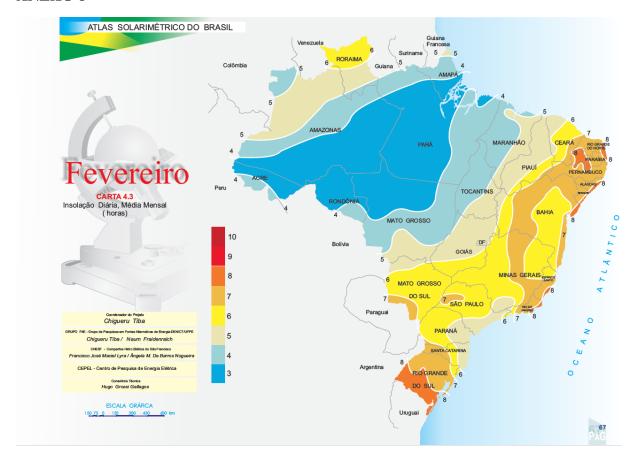
Propriedades dos meta	is sólido	S ·									
D. D. D. D.	onto de		Propried	dades a 30	00 K		Proprieda		iversas te n · K)/c _p (.		
	fusão, K	ρ kg/m³	c _p J/kg⋅K	k W/m ⋅ K	$lpha imes 10^6$ m ² /s	100	200	400	600	800	1000
Alumínio:											
Puro	933	2702	903	237	97,1	302 482	237 798	240 949	231 1033	218 1146	
Liga 2024-T6 (4,5% Cu, 1,5% Mg, 0,6% Mn) Liga 195, fundido	775	2770	875	177	73,0	65 473	163 787	186 925	186 1042		
(4,5% Cu)		2790	883	168	68,2			174	185		
Berílio	1550	1850	1825	200	59,2	990 203	301 1114	161 2191	126 2604	106 2823	90,8 3018
Bismuto	545	9780	122	7,86	6,59	16,5 112	9,69 120	7,04 127			
Boro	2573	2500	1107	27,0	9,76	190 128	55,5 600	16,8 1463	10,6 1892	9,6 2160	0 9,85 23 38
Cádmio	594	8650	231	96,8	48,4	203 198	99,3 222	94,7 242	80.7	71.3	8 65,4
Cromo	2118	7160	449	93,7	29,1	159 192	111 384 122	90,9 484 85,4	80,7 542 67,4	71,3 581 58,2	616
Cobalto	1769	8862	421	99,2	26,6	167 236	379	450	503	550	628
Cobre: Puro	1358	8933	385	401	117	482	413	393	379	366	352
Bronze comercial	1293	8800	420	52	14	252	356 42	397 52	417 59	433	451
(90% Cu, 10% AI) Bronze de engrenagem	1104	8780	355	54	17		785 41	160 65	545 74		
(89% Cu, 11% Sn) Cartucho de bronze	1188	8530	380	110	33,9	75	95 360	137 395	149 425		
(70% Cu, 30% Zn) Constantã	1493	8920	384	23	6,71	17 237	19 362	393	423		
(55% Cu, 45% Ni) Germânio	1211	5360	322	59,9	34,7	232 190	96,8 290	43,2 337	27,3 348	19,8 357	3 17,4 375
Ouro	1336	19300	129	317	127	327 109	323 124	311 131	298 135	284 140	270 145
Irídio	2720	22500	130	147	50,3	172 90	153 122	144 133	138 138	132 144	126 153
Ferro:							1000				
Puro	1810	7870	447	80,2	23,1	134 216	94,0 384	69,5 490	54,7 574	43,3 680	3 32,8 975
Armco (99,75% puro)		7870	447	72,7	20,7	95,6 215	80,6 384	65,7 490	53,1 574	42,: 680	2 32,3 975
Aços carbono: Carbono plano (Mn ≤	1%	7854	434	60,5	17,7			56,7	48,0	39,	
$Si \le 0,1\%$) AISI 1010		7832	434	63,9	18,8	1		487 58,7	559 48,8		1169 2 31,3
Carbono-silício (Mn ≤ 1°		7817	446	51,9	14.9		487	559 49,8	685 44,0	1168 37,	4 29,3

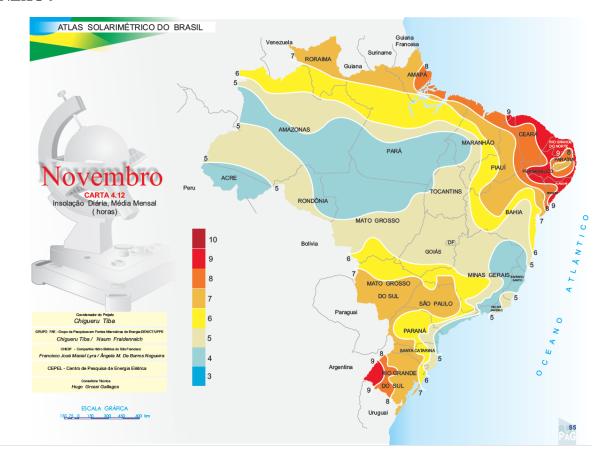
Proprie	dades da ági	in coti											
		ua Salu	rada							e sittifica di	ner .		
