Híbridos duplos de milho obtidos a partir de híbridos simples comerciais com estimativa

da capacidade geral e específica de combinação

3

2

1

Vinicius Feitosa Teixeira Silva¹, Celso Gonçalves De Aguiar²

456

7

8

9

10

11

12

13

14 15

16

17

18

19

20

21

22

23

24

Resumo: Para o presente trabalho foi planejado o uso de híbridos duplos a partir de híbridos simples comerciais com o objetivo de avaliar a melhor combinação, e com isso, determinar a capacidade geral e específica de combinação (CGC e CEC), possibilitando a alternativa de obter linhagens de híbridos comerciais. Foram avaliados a produtividade de quarenta e cinco híbridos duplos obtidos a partir de dez híbridos simples comercias através de um dialélico completo. O trabalho teve seu inicio no mês de agosto de 2016, com término em junho de 2017. As sementes dos híbridos duplos foram obtidas na área experimental do CEDETEC, Fazenda Escola FAG, Cascavel-PR e testados na safrinha de 2017, em duas épocas de semeadura, juntamente com os dez híbridos simples comerciais sob delineamento experimental de blocos ao acaso (DBC) para as análises individuais e como fatorial com testemunhas para o desdobramento, com duas repetições, avaliando parâmetros como produtividade, população por hectare, peso de mil sementes, altura de espigas e dias ao florescimento. Analises de variância individual e conjuntas foram geradas pelo programa estatístico Genes da Universidade Federal de Viçosa e as médias foram comparadas pelo Teste de Tukey a 5% de probabilidade. Também, foram avaliadas as capacidades geral e específica de combinação pelo Método de Griffing (1956). Algumas combinações estiveram junto aos melhores progenitores como a combinação (AS1551 VT PRO2 / DKB290 VT PRO3), (AS1551 VT PRO2 / 2B210 PW) e (AS1551 VT PRO2 / STATUS VIP) e para a capacidade geral de combinação sobressaíram os progenitores AS1551 VT PRO2, DKB290 VT PRO3 e 2B210 PW.

252627

28

Palavras-chave: Zea mays L., Produtividade, Dialélico completo.

2930

Double hybrids of maize, obtained from commercial simple hybrids

3132

33

34

35

36

3738

39

40

41

42 43 Abstract: For the present work, the use of double hybrids from commercial single hybrids was planned with the purpose of evaluating the best combination, and with that, to determine the general and specific combining ability (CGC and CPB), making possible the alternative to obtain lineages commercial hybrids. The productivity of forty-five double hybrids obtained from ten simple commercial hybrids through a complete diallel was evaluated. The work started in August 2016, ending in June 2017. The seeds of the double hybrids were obtained in the experimental area of the CEDETEC, Fazenda Escola FAG, Cascavel-PR, and tested in the safrinha of 2017, in two sowing seasons, together with the ten commercial simple hybrids under a randomized block experimental design (DBC) for the individual analyzes and as a factorial with two replicates, evaluating parameters such as productivity, population per hectare, weight of one thousand seeds, height of ears and days at flowering. Individual and joint analyzes of variance were generated by the Genes statistical program of the Federal

¹Graduando do Curso de Agronomia, Centro Universitário Assis Gurgacz – FAG. Cascavel, PR. viniciussilvatecno@gmail.com

²Engenheiro Agrônomo. Doutor em Agronomia (UEM), Docente da Disciplina em Melhoramento Genético do Curso de Agronomia, do Centro Universitário Assis Gurcacz – PR. celso@aguiar.eti.br

44 University of Viçosa and the averages were compared by the Tukey test at 5% probability.

- 45 Also, general and specific combining abilities were evaluated by the Griffing Method (1956).
- 46 The results showed some combinations that were among the best progenitors as the
- 47 combination (AS1551 VT PRO2 / DKB290 VT PRO3), (AS1551 VT PRO2 / 2B210 PW) and
- 48 (AS1551 VT PRO2 / STATUS VIP) and general combining ability) the progenitors AS1551
- 49 VT PRO2, DKB290 VT PRO3 and 2B210 PW were prominent.

Key words: *Zea* mays **L.**, Yield, Complete Diallel.

54 Introdução

O milho (*Zea mays* L.) é uma gramínea que pertencente à família *Poaceae*, espécie diploide (2n=20), monóica e alógama, originária do México e da América Central e sua linha evolutiva vem-se a discutida. A teoria mais consistente á origem do milho e a planta chamada Teosinte, é uma gramínea com várias espigas sem sabugo, que pode cruzar naturalmente com o milho, produzindo descendentes férteis (GALINAT, 1995).

Hoje com o crescimento acelerado das populações do mundo, vem a refletir a crescente demanda de alimento, e para lograr suprir por completo é necessário um aumento de produtividade, já que existem poucas áreas hoje disponíveis, porque boa parte das áreas está sendo ocupadas por uma pecuária extrativista muito pesada, levando a degradação de muitas áreas, boas que poderiam ser utilizadas para se cultivar esta cultura (BISUS, 2017).

O milho é uma das principais culturas no mundo, onde tem um importante papel econômico como parte da alimentação das aves, suínos, bovinos, além de fornecer produtos largamente utilizados pelo homem, importante matéria prima para a indústria, em razão da grande quantidade e da natureza de foto assimilados acumuladas em seus grãos (BASTOS, 1987; FANCELLI e DOURADO NETO, 2000).

Com todas estas finalidades o milho se tornou a principal espécie alógama não apenas pela sua importância mundial, mas também pela grande representatividade em termos científicos e tecnológicos (DESTRO e MONTALVÁN, 1999).

Graças a sua característica monóica e também pelo fácil manuseio, pela natureza dos cromossomos e pelo baixo número de cromossomos, se torna a espécie mais usadas em estudos citogenéticos (BORÉM e GIÚDICES, 1987).

Esta espécie tem característica ótima para estudos genéticos, devidos a estas características, como grande número de espermatófitos (pólen), com abundancia de ovários e facilidade na fecundação cruzada natural e dirigida (DESTRO e MONTALVÁN, 1999).

A utilização de híbridos duplos, é uma alternativa para se fazer na segunda safra, onde a áreas utilizadas totais no Brasil alcançou para safra 16/17, 10.534,8 mil ha, que em proporção de área já é maior que na primeira safra, 5.319,1 mil ha, com isso os plantios mais tardios na segunda safra o risco com geada vem aumentando consideravelmente dia após dia (CONAB, 2016).

O risco de geada é iminente todos os anos em Cascavel-PR, e não existe híbrido que seja resistente a geadas no mercado, mais surgiu para os produtores à utilização de híbridos duplos, que permitirá a diminuição do custo na implantação da lavoura diminuindo assim o risco caso ocorra a geada (MAPA, 2014).

Do ponto de vista econômica as sementes selecionadas que são utilizadas para a implantação da lavoura no milho tem um maior destaque no orçamento devido ao seu valor elevado (IMEA, 2014).

Para a obtenção de híbridos simples é um processo muito caro e que leva um grande tempo para se obter as linhagens homozigotas e para que este híbrido chegue ao mercado. O tempo ira depender das autofecundações sucessivas e a avalição das linhagens (MIRANDA, 2004; SANTOS, 2009).

Na utilização de dialélicos, um dos estudos importantes consiste em classificar os pais quanto a sua capacidade geral (CGC) e específica (CEC) de combinação, promovendo os grupos heteróticos com o consequente aumento da eficiência nos programas de melhoramento (AGUIAR, 2007).

Sprague e Tatum (1942) foram os primeiros pesquisadores a definirem os termos CGC e CEC. A CGC é utilizada para definir o comportamento médio de um progenitor em uma série de combinações híbridas, enquanto a CEC designa certas combinações híbridas que são relativamente superiores ou inferiores ao esperado com base na CGC.

A estimativa da capacidade geral de combinação CGC do genitor, obtida com base em suas populações híbridas, indica o quanto este difere da média geral dos genitores da população dialélica. Quanto mais altos forem os valores referentes à CGC, positivos ou negativos, determinado genitor será considerado muito superior ou inferior aos demais incluídos no dialélico e se apresentar próximo de zero, seu comportamento não difere da média geral dos cruzamentos (CRUZ; REGAZZI, 1997).