Temp.	Pressão de Saturação		sidade kg/m³	Entalpia de vaporização	espe	alor ecífico /kg - K	Condut térm k, W/	ica		le dinâmica g/m - s	Nún de Pr P	andtl	Coeficient de expansa volumétric β, 1/K
T, °C	P _{sat} , kPa	Líquido	Vapor	h _{tg} , kJ/kg	Líquido	Vapor	Líquido	Vapor	Líquido	Vapor	Líquido	Vapor	Líquido
0,01	0,6113	999,8	0,0048	2501	4217	1854	0,561	0,0171	$1,792 \times 10^{-3}$	0,922 × 10 ⁻⁵	13.5	1.00	-0.068 × 10
5	0,8721	999,9	0.0068		4205	1857	0,571	0.0173	1.519×10^{-3}	0.934×10^{-5}	11,2	1,00	0.015×10
10	1,2276	999.7	0.0094	2478	4194	1862	0,580	0.0176	1.307×10^{-3}	0.946×10^{-5}	9.45	1.00	$0,733 \times 10$
15	1,7051	999,1	0.0128	2466	4185	1863	0,589	0,0179	1.138×10^{-3}	0.959×10^{-5}	8.09	1.00	0.138×10
20	2,339	998.0	0.0173	2454	4182	1867	0.598	0.0182	1.002×10^{-3}	0.973×10^{-5}	7.01	1.00	0.195×10
25	3,169	997.0	0.0231	2442	4180	1870	0,607		0.891×10^{-3}	0.987×10^{-5}	6.14	1.00	0.247×10
30	4,246	996,0	0.0304	2431	4178	1875	0,615	0.0189	0.798×10^{-3}	1.001×10^{-5}	5.42	1.00	0.294×10
35	5,628	994.0	0.0397	2419	4178	1880	0.623	0.0192	0.720×10^{-3}	1.016×10^{-5}	4.83	1.00	0.337×10
40	7,384	992,1	0.0512	2407	4179	1885	0,631		0.653×10^{-3}	1.031×10^{-5}	4,32	1.00	0.377×10
45	9,593	990,1	0,0655	2395	4180	1892	0,637	0,0200	0.596×10^{-3}	1.046×10^{-5}	3.91	1,00	0.415×10
50	12,35	988,1	0,0831	2383	4181	1900	0,644	0.0204	0.547×10^{-3}	1.062×10^{-5}	3,55	1,00	0.451×10
55	15,76	985.2	0.1045	2371	4183	1908	0,649		0.504×10^{-3}	$1,002 \times 10^{-5}$	3,25	1,00	$0,431 \times 10$ $0,484 \times 10$
60	19,94	983,3	0,1304	2359	4185	1916	0,654		0.467×10^{-3}	1.093×10^{-5}	2,99	1.00	$0,484 \times 10$ $0,517 \times 10$
65	25,03	980.4	0.1614	2346	4187	1926	0,659		0.433×10^{-3}	$1,093 \times 10^{-5}$ $1,110 \times 10^{-5}$	2,75	1.00	0.548×10
70	31,19	977.5	0.1983	2334	4190	1936	0.663		0.404×10^{-3}	1.126×10^{-5}	2,75	1.00	0.578×10
75	38,58	974.7	0.2421	2321	4193	1948	0,667		0.378×10^{-3}	$1,126 \times 10^{-5}$ $1,142 \times 10^{-5}$	2,38	1.00	0.607×10
80	47,39	971.8	0.2935	2309	4197	1962	0.670		0.355×10^{-3}	$1,142 \times 10^{-5}$ 1.159×10^{-5}	2,38	1.00	0.653×10
85	57,83	968.1	0,2935	2296	4201	1977	0,673		0.333×10^{-3}	1.176×10^{-5}	2.08	1.00	0.653×10 0.670×10
90	70,14	965,3	0,4235	2283	4201	1993	0.675		0.315×10^{-3}	$1,176 \times 10^{-5}$ $1,193 \times 10^{-5}$	1.96	1.00	$0.702 \times 10^{-0.702}$
95	84,55	961,5	0,5045	2270	4212	2010	0,677		0.297×10^{-3}	1.210×10^{-5}	1.85	1.00	
100	101,33	957.9	0,5043	2257	4217	2029	0,679		0.282×10^{-3}	$1,210 \times 10^{-5}$ $1,227 \times 10^{-5}$	1.75	1.00	$0.716 \times 10^{\circ}$ $0.750 \times 10^{\circ}$
110	143.27	950.6	0.8263	2230	4229	2023	0,679		0.255×10^{-3}	$1,261 \times 10^{-5}$	1.58	1.00	$0,750 \times 10$ $0,798 \times 10$
120	198,53	943.4	1.121	2203	4244	2120	0,683		0.232×10^{-3}	$1,281 \times 10^{-5}$ $1,296 \times 10^{-5}$	1,58	100000000000000000000000000000000000000	0.798×10 0.858×10
130	270,1	934,6	1,496	2174	4263	2177	0.684		0.213×10^{-3}	$1,330 \times 10^{-5}$	1,33	1,00	0.913×10
140	361.3	921.7	1,496	21/4	4286	2244	0,683		0.197×10^{-3}				
150	475.8	916.6	2.546	2114	4311	2314	0,682		0.183×10^{-3}	$1,365 \times 10^{-5}$ 1.399×10^{-5}	1,24	1,02	0,970 × 10 1.025 × 10
160	617.8	907,4	3,256	2083	4311	2420	0,682	0,0316	0.170×10^{-3}	$1,399 \times 10^{-5}$ 1.434×10^{-5}	1.09	1.05	
170	791,7	897,7	4,119	2050	4340	2420	0,680		0.170×10^{-3} 0.160×10^{-3}	$1,434 \times 10^{-5}$ $1,468 \times 10^{-5}$	1,09	1,05	$1,145 \times 10$ 1.178×10
180	1002.1	887.3	5.153	2015	4410	2590	0,677	0.0347	0.150×10^{-3}	1,468 × 10 -5	0.983	1,05	$1,178 \times 10^{-1}$ $1,210 \times 10^{-1}$
190	1254.4	876.4	6.388	1979	4410	2710	0,669		0.142×10^{-3}	$1,502 \times 10^{-5}$ $1,537 \times 10^{-5}$	0,983	1.09	1,210 × 10 1,280 × 10
200	1553,8	864.3	7,852	19/9	4500	2840	0,663		0.134×10^{-3}	1,537 × 10 ° 1.571 × 10 -5	0.910	1.11	1,280 × 10 1,350 × 10