Os efeitos da capacidade específica de combinação CEC são medidas dos efeitos gênicos não aditivos. São desejáveis aquelas combinações híbridas com estimativas de capacidade específica de combinação mais favorável, que envolvam pelo menos um dos

genitores que tenha apresentando o mais favorável efeito de capacidade geral de combinação (BORDALLO et al., 2005, AGUIAR et al., 2004, MELO; VON PINHO; FERREIRA, 2001).

A utilização de híbridos como fonte de linhagens, mesmo parecendo determinar uma base genética estreita, indica ser o caminho mais rápido para obtenção de novas combinações. Entretanto determinar os materiais com maior capacidade de combinação se torna necessário, sendo que uma base genética muito próxima poderá acarretar trabalhos desnecessários e pouco retorno (AGUIAR, 2007).

Assim, o presente trabalho tem como objetivo avaliar a capacidade geral e específica de combinação CGC e CEC dos híbridos simples envolvidos na produção de híbridos duplos de milho, obtidos a partir de um dialélico completo, e também determinar qual o melhor combinação para a formação de híbridos duplo que possa ser indicado na utilização de fechamento de áreas em épocas menos adequadas da segunda safra, sujeitas as geadas, minimizando seus riscos de perda econômica devido as geadas.

Material e Métodos

Foram utilizados neste trabalho híbridos simples comerciais, escolhidos por destacarse na região oeste do Paraná, apresentando a melhor produtividade e tecnologia presente no mercado, onde através de cruzas direcionadas, obteve-se híbridos duplos, de acordo com o Quadro 1.

Os experimentos foram conduzidos em Cascavel-PR, no Centro Universitário Assis Gurgacz, na Fazenda Escola FAG, no CEDETEC, cujas coordenadas geográficas são 24°56'42,97" S 53°30'30,12" O com 700m de altitude.

Os dez híbridos simples foram cruzados em esquema de dialélicos completo, no campo experimental do CEDETEC, na Fazenda Escola FAG, com inicio em 2016 e término em 2017. Durante todo este processo os manejos realizados foram: plantio feito com matraca sobre as linhas feitas pela semeadora de grãos graúdos com distribuição de adubo de base de 400 kg ha⁻¹ de super simples (18% P₂0₅, 16% Ca e 8% S), foram realizadas aplicações de inseticidas e fungicidas uma vez por semana durante o ciclo da cultura até a fase de pendoamento, e também o controle de ervas daninhas, utilizando-se de herbicidas e controle manual. Foi realizada, aplicação de ureia (45% de N) a lanço, na dose de 300 kg ha⁻¹, esta mesma corresponde á 0.675 kg por parcela.

Quadro 1 - Descrição dos híbridos comerciais utilizados para obtenção de híbridos duplos para o presente estudo

Hibrido	Empresa	Tecnologia
AG9052PRO	Agroceres	Bacillus thuringiensis+RR2
AS1661PRO	Agroeste	Bacillus thuringiensis
AS1551VTPRO2	Agroeste	Bacillus thuringiensis+RR2
DKB330PRO2	Dekalb	Bacillus thuringiensis+RR2
DKB290VTPRO3	Dekalb	Bacillus thuringiensis+RR2
2B210PW	Dow	Bacillus thuringiensis
P30F53VYH	Pionner	Viptera+YieldGard+Herculex
FORMULAVIP	Syngenta	Bacillus thuringiensis
STATUSVIP	Syngenta	Bacillus thuringiensis
DEFENDERVIP	Syngenta	Bacillus thuringiensis

Fonte: arquivo pessoal, 2016

O cruzamento foi feita pelo modelo de praxe, pelo método tradicional com proteção das espigas e pendão, com o objetivo de conseguir três espigas por cruzamento, tendo assim semente suficiente para implantar o experimento na safrinha de 2017, totalizando quarenta e cinco híbridos duplos. As parcelas para obtenção dos híbridos foram constituídas de cinco linhas de 5 m, com cinco épocas de plantio, espaçadas com 0,20 m entre plantas e 0,90 m entre linhas, utilizando em média de 2 sementes por cova.

Os híbridos resultantes foram avaliados juntamente com os híbridos simples comerciais que os originaram e estão relacionados no Quadro 2.

Quadro 2 - Matriz de campo para obtenção de híbridos duplos

Combinações dialélicas meia tabela	de	- AG9052 PRO2	N AS1551 VT PRO2	ω AS1661 PRO	DKB290 VT PRO3	о DKB330 PRO2	o 2B210 PW	2 P30F53VYH	∞ DEFENDER VIP	6 FÓRMULA VIP	o STATUS VIP
AG9052 PRO2	1		1.2	1.3	1.4	1.5	1.6	1.7	1.8	1.9	1.10
AS1551 VT PRO2	2			2.3	2.4	2.5	2.6	2.7	2.8	2.9	2.10
AS1661 PRO	3				3.4	3.5	3.6	3.7	3.8	3.9	3.10
DKB290 VT PRO3	4					4.5	4.6	4.7	4.8	4.9	4.10
DKB330 PRO2	5						5.6	5.7	5.8	5.9	5.10
2B210 PW	6							6.7	6.8	6.9	6.10
P30F53VYH	7								7.8	7.9	7.10
DEFENDER VIP	8									8.9	8.10
FÓRMULA VIP	9										9.10
STATUS VIP	10										

Fonte: arquivo pessoal, 2016

As variáveis avaliadas foram: produtividade, em kg ha⁻¹; população por hectare (Pop ha⁻¹); peso de mil sementes (P1000S); altura da espiga em cm, (AEP) e dias ao florescimento (DFL). Os quarenta e cinco híbridos duplos juntamente com os dez híbridos simples foram avaliados sob delineamento experimental de blocos ao acaso (DBC) para as análises individuais e como fatorial com testemunhas para a avaliação conjunta, com duas repetições e analisados pelo programa estatístico Genes da Universidade Federal de Viçosa (CRUZ, 2006).

O Quadro 3 exemplifica o esquema da análise de variância conjunta para delineamento em DBC, com desdobramento da soma de quadrados de tratamentos.

Para as análises dialélicas foram obtidas a partir das médias de cada local, segundo os modelos estatísticos de Griffing (1956), Método 2 (progenitores e F_{1S}), adaptados por Cruz E Regazzi (2001), conforme modelo abaixo:

$$\mathbf{Y_{ij}} = \mathbf{m} + \mathbf{G_i} + \mathbf{G_j} + \mathbf{S_{ij}} + \mathbf{e_{ij}}$$

169 em que:

Y_{ij} = valor médio do híbrido resultante do cruzamento dos progenitores i e j, quando i # j ou do progenitor i, quando i = j;

 $\mathbf{m} = \text{efeito da média geral};$

173 G_i e G_j = efeito da capacidade geral de combinação (CGC) associado aos progenitores i e j;

 S_{ij} = efeito da capacidade específica de combinação (CEC) para os cruzamentos entre os

progenitores i e j;

176

177

179

180

181

182

183

184

185

186

187

188

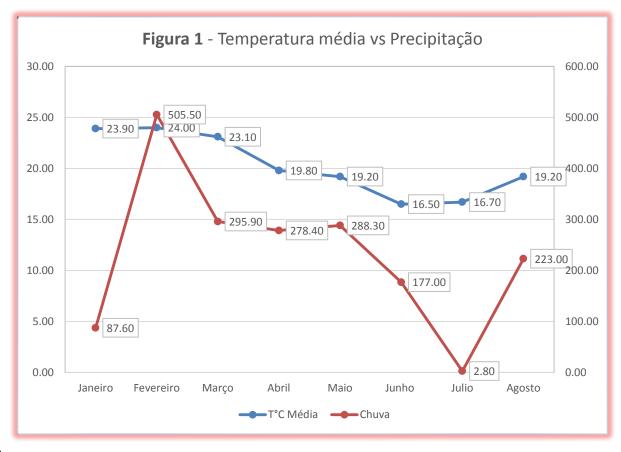
189

 e_{ij} = erro aleatório médio associado ao tratamento de ordem ij.

Quadro 3 - Esquema da análise de variância conjunta para delineamento em DBC, com desdobramento da soma de quadrados de tratamentos

F.V.	G.L.	QM	${f F}$
Blocos/Ambientes	(b-1)a	QM_{01}	
Blocos	(b-1)	QM_{02}	_
Blocos x Ambientes	(b-1)(a-1)	QM_{03}	
Tratamentos (HS + HD)	(t-1)	QM_{04}	QM_{04} / QM_{09}
H.S. (Progenitores)	(p-1)	QM_{05}	$\mathrm{QM}_{05}/\mathrm{QM}_{10}$
H.D. (Híbridos)	(h-1)	QM_{06}	QM_{06} / QM_{11}
H.S. vs H.D.	1	QM_{07}	QM_{07}/QM_{12}
Ambientes	(a-1)	QM_{08}	$\mathrm{QM}_{08}/\mathrm{QM}_{01}$
Tratamentos x Ambientes	(t-1)(a-1)	QM_{09}	QM_{09}/QM_{13}
H.S. x Ambientes	(p-1)(a-1)	QM_{10}	$\mathrm{QM}_{10}/\mathrm{QM}_{13}$
H.D. x Ambientes	(h-1)(a-1)	QM_{11}	QM_{11} / QM_{13}
(H.S. vs H.D.) x Ambientes	(a-1)	QM_{12}	QM_{12} / QM_{13}
Resíduo	(p-1)(b-1)a	QM_{13}	

Se Fcalc. < F tab = ns


Se Fcalc. > F tab = significativo

178 Resultados e Discussão

Na Tabela 1, encontram-se resumidos os resultados das análises de variância individuais em blocos ao acaso, com duas repetições, constando a média geral, coeficiente de variação (C.V.%), quadrado médio dos blocos, tratamentos e do resíduo, com significâncias em nível de 5% de probabilidade para o local de Cascavel – PR.

Para as características estudadas kg ha⁻¹, Pop ha⁻¹, P1000S, AEP e DFL, os resultados foram obtidos no local testado.

As condições climáticas, que ocorreram no primeiro semestre de 2017, no período de desenvolvimento da segunda safra (safrinha), foram desfavoráveis para a cultura na época de polinização devida a alta incidência de chuvas constantes, no qual inviabilizando o pólen, desta forma afetando a produtividade.

Os coeficientes de variação (C.V.) apresentaram valores aceitáveis para as cinco variáveis analisadas. Os valores do C.V. para as variáveis População por ha⁻¹, Altura de Espiga e Dias ao Florescimento são consideras de magnitude baixa, e as variáveis produtividade ha⁻¹, Peso de 1000 sementes indica uma dispersão média, que expressa uma boa precisão experimental, de acordo com Gomes (1977) e Scapim, Carvalho e Cruz (1995).

Segundo Becker & León (1988, *apud* Santos, 2009), os diferentes tipos de genótipos são designados de acordo com seu grau de heterozigosidade e heterogeneidade da população e que, assim, a estrutura genética da população influenciaria no comportamento dos genótipos frente aos diferentes ambientes, desta forma concluindo que genótipos heterozigotos seriam menos inflexíveis ás variações ambientais do que os homozigotos. Sendo assim populações heterogêneas tendem a ser mais tolerantes frente às adversidades ambientais do que populações homogêneas.

O ambiente 2 foi mais produtivo, com 6287 kg ha⁻¹, e de menor o ambiente 1, com 5777 kg ha⁻¹. Para os tratamentos constatou-se diferença significativa, para produtividade e Dias ao Florescimento para os dois ambientes, para População ha⁻¹ e Peso de 1000 sementes não houve diferença significativa. Já para AEP houve diferença significativa no ambiente 1 e no ambiente 2 não existiram diferenças significativas.

Com base nos resultados da análise individual, procedeu-se a análise conjunta.

Tabela 1 - Análises individuais para os caracteres de rendimento de grãos (kg ha⁻¹) população por hectare (Pop ha⁻¹) peso de mil sementes (P1000S) altura da espiga em cm (AEP) e dias ao florescimento (DFL)

			•	QM	QM	QM
Variável	Ambientes	Médias	C.V.%	BLOCO	TRAT	RES
Kg ha ⁻¹	A1	5776,73	11,3	1656818,1818	752027,4596 *	426235,9781
Kg na	A2	6287,44	11,04	5238109,2364	891236,4825 *	481771,4401
D 11	A1	72891,01	7,9	47999196,0819	34059249,7498 ns	33124783,5633
Pop ha ⁻¹	A2	79394,03	6,39	68968947,2819	20321524,9522 ns	25709119,2633
P1000S	A1	290,84	12,07	1975,9963	1743,3724 ns	1231,3484
1 10003	A2	307,75	8,13	382,817	944,5067 ns	625,4107
AEP	A1	123,86	8,81	100,2273	189,7306 *	119,2088
- ALI	A2	128	6,9	712,7273	75,6481 ns	78,0051
DFL	A1	54,83	3,58	68,8091	6,0966 *	3,8461
DFL	A2	62,29	3,92	1,3091	11,3091 *	5,9758

^{*=}significativo a 5% de probabilidade pelo teste F, ns=não significativo

Os resultados da análise de variância da conjunta dos experimentos (Tabela 2), com desdobramentos para progenitores e híbridos ($F_{1'S}$) indicaram que na análise de variância para produtividade, foram significativos para ambiente e significativos para tratamentos, ou seja, para os híbridos simples mais híbridos duplos, e significativos para híbridos duplos, para o restante não foram significativos. Não houve diferença significativa para híbridos simples e para tratamentos x ambientes.

Cruz e Regazzi (1997), contradiz em os resultados obtidos neste trabalho. Os autores afirmam que é importante destacar que a significância das interações Tratamentos x Ambientes indicam que genótipos com bons resultados num determinado local podem não apresentar os mesmos resultados satisfatórios em um local diferente, o mesmo ocorrendo quando se consideram diferentes anos de estudo, podendo, assim, haver diferenças de desempenho dos genótipos em diferentes anos, o que torna de grande importância a análise da interação Tratamento x Ambientes. Mais essa não significância neste trabalho, possivelmente é devido ao fato de que as duas épocas de semeadura foram no mesmo local, diferenciando uma época de outra em apenas dez dias, desta forma não ocorrendo existência significativa para esta interação.

Para peso de 1000 sementes houve significância para tratamentos (HS + HD) e para híbridos duplos e, para HS vs HD, não sendo significativos para híbridos simples, podemos destacar que o P1000S esta expressando a realidade da produtividade, para o restante da análise não foi significativo.

Sobre população por ha⁻¹ houve significância para tratamentos e para híbridos duplos e não significância para híbridos simples, devido a 2ª época ter condições ambientais mais adequadas proporcionando melhor estande.

Para altura de espiga houve significância para os tratamentos (HS e HD) e principalmente entre os híbridos duplos. Os híbridos simples eram todos equivalentes tendo alturas próximas, com isso não existindo diferença estatística, AGUIAR (2002), para a interação híbridos x ambientes, não verificaram significância para os caracteres altura de planta e altura de espiga.

Para a variável Dias para a florescimento houve significância para todos os itens analisados, destacando o ambiente onde se esperava uma diferença, devido ao milho trabalhar sobre soma térmica, e a segunda época com dez dias teve essa diferença, entre os HS e HD apresentando diferença significativa.

Os híbridos duplos foram menos produtivos que os híbridos simples na média geral. Isso é normal, devido aos mesmos sobre condições normais de temperatura, chuva e época de plantio, produzirem mais que os híbridos duplos. São mais uniformes e possuem efeito de heterozigose superior.