200	2318	840,3	11.60	1859	4610	3110	0,650	0.0442	0.122×10^{-3}	1.641×10^{-5}	0,910	1.15	1.520×10^{-1}
240	3344	813.7	16.73	1767	4760	3520	0,632	0.0442	0.122×10^{-3} 0.111×10^{-3}	$1,641 \times 10^{-5}$ $1,712 \times 10^{-5}$	0.836	1,15	1,520 × 10 1.720 × 10
260	4688	783.7	23.69	1663	4970		0.609	0.0540	0.102×10^{-3}	$1,712 \times 10^{-5}$ 1.788×10^{-5}	0.832	1.35	$1,720 \times 10$ 2.000×10
280	6412	750.8	33.15	1544	5280	4835	0,581	0.0605	0.094×10^{-3}	$1,788 \times 10^{-5}$ 1.870×10^{-5}			
300	8581			1405		5980					0,854	1,49	2,380 × 10
300 320	11274	713,8 667,1	46,15	1239	5750	7900	0,548	0,0695	0.086×10^{-3}	$1,965 \times 10^{-5}$	0,902	1,69	$2,950 \times 10$
340 340		610.5	64,57		6540 8240		0,509	0,0836	0.078×10^{-3}	$2,084 \times 10^{-5}$	1,00	1,97	
340 360	14586 18651		92,62	1028 720	14,690	11,870 25,800	0,469	0,110	0.070×10^{-3} 0.060×10^{-3}	$2,255 \times 10^{-5}$ $2,571 \times 10^{-5}$	1,23	2,43	
300	10001	528,3	144.17	1211	14 091	() () () ()		11.176	THE POLICE AND A SECOND CO.	()/ X	/ 110	5 / 5	

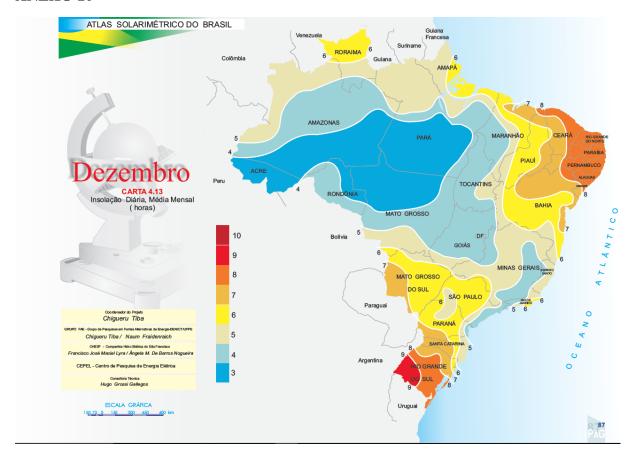
Nota I: A viscosidade cinemática ν e a difusividade térmica α podem ser calculadas a partir de suas definições, $\nu = \mu/\rho$ e $\alpha = kl\rho c_\rho = \nu/P$ r. As temperaturas de 0,01 °C, 100 °C e 374,14 °C são as dos pontos triplo, de ebulição e crítico da água, respectivamente. As propriedades listadas acima (exceto a densidade de vapor) podem ser usadas em qualquer pressão, com um erro desprezível, exceto em temperaturas perto do valor do ponto crítico.

Nota 2: A unidade kJ/kg · °C para o calor específico é equivalente à kJ/kg · K e a unidade W/m · °C para a condutividade térmica é equivalente a W/m · K.


Fonte: Os dados de viscosidade e condutividade térmica são a partir de J. V. Sengers e J. T. R. Watson, Journal of Physical and Chemical Reference Data, 15 1986, p. 1291–1322. Outros dados são obtidos a partir de várias fontes ou são calculados.