Tabela 2 - Quadrados médios da análise de variância conjunta, para cinco caracteres de milho, experimento de milho, Fazena Escola FAG, Cascavel, Paraná, 2017

		kg ha ⁻¹	P1000S	Pop ha ⁻¹	AE	DFL
F.V.	\mathbf{GL}	QM	QM	QM	QM	QM
Blocos/Ambientes	2	3447436,71	1179,41	58484071,68	406,48	35,06
Blocos	1	501518,25	309,67	116020616,8	673,75	44,55
Blocos x Ambientes	1	6393409,16	2049,14	947526,56	139,2	25,57
Tratamentos (HS + HD)	54	1026821,89 *	1840,66 **	36000771,73 **	180,61 **	13,95 **
H.S. (Progenitores)	9	318374,13 ns	1037,42 ns	66141637,9 ns	43,05 ns	17,16 **
H.D. (Híbridos)	44	1155716,66 *	1820,23 *	29823166,64 *	211,88 **	13,31 **
H.S. vs H.D.	1	1731481,82 **	9968,67 **	36547602,68 ns	42,45 ns	13,01 **
Ambientes	1	14345307,65 ns	15726,23 ns	2325908501,02 *	941,02 ns	3063,82 *
Tratamentos x Ambientes	54	616442,05 ns	847,22 ns	18380002,92 ns	84,77 ns	3,45 ns
H.S. x Ambientes	9	588275,4 ns	688,45 ns	29933576,48 ns	58,61 ^{ns}	2,3 ns
H.D. x Ambientes	44	632013,75 ns	897,17 ^{ns}	15332349,85 ns	89,31 ^{ns}	3,49 ns
(H.S. vs H.D.) x Ambientes	1	184787,02 ns	77,99 ^{ns}	48494576,08 ns	120,22 ns	11,89 ^{ns}
Resíduo	108	454003,71	928,38	29416951,41	98,61	4,9
Média Geral		6032	299,3	76142	125,93	58,55
Média H.S.		6220	285,1	75278	125	59,01
Média H.D.		5990	302,47	76334	126,13	58,44
C.V.%		11,17	10,18	7,12	7,88	3,78

A 1=primeira época de plantio, A2=segunda época de plantio, kg há-1=rendimento, Pop há-1= população por hectare, P1000S=peso de mil sementes, AEP=altura da espiga em cm, DFL=dias ao florescimento,*=significativo a 5% de probabilidade, ns=não significativo

Na Tabela 3, estão apresentados a análise de variância dos parentais (HS), para produtividade observamos não diferença significativa para tratamentos, ambientes e a interação. A partir deste estudo pode-se observar um coeficiente de variação (CV%) para o rendimento corresponde a 11,51%, o que denota uma boa precisão experimental, segundo a classificação proposta por Scapim *et al.* (1995). O valor ficou dentro dos limites que normalmente são relatados em experimentos com a cultura do milho.

Para população por ha⁻¹ não houve diferença significativa para tratamentos e a interação HS x ambiente. Agora para ambientes existiu diferença estatística. Esta diferença existiu devido a alguma falha de stand, plantas não germinadas como também atacadas por pragas.

Não houve diferenças significativas para peso de 1000 sementes e altura de espiga para tratamentos, ambiente e a interação. Ainda para DFL, diferença significativa para tratamentos e ambientes, e não significativa para a interação tratamento x ambiente.

Tabela 3 - Quadrados médios da análise de variança conjunta dos parentais (HS), Fazenda Escola FAG, Cascavel, Paraná, 2017

			Quadrad	os médios		
FV	GL	Kg ha ⁻¹	Pop ha ⁻¹	P1000S	AEP	DFL
Tratamentos (HS)	9	318374,13 ^{ns}	66141637,79 ns	1037,41 ns	43,05 ns	17,16 **
Ambientes	1	1503500,62 ns	203500232,1 **	3777,43 ^{ns}	10.00 ns	714,04 **
HS x Amb.	9	588275,4 ns	29933576,48 ns	688,44 ns	58,61 ns	2,3 ns
Resíduo	18	513336,56	62091563,83	880,53	64,72	7,49
Médias		6220,27	75277,9	285,01	125.00	59,08
C.V.(%)		11,51 10,46		10,41	6,43	4,63
DMS (5%)	` '		28249,4	106,38	28,84	9,65

Kg ha⁻¹=rendimento, Pop ha⁻¹= população por hectare, P1000S=peso de mil sementes, AEP=altura da espiga em cm, DFL=dias ao florescimento *=significativo a 5% de probabilidade, **=significativo a 1% de probabilidadens=não significativo

Na Tabela 4, na análise de variância para os híbridos duplos, se observa para todos os parâmetros estudados diferença significativa para tratamentos, para ambiente somente significância para população por ha⁻¹ e DFL, e não significativo para rendimento, P1000S e AEP. Para a interação, não houve diferença estatística para nenhuma das variáveis analisadas. O coeficiente de variação (CV%) para os híbridos está dentro do aceitável por Gomes (1977) e Scapim, Carvalho e Cruz (1995).

Tabela 4 - Quadrados medios da análise de variança conjunta dos descendentes (HD), Fazenda Escola FAG, Cascavel, Paraná, 2017

			Quadrados	s médios		
FV	GL	kg ha ⁻¹	Pop ha ⁻¹	P1000S	AEP	DFL
Tratamentos (HD)	44	1155716,65 *	29823166,63 *	1820,23 *	211,88 **	13,31 **
Ambientes	1	13026594,05 ns	2.170.902.845.00 **	120,26,78 ns	1051,25 ns	2361,68 **
HD x Amb.	44	632013,75 ns	15332349,85 ns	897,17 ns	89,31 ns	3,49 ns
Resíduo	88	450980,32	22897705,05	931,91	106,55	4,11
Médias		5990,26	76334,65	302,47	126,13	58,44
C.V.(%)		11,21	6,26	10,09	8,18	3,47
DMS (5%)		2747,24	19575,57	124,88	42,23	8,3

kg ha⁻¹=rendimento, Pop ha⁻¹= população por hectare, P1000S=peso de mil sementes, AEP=altura da espiga em cm, DFL=dias ao floresciment *=significativo a 5% de probabilidade, **=significativo a 1% de probabilidadens=não significativo

Para o rendimento houve diferença estatística para ambiente, para o híbrido 2B210 PW, o mesmo ainda obteve diferença estatística para DFL. Para os genótipos não existiu diferença estatística para os parâmetros avaliados (tabela 5). Os coeficientes de variação (C.V.) apresentaram valores aceitáveis para as cinco variáveis analisadas, de acordo com Gomes (1977) e Scapim, Carvalho e Cruz (1995).

Tabela 5 - Medias das variaveis conjuntas dos parentais sobre cada ambiente, Fazenda Escola FAG, Cascavel, Paraná, 2017

						Ambientes	,				
		A1	A2	A1	A2	A1	A2	A1	A2	A1	A2
Trat.	Genótipos	Kg ha ⁻¹	Kg ha ⁻¹	Pop ha ⁻¹	Pop ha ⁻¹	P1000S	P1000S	AEP	AEP	DFL	DFL
1	AG9052 PRO2	6375,5 A a	6072 A a	66778 A a	80555,5 A a	306,0977 A a	314,7069 A a	125 A a	125 A a	51,5 B a	60 A a
2	AS1551 VT PRO2	6344,5 A a	6574 A a	73667 A a	80555,5 A a	266,523 B a	334,3448 A a	120 A a	130 A a	55 B a	66 A a
3	AS1661 PRO	5338,5 A a	6339 A a	77778 A a	79222,5 A a	266,4655 A a	287,8908 A a	117,5 A a	122,5 A a	55 B a	63 A a
4	DKB290 VT PRO3	6120,5 A a	6100,5 A a	76444,5 A a	77778 A a	263,2874 A a	265,7356 A a	135 A a	122,5 A a	53 B a	60 A a
5	DKB330 PRO2	5240,5 A a	6400,5 A a	66778 A a	80667 A a	283,9483 A a	276,4138 A a	127,5 A a	130 A a	55,5 B a	63 A a
6	2B210 PW	5898,5 B a	7424 A a	76444,5 A a	77778 A a	271,0862 A a	303,8506 A a	132,5 A a	125 A a	53 B a	63 A a
7	P30F53VYH	6436,5 A a	5736 A a	69778 A a	75000 A a	302,6437 A a	306,2586 A a	117,5 A a	122,5 A a	57,5 B a	66 A a
8	DEFENDER VIP	6583,5 A a	6172,5 A a	80667 A a	80555,5 A a	266,8851 A a	282,1724 A a	117,5 A a	130 A a	53 B a	63 A a
9	FÓRMULA VIP	5961 A a	6245 A a	66777,5 A a	65333,5 A a	234,7356 A a	292,9483 A a	125 A a	122,5 A a	57 B a	63 A a
10	STATUS VIP	5965 A a	7078 A a	75111 A a	77889 A a	291,3333 A a	283,0402 A a	127,5 A a	125 A a	58 B a	66 A a
Média		6026,4	6414,15	73022,35	77533,45	275,3	294,73	124,5	125,5	54,85	63,3
C.V.%		11,33	11,66	10,91	10,04	7,74	12,26	7,18	5,6	4,74	4,52
DMS(5%	6)/Tratamento	2568,5857		28249,4021		106,3813		28,8416		9,653	
DMS(5%	6)/Ambiente	1504,6745		16548,4663		62,318		16,8954		5,6547	

Médias seguidas pelas mesmas letras maiúsculas na HORIZONTAL não diferem estatisticamente entre si pelo teste tukey a 5%

Médias seguidas pelas mesmas letras minúsculas na VERTICAL não diferem estatisticamente entre si pelo teste tukey a 5%

Na Tabela 6, o resultado do teste de médias para os filhos (HD), podemos analisar que para rendimento, em relação ao ambiente os tratamentos (2x6) e (2x10) tiveram diferença estatística para o ambiente 1 e 2. No tratamento (4x6) houve diferença estatística para Kg ha⁻¹ e população por ha⁻¹. Tendo destaque com uma produtividade de 8200 kg ha⁻¹ no ambiente 2, isto devido a melhores condições climáticas nesse período, o cruzamento que expresso esta alta produtividade foi (2x10), e também obteve diferença estatística para AEP e DFL para ambiente. Agora para os genótipos dentro de cada ambiente, houve diferença estatística para os mesmos tratamentos para produtividade por ha⁻¹.

Para o parâmetro P1000S houve diferença estatística para os tratamentos (3x8), (6x7) e (6x9) sobre o ambiente, destacando que o tratamento (3x8) teve diferença estatística para produtividade por ha⁻¹ e para o tratamento (6x7) diferença estatística para população por ha⁻¹. Os mesmos tratamentos tiveram diferenças estatísticas para DFL no ambiente. Avaliando os genótipos para cada ambiente observamos que não houve diferença estatística.

Analisando população por ha⁻¹ existiu diferença significativa para 12 tratamentos, (1x6), (1x9), (2x3), (2x8), (3x7), (3x9), (4x6), (4x8), (5x6), (6x7), (7x8) e (8x10) para ambiente, os mesmo também obtiveram diferença estatística para DFL, quando analisamos os genótipos não existiu diferença estatística para os mesmos.

Para a variável AEP, o tratamento (2x5) houve diferença estatística para ambiente, para genótipos existe diferença estatística para os tratamentos (2x4), (4x6) e (7x8). Agora para o parâmetro DFL, houve diferença estatística para todos os tratamentos, mais se destacando os tratamentos (4x7), (6x7) e (6x8) para ambiente, para os genótipos para cada ambiente não houve diferença estatística.