TABLE A-18					
Emissividades nas super (a) Metals	fícies			in mortal	n an esta
Material	Temperatura, , K	Emissividade, ε	Material	Temperatura, K	Emissividad ε
Alumínio Polido Folha comercial Fortemente oxidado	300–900 400 400–800	0,04-0,06 0,09 0,20-0,33	Magnésio, polido Mercúrio Molibdênio Polido	300–500 300–400 300–2000	0,07-0,13 0,09-0,12 0,05-0,23
Anodizado Bismuto, brilhante Latão Altamente polido Polido Chapa fosca	300 350 500-650 350 300-600	0,8 0,34 0,03–0,04 0,09 0,22	Oxidado Níquel Polido Oxidado Platina, polida Prata, polida	500-1200 450-1000 500-1500 300-1000	0,80-0,82 0,07-0,1 0,37-0,5 0,06-0,18 0,02-0,0
Oxidado Cromo, polido Cobre Altamente polido Polido Folha comercial Oxidado Oxidado negro	450–800 300–1400 300 300–500 300 600–1000 300	0,6 0,08-0,40 0,02 0,04-0,05 0,15 0,5-0,8 0,78	Aço inoxidável Polido Levemente oxidado Altamente oxidado Aço Chapa polida Chapa comercial Fortemente oxidada	300-1000 600-1000 600-1000 300-500 500-1200 300	0,17-0,30 0,30-0,40 0,70-0,80 0,08-0,14 0,20-0,32 0.81
Ouro Altamente polida Folha brilhante Ferro Altamente polido Ferro fundido Ferro forjado	300–1000 300 300–500 300 300–500	0,03–0,06 0,07 0,05–0,07 0,44 0,28	Estanho, polido Tungstênio Polido Filamento Zinco Polido Oxidado	300 300–2500 3500 300–800 300	0,05 0,03-0,29 0,39 0,02-0,05 0,25
Enferrujado Oxidado Chumbo Polido Não oxidado, áspero Oxidado	300 500–900 300–500 300 300	0,61 0,64–0,78 0,06–0,08 0,43 0,63			


866	200	
	900	
ADÊNDICE	-	


Propriedades de radiação solar dos materiais			10.00	11 mg 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
Descrição/composição	Absortividade solar, α _s	Emissividade, ε, em 300 K	Razão, α_s/ε	Transmissividade solar, $ au_s$
Alumínio				
Polido	• 0.09	0.03	3.0	
Anodizado	0,14	0,84	0.17	
Revestido de quartzo	0,11	0,37	0,30	
Folha	0,15	0,05	3,0	
lijolo, vermelho	0,63	0,93	0,68	
Concreto	0,60	0,88	0,68	
Chapa galvanizada	0,00	0,00	0,00	
Limpa, nova	0,65	0,13	5,0	
Oxidada, envelhecida	0,80	0,13	2,9	
/idro, 3,2 mm de espessura	0,00	0,20	2,0	
Temperado				0,79
				0,79
Com pouco de óxido de ferro	0.40	0.00	0.45	0,00
Mármore, ligeiramente fosco (não reflexivo)	0,40	0,88	0,45	
Metal, chapas	0.00	0.10	0.0	
Sulfeto preto	0,92	0,10	9,2	
Óxido de cobalto preto	0,93	0,30	3,1	
Óxido de níquel preto	0,92	0,08	11	
Cromo preto	0,87	0,09	9,7	0.07
Mylar, 0,13 mm de espessura				0,87
Tintas				
Preta	0,98	0,98	1,0	
Branco, acrílica	0,26	0,90	0,29	
Branco, óxido de zinco	0,16	0,93	0,17	
Papel, branco	0,27	0,83	0,32	
Plexiglas, 3,2 mm de espessura				0,90
Ladrilho de porcelana azulejos, branco				
(superfície reflexiva)	0,26	0,85	0,30	
Telhas, vermelho brilhante				
Superfície seca	0,65	0,85	0,76	
Superfície molhada	0,88	0,91	0,96	
Areia, seca				
Escura	0,52	0,82	0,63	
Vermelha fosca	0,73	0,86	0,82	
Neve				
Partículas finas, fresca	0,13	0,82	0,16	
Grânulos de gelo	0,33	0,89	0,37	
Aço · Z				
Acabamento espelhado	0,41	0,05	8,2	
Altamente enferrujado	0,89	0,92	0,96	
Rocha (rosa claro)	0,65	0,87	0,74	
Tedlar, 0,10 mm de espessura				0,92
Teflon, 0.13 mm de espessura				0.92
Madeira	0,59	0,90	0,66	

Fonte: V. C. Sharma e A. Sharma, "Solar Properties of Some Building Elements", Energy, 14, 1989, p. 805–810, e outras fontes.