						Ambientes					
		A1	A2	A1	A2	A1	A2	A1	A2	A1	A2
Trat.	Genótipos	Kg ha ⁻¹	Kg ha ⁻¹	Pop ha ⁻¹	Pop ha ⁻¹	P1000S	P1000S	AEP	AEP	DFL	DFL
1	1x2	6091,5 A ab	6459,5 A abcd	77778 A a	82000 A a	313,9885 A a	336,4138 A a	120 A abc	127,5 A a	53 B a	60 A a
2	1x3	5748,5 A ab	5898,5 A abcd	70889 A a	70888,5 A a	298,7874 A a	302,8966 A a	130 A abc	130 A a	53 B a	60 A a
3	1x4	5909 A ab	5918 A abcd	76444,5 A a	80555,5 A a	297,8218 A a	293,8793 A a	137,5 A abc	130 A a	55 B a	66 A a
4	1x5	6496 A a	5858,5 A abcd	80667 A a	77889 A a	333,7759 A a	307,9943 A a	137,5 A abc	120 A a	53 B a	60 A a
5	1x6	6728 A a	6117 A abcd	66667 B a	79222 A a	349,7931 A a	291,5345 A a	115 A abc	122,5 A a	53 B a	60 A a
6	1x7	7124 A a	6030 A abcd	68111 A a	75000 A a	307,8161 A a	303,2586 A a	115 A abc	127,5 A a	55 B a	66 A a
7	1x8	5118 A ab	6126,5 A abcd	65333,5 A a	70889 A a	270,3046 B a	332,9598 A a	127,5 A abc	127,5 A a	57,5 B a	63 A a
8	1x9	5442 A ab	6312 A abcd	70889 B a	80555,5 A a	298,7471 A a	313,7759 A a	137,5 A abc	135 A a	55,5 B a	60 A a
9	1x10	6618 A a	6126 A abcd	76444,5 A a	82000 A a	265,4655 A a	311,8621 A a	132,5 A abc	130 A a	56,5 B a	63 A a
10	2x3	5900 A ab	6168 A abcd	73667 B a	83444,5 A a	300,5172 A a	331,5517 A a	120 A abc	125 A a	53 B a	63 A a
11	2x4	6343,5 A a	7459 A abc	70889 A a	79222 A a	332,6092 A a	373,1724 A a	150 A a	135 A a	53 B a	60 A a
12	2x5	5979 A ab	6928,5 A abcd	73666,5 A a	79222 A a	306,1379 A a	322,6379 A a	105 B c	130 A a	53 B a	60 A a
13	2x6	5684 B ab	7722 A ab	73667 A a	79222,5 A a	288,0862 A a	316,3391 A a	125 A abc	125 A a	53 B a	60 A a
14	2x7	6620,5 A a	6610,5 A abcd	72333,5 A a	79222,5 A a	333,9655 A a	290,6379 A a	117,5 A abc	125 A a	55 B a	63 A a
15	2x8	5765 A ab	6751,5 A abcd	70889 B a	80555,5 A a	314,3103 A a	331,2299 A a	130 A abc	127,5 A a	55 B a	66 A a
16	2x9	5662 A ab	6351,5 A abcd	77889 A a	79222,5 A a	310,7644 A a	340,2299 A a	120 A abc	120 A a	53 B a	60 A a
17	2x10	5976,5 B ab	8200 A a	73666,5 A a	82000 A a	310,5 A a	324,1034 A a	125 A abc	145 A a	55,5 B a	60 A a
18	3x4	5457,5 A ab	6549 A abcd	73667 A a	82000 A a	287,5 A a	320,3103 A a	120 A abc	122,5 A a	53 B a	60 A a
19	3x5	5700,5 A ab	5623,5 A abcd	73667 A a	80555,5 A a	291,9425 A a	287,069 A a	120 A abc	122,5 A a	53 B a	60 A a
20	3x6	6056,5 A ab	5934,5 A abcd	73666,5 A a	79222,5 A a	303,3391 A a	316,0575 A a	117,5 A abc	125 A a	53 B a	60 A a
21	3x7	6486 A a	6281 A abcd	72222 B a	82000 A a	312,3103 A a	343,908 A a	127,5 A abc	142,5 A a	53 B a	63 A a
22	3x8	5032 B ab	6458 A abcd	73666,5 A a	82000 A a	226,954 B a	287,8448 A a	112,5 A abc	130 A a	53 B a	60 A a
23	3x9	5149 A ab	5876,5 A abcd	72222 B a	82000 A a	244,3103 A a	262,0057 A a	117,5 A abc	132,5 A a	53 B a	60 A a
24	3x10	5296 A ab	5614 A abcd	75111 A a	80667 A a	278,2299 A a	319,4483 A a	117,5 A abc	137,5 A a	55 B a	60 A a
25	4x5	6162 A ab	7078 A abcd	76444,5 A a	77778 A a	331,5172 A a	303,4483 A a	122,5 A abc	127,5 A a	55 B a	60 A a
26	4x6	5981,5 B ab	7321 A abc	66778 B a	77778 A a	321,3103 A a	312,7759 A a	147,5 A ab	132,5 A a	55 B a	63 A a
27	4x7	5314,5 A ab	5977,5 A abcd	68111,5 A a	75111,5 A a	308,5632 A a	311,0805 A a	125 A abc	130 A a	57 B a	66 A a
28	4x8	5272 B ab	6943,5 A abcd	75111,5 A a	80667 A a	316,3793 A a	340,3218 A a	135 A abc	132,5 A a	57 B a	66 A a
29	4x8	5469,5 A ab	5904 A abcd	65333 B a	79222,5 A a	317,6207 A a	293,2471 A a	125 A abc	132,5 A a	55 B a	63 A a
30	4x10	5747,5 A ab	6963,5 A abcd	73666,5 A a	80555,5 A a	323,6552 A a	325,1264 A a	132,5 A abc	135 A a	57 B a	63 A a
31	5x6	6006 A ab	6427,5 A abcd	68111,5 B a	83333 A a	348,2241 A a	313,8621 A a	112,5 A abc	125 A a	55 B a	60 A a
32	5x7	6388,5 A a	5613,5 A abcd	76444,5 A a	80667 A a	274,8161 A a	284,5057 A a	112,5 A abc	123 A a	57,5 B a	63 A a
33	5x8	5813 A ab	6263 A abcd	76444,5 A a	80667 A a	260,4483 A a	290,5747 A a	112,5 A abc	130 A a	55 B a	60 A a
34	5x9	5716,5 A ab	5491,5 A abcd	76444,5 A a	79222,5 A a	273,5172 A a	290,6552 A a	135 A abc	140 A a	53 B a	60 A a
35	5x10	5828 A ab	4864,5 A cd	75000 A a	82000 A a	308,4138 A a	280,7989 A a	115 A abc	140 A a	55 B a	60 A a
36	6x7	4981 A ab	6257,5 A abcd	65333,5 B a	79222,5 A a	234,4713 B a	310,908 A a	107,5 A bc	115 A a	57,5 B a	66 A a
37	6x8	4503 B ab	6692 A abcd	72222,5 A a	79222,5 A a	247,2816 A a	298,2759 A a	120 A abc	127,5 A a	57,5 B a	66 A a
38	6x9	5832 A ab	6833 A abcd	72222,3 A a 72222 A a	79222,5 A a	238,523 B a	299,8506 A a	112,5 A abc	115 A a	53 B a	60 A a
39	6x10	5300,5 A ab	5621,5 A abcd	72222,5 A a	79222,3 A a 79222 A a	298,5172 A a	296,6207 A a	110 A abc	113 A a	55 B a	60 A a
40	7x8	5423,5 A ab	5410,5 A bcd	68111,5 B a	82000 A a			140 A abc		55 В а 57 В а	
41	7x9	6091 A ab	6424 A abcd	80667 A a	82000 A a 82000 A a	270,4023 A a 292,8851 A a	315,5345 A a 326,0632 A a	130 A abc	140 A a 127,5 A a	55,5 B a	63 A a 66 A a
42	7x10	5352,5 A ab	6544,5 A abcd	77778 A a	80667 A a	285,4023 A a	304,1264 A a	130 A abc	132,5 A a	55 B a	66 A a
43	8x9	4775 A ab	5390,5 A bcd	73666,5 A a	79222,5 A a	253,6092 A a	307,0747 A a	122,5 A abc	127,5 A a	55,5 B a	63 A a
44	8x10	3515 A b	4542 A d	68111 B a	82000 A a	263,6379 A a	275,069 A a	112,5 A abc	127,5 A a	57,5 B a	63 A a
45 Mádia	9x10	5600,5 A ab	5731 A abcd	76444,5 A a	82000 A a	296,1954 A a	337,9943 A a	130 A abc	120 A a	57 B a	63 A a
Média		5721,24	6259,27	72861,82	79807,48	294,29	310,64	123,72	128,55	54,82	62,06
C.V.%	// \/Tuotomout-	11,41	11,01	7,21	5,33	12,54	7,2	9,2	7,09	3,11	3,71
,	%)/Tratamento	2747,2437		19575,568		124,8842		42,2293		8,2995	
DIMP(2)	%)/Ambiente	1334,7785		9511,0043		60,6764		20,5176		4,0324	

Kg ha¹ = kilogramas por hectare; Pop ha¹ = população por hectare; P1000S= peso de mil sementes em gramas; AEP= altura da espiga em centimetros; DFL= dias a floração

Para o estudo da capacidade combinatória, o desdobramento do quadrado médio de tratamentos em soma de quadrados médios das capacidades geral (CGC) e específica (CEC), segundo o método 2 de Griffing (1956), encontram-se na Tabela 7.

Podemos observar que para a interação dos tratamentos com o ambiente não existiu diferença estatística para todos os caracteres avaliados. Isto devido a que as duas épocas de plantio foram semeadas no mesmo local e com diferença de dez dias, desta forma não apresentando significância.

O quadrado médio referente a CGC apresentou para Pop ha⁻¹ e DFL significância de 5% de probabilidade, e para as demais não havendo diferença estatística. A falta de significância da CGC para Kg ha⁻¹ foi devido à alta significância da interação CGC x ambientes. Isto representa que caracteres de baixa herdabilidade, a interação é importante, sendo difícil separar o que é herança genética ou ao efeito do meio ambiente. Resultados semelhantes foram obtidos por Vasal *et al.* (1992), para produção de grãos, testando a capacidade combinatória de população de milho tropicais e subtropicais desenvolvidos pelos CIMMYT em seis ambientes.

Agora no quadrado médio referente a CEC foram para Kg ha⁻¹ e Pop ha⁻¹ significativos a 1 % e para todos os demais a 5%.

As variáveis em que houve significância evidenciaram a existência de variância genética aditiva entre os progenitores e de variância não-aditiva entre os híbridos.

Como todos os caracteres avaliados não apresentaram significância do quadrado médio da interação tratamento x ambiente, desdobrou-se da soma de quadrados da interação tratamentos x ambientes em somas de quadrados para CGC x ambientes e CEC x ambientes, não tendo significância para os caracteres, exceto para Kg ha⁻¹ em CGC x ambiente. Isto indicando que o comportamento médio tanto dos progenitores quanto dos híbridos não é diferente para o local. Resultados contrários observados por Locatelli, Federizzi e Naspolini Filho (2002), avaliando a capacidade combinatória de nove linhas endogâmicas de milho em dois

Tabela 7 - Análise de variançia para os caracteres de rendimento de grãos, população, peso de mil sementes, altura da espiga e dias ao florescimento, na cultura de milho, com o desdobramento da soma de quadrados de tratamentos em capacidade combinatória (CGC e CEC), e interação com os locais, pelo Método 2 de Griffing (1956)

	_			Quadrados médios		
FV	GL	kg ha ⁻¹	Pop ha ⁻¹	P1000S	AEP	DFL
Tratamentos	54	1026821,89 **	36000771,77 **	1840,66 **	180,61 **	13,95 **
C.G.C.	9	2137292,95 ns	40691481,53 **	3642,39 ns	226,13 ns	39,14 **
C.E.C.	45	804727,68 *	35062629,83 *	1480,32 **	171,5 **	8,91 **
Ambientes	1	14345307,65 ns	2325908501,02 *	15726,23 ns	941,02 ns	30,63 *
Tratamentos x Ambientes	54	616442,05 ns	1830002,93 ns	847,22 ns	84,77 ns	3,45 ns
CGC x Ambientes	9	1349800,25 **	5946639,96 ns	1732,64 ns	158,77 ns	5,96 ^{ns}
CEC x Ambientes	45	469770,41 ns	20866675,52 ns	670,13 ^{ns}	69,97 ns	2,94 ^{ns}
Resíduo	108	454003,71	29416951,61	928,37	98,61	4,91
Média Geral		6032	76142,52	299,29	125,93	58,55
C.V.(%)		11,17	7,12	10,18	7,88	3,78

Kg ha⁻¹=rendimento, Pop ha⁻¹= população por hectare, P1000S=peso de mil sementes, AEP=altura da espiga em cm, DFL=dias ao florescimento

^{*=}significativo a 5% de probabilidade, **=significativo a 1% de probabilidade, ns=não significativo

No estudo comparativo em porcentagem da soma de quadrado total (Tabela 8) para CGC, o caráter Kg ha⁻¹ representa 34,69% e 65,31% para CEC, evidenciando os efeitos da ação gênica não aditiva. Para as variáveis Pop ha⁻¹ e P1000S, apresentam respectivamente os seguintes valores em porcentagem: 18,83% e 32,98%; para a CGC e 81,16% e 67,02% para a CEC, indicando como predominantes os efeitos gênicos não aditivos. Nos parâmetros AEP e DFL estão respectivamente com 20,87% e 46,75% para CGC e, 79,13% e 53,25% para CEC, indicando efeitos de ação gênica não aditiva.

Tabela 8 - Porcentagem da soma de quadrados total para cada parametro no modelo

FV	Kg ha ⁻¹	Pop ha ⁻¹	P1000S	AEP	DFL
Tratamentos (%)	100.00	100.00	100.00	100.00	100.00
C.G.C. (%)	34,69	18,83	32,98	20,87	46,75
C.E.C. (%)	65,31	81,16	67,02	79,13	53,25

Kg ha⁻¹=rendimento, Pop ha⁻¹= população por hectare, P1000S=peso de mil sementes, AEP=altura da espiga em cm, DFL=dias ao florescimento

Na tabela 9, são apresentadas as estimativas dos efeitos da CGC, entre duas variedades por ambiente.

Para o caráter produtividade por ha⁻¹, os progenitores 2, 4 e 6, apresentaram estimativas positivas para os dois ambientes, menos o progenitor 6 que teve estimativa positiva somente no ambiente dois. Com isso indicando aumento da contribuição gênica para rendimento nos cruzamentos em que participa. Estes progenitores podem ser identificados como os mais promissores para serem usados em combinações híbridas, pois a capacidade combinatória é uma característica herdável.

Os progenitores 3, 8, 9 e 10 apresentaram estimativas negativas para os dois ambientes, indicando redução na contribuição do caráter.

A estimativa dos efeitos para o caráter população por ha⁻¹ foi positiva para os progenitores 2, 3, 5 e 10 para todos os ambientes; e negativa para todos os ambientes para os progenitores 1, 4, 6, 7 e 9.

Para peso de mil sementes, os progenitores 2 e 4 tiveram estimativas positivas nos dois ambientes, enquanto os progenitores 3, 8 e 9 tiveram estimativas negativas, resultados semelhantes aos obtidos em produtividade por ha⁻¹.

No caráter altura de espiga, o progenitor 1 teve estimativa positiva para o ambiente dois, e o progenitor 4 mostrou-se positiva para todos os ambientes.

E para DFL, os progenitores 7 e 10 tiveram estimativas positivas para todos os ambientes, considerando suas medias que foram as maiores indicando que para o caráter é possível a seleção através de hibridação.

No estudo da estimativa dos efeitos, os progenitores 2, 4 e 6 apresentaram maiores frequências de alelos favoráveis para Kg ha⁻¹, confirmando a característica para o progenitor 2 em peso de mil sementes (P1000S). Estes progenitores podem ser identificados com promissores para serem usados em combinações híbridas, pois a capacidade combinatória é característica herdável.

Tabela 9 - Estimativa dos efeitos médios da capacidade geral de combinação (CGC) da diferença entre duas variedades por ambiente, para as características produtividade (Kg ha⁻¹), população por hectare (Pop ha⁻¹), peso de mil sementes (P1000S), altura da espiga (AEP) e dias ao florescimento (DFL), segundo o Método 2 de Griffing (1956)

		Kg ha-1			Pop ha-1			P1000S	<u> </u>		AEP			DFL	
Progenitor	$\mathbf{A_1}$	\mathbf{A}_2	Média	A_1	$\mathbf{A_2}$	Média	A_1	\mathbf{A}_{2}	Média	$\mathbf{A_1}$	$\mathbf{A_2}$	Média	$\mathbf{A_1}$	$\mathbf{A_2}$	Média
1	373,5	-180,983	96,258	-1251,8	-1101,983	-1176,892	12,452	3,226	7,839	3,333	-0,667	1,333	-0,717	-0,6	-0,658
2	263,917	553,058	408,487	831,533	990,683	911,108	12,054	20,811	16,432	-0,833	1.00	0,083	-0,8	-0,1	-0,45
3	-170,083	-173,4	-171,742	1044,408	657,392	850,9	-10,204	-3,2	-6,702	-3,75	0,375	-1,688	-1,175	-1,1	-1,138
4	29,5	262,725	146,112	-205,55	-407,358	-306,454	13,69	1,63	7,66	8,542	1,208	4,875	-0,008	0,15	0,071
5	85,542	-184,358	-49,408	720,408	777,808	749,108	8,118	-12,575	-2,229	-2,917	-0,667	-1,792	-0,217	-1,35	-0,783
6	-56,208	384,35	164,071	-1501,8	-175,9	-838,85	-2,296	-1,78	-2,038	-2,5	-3,583	-3,042	-0,425	-0,35	-0,388
7	259,208	-211,733	23,737	-1094,383	-620,317	-857,35	2,22	1,438	1,829	-1,875	-0,042	-0,958	1,2	2,4	1,8
8	-430,042	-186,608	-308,325	257,45	416,683	337,067	-20,181	-3,504	-11,843	-1,25	1,833	0,292	0,658	0,9	0,779
9	-157,042	-196,483	-176,763	-205,717	-1666,608	-936,163	-16,969	-2,374	-9,672	1,458	-1,083	0,188	0,117	-0,35	-0,117
10	-198,292	-66,567	-132,429	1405,45	1129,6	1267,525	1,117	-3,671	-1,277	-0,208	1,625	0,708	1,367	0,4	0,883

Kg ha⁻¹=rendimento, Pop ha⁻¹= população por hectare, P1000S=peso de mil sementes, AEP=altura da espiga em cm, DFL=dias ao florescimento, A1=priemeira época de plantio, A2=segunda época de plantio

Na Tabela 10 apresenta estimativa de S_{ij} para as 45 combinações híbridas e de S_{ii} para os 10 progenitores, relacionados aos cinco caracteres avaliados. São desdobradas por ambientes, pois a interação CGC x ambiente foi significativo apenas para Kg ha⁻¹.

Para todos os caráteres estudados, o desvio de dominância foi positivo e negativo para todos os progenitores.

Para rendimento de grãos (Kg ha⁻¹), os progenitores apresentaram as estimativas dos efeitos positiva e negativas para o ambiente, indicando desvios de dominância no sentido dos valores positivos. Os progenitores 6, 8, 9 e 10 são os de maiores estimativas, com isso, os mais divergentes em relação aos outros progenitores ou da média do dialélico. Sendo o progenitor 8 a mais alta divergência genética, compatível com as estimativas dos efeitos g_i para rendimento de grãos.

Para população por ha⁻¹, as estimativas dos efeitos também foram positivas e negativas no ambiente avaliado, propiciando aos progenitores 4, 6 e 8 os maiores valores absolutos.

No caráter P1000S, os desvios de dominância também foram positivos e negativos no ambiente estudado, com o progenitor 7 de maior valor absoluto.

Quanto a Altura da inserção da espiga foram positivas e negativas para o ambiente estudado, com os progenitores 5 e 6, de maiores valores absoluto.

Para dias de floração, também foram positivas e negativas as estimativas para os progenitores no ambiente avaliado, sendo os progenitores 2, 3 e 5, de maiores valores absolutos.

Estes resultados permitem inferir que, para rendimento, os progenitores 6, 8, 9 e 10 são os mais indicados para fazerem parte de combinações híbridas. Para o caráter população por ha⁻¹, os progenitores 4, 6 e 8 são os mais indicados e, para AEP, os progenitores 5 e 6 são os mais indicados, e para DFL, os progenitores 2, 3 e 5 são os mais indicados, e para P1000S, o progenitor 7 é o mais promissor.

As estimativas dos efeitos da capacidade específica de combinação S_{ij} se encontra na Tabela 10. O efeito da capacidade específica de combinação é interpretado como o desvio de um híbrido em relação ao que seria esperado, com base nas capacidades gerais de combinação de seus progenitores. Os maiores valores são para combinações mais divergentes nas frequências dos genes com dominância, embora sejam também influenciados pela frequência gênica média de alelos favoráveis do dialélico (VENCOVSKY, 1970).

Nas análises dialélicas, deve-se escolher os híbridos de maior capacidade específica de combinação, na qual uma das linhagens progenitoras apresenta a maior capacidade geral de combinação.

No caráter rendimento de grãos, a análise dialélica mostrou-se não significativo para CGC, também não significativo para ambiente. Como é um caráter de baixa herdabilidade. Em relação ao caráter rendimento de grãos, as linhagens que se destacaram para CGC foram as de numero 2, 4 e 6. Neste contexto, as melhores estimativas para rendimento de grãos foram, por grupo, para as combinações 1x7, 2x10, 3x7 e 4x5. Em produtividade ao nível de campo, a melhor combinação foi o cruzamento 2x10, no qual o progenitor 10 tem estimativa de CGC positiva e o progenitor 2 negativa.

No caráter população por ha⁻¹, obtiveram das combinações estimativas positivas e negativas, Na média geral, as maiores estimativas foram, por grupo para as combinações 1x2, 1x4, 1x5 e 7x9. Os resultados para P1000S as estimativas foram positiva e negativas também mais destacando as combinações 2x4, 2x8, 2x9, 3x6, 3x7, 4x8, 4x10, 5x6, 7x9 e 9x10.

Para o caráter AEP, os cruzamentos que apresentaram as maiores estimativas foram, por grupo, 2x4, 3x7, 4x6, 5x9 e 7x8. Para DFL, os cruzamentos que apresentaram as maiores estimativas foram 1x4, 1x8, 2x3, 2x8, 4x7, 4x8, 6x7 e 6x8.

Tabela 10 - Estimativa dos efeitos médios da capacidade específica de combinação (CEC) da diferença entre duas variedades por ambiente, para as características produtividade (Kg ha⁻¹), população por hectare (Pop ha⁻¹), peso de mil sementes (P1000S), altura da espiga (AEP) e dias ao florescimento (DFL), segundo o Método 2 de Griffing (1956)

<u> </u>		Kg ha-1			Pop ha-1			P1000S			AEP		DFL	
Combinação	A ₁	\mathbf{A}_{2}	Média	$\mathbf{A_1}$	\mathbf{A}_{2}	Média	A_1	\mathbf{A}_{2}	Média	A_1	A ₂	Média	A_1 A_2	Média
Efeito dos progen	itores (HS)													
1	-148,227	146,53	-0,848	-3609,409	3365,439	-121,985	-9,649	0,503	-4,573	-5,53	-1,667	-3,598	-1,894 1,091	-1,492
2	39,939	-819,553	-389,807	-887,076	-819,894	-853,485	-48,429	-15.029	-31,729	-2,197		-1,098	1,773 3,909	2,841
3	-98,061	398,364	150,152	,	-1486,311		,	,	-8,715			,	2,523 2,909	
4		-712,386		3964,591	-801,311				-50,106		-7,917		-1,811-2,591	
5	-707,311	,	-112,765	-7553,826	-282,644				-14,659		3,333	6,402	1,106 3,409	
6	234,189	367,864	301,027		-1264,227				-7,754	,	4,167	8,902	-0,977 1,409	
7	141,356	-127,97	6,693		-3153,394			-4,371	1,494		-5,417	,	0,273 1,091	
8	1666,856	258,28	962,568	7261,091		3794,598	,	,	-1,084		-1,667	,	-3,144-1,091	
9	498,356	350,53			-10727,311				-16,113		-3,333		1,939 1,409	
10	584,856	923,697			-3764,227				-9,558		-6,25		0,439 2,909	
Efeito dos desce			134,211	370,707	3704,227	2177,500	1,745	17,571	7,550	4,055	0,23	1,070	0,437 2,707	1,074
1x2	•	-200,011	-261 328	5307 258	2717,273	4012 265	-1 361	4,625	1,632	-6 364	-0,833	-3 598	-0,311-1,591	-0.951
											2,292	4,422		
1x3	-231,644		-133,098		-8060,936			-4,881	0,408				0,064-0,591	
1x4	,	,		5010,841	2670,814		,	,	-18,946		1,458	1,61	0,898 4,159	
1x5	260,231	-63,595	98,318		-1180,852		22,363	,	15,977		-6,667	3,277	-0,894 0,341	
1x6		-373,803	130,089	-3470,409	1105,856				15,565		-1,25		-0,686 1,341	
1x7	714,564	135,28	424,922		-2671,727			-9,158			0,208		-0,311 1,909	
1x8	-602,186		-197,765	-6563,159			-12,809				-1,667	-0,057	2,731 0,409	
1x9	-551,186	402,03	-74,578	-544,492	3930,064		12,421	5,171		8,845		8,797	1,273 1,341	
1x10	666,064	86,114		3399,841	2578,356		-38,947		-17,196		1,042	3,277	1,023 0,909	
2x3	29,439	-499,095		-1099,951	2402,398		7,824	,			-4,375		0,148 1,909	
2x4	273,356	355,78	314,568	-2627,992	-755,352		16,022	,	29,501		4,792	11,61	-1,019-2,341	
2x5	-147,186	272,364	62,589		-1940,519		-4,877	6,65			1,667	-6,723	-0,811 0,841	
2x6	-300,436	497,155	98,36	1446,258	-986,311		-12,515				-0,417	2,027	-0,602 · 1,841	
2x7	320,648	-18,261	151,193	-294,659		-418,277		-39,364			-3,958		-0,227 · 1,591	
2x8	154,398	97,614	126,006	-3090,992	-245,894		31,594		18,883		-3,333	2,443	0,314 2,909	
2x9	-221,602	-292,511	-257,057	4372,174	504,398	2438,286	24,836	14,041	19,438	-4,489	-7,917		-1,144-1,841	-1,492
2x10		1426,072	780,11	-1461,492		-487,902	6,485		2,848		14,375	8,277	0,106-2,591	
3x4	-178,644	,	-3,203	-62,867	2355,939	1146,536		14,129	3,65	-8,655	-7,083	-7,869	-0,644 1,341	-0,992
3x5	8,314	-306,178		-988,826	-273,727	-631,277		-4,908		2,803	-5,208		-0,436 0,159	-0,138
3x6	506,064	-563,886	-28,911	1232,883	-653,019	289,932	24,997	13,285	19,141	-0,114	0,208	0,047	-0,227 0,841	-0,534
3x7	620,148	378,697	499,422	-619,034	2568,898	974,932	,	,	33,684		14,167	,	-1,852 0,591	
3x8	-144,602	530,572	192,985	-526,367	1531,898	502,765	-33,503	-13,203	-23,353	-6,364	-0,208	-3,286	-1,311-2,091	-1,701
3x9	-300,602	-41,053	-170,828	-1507,701	3615,189	1053,744	-19,359	-40,173	-29,766	-4,072	5,208	0,568	-0,769 0,841	-0,805
3x10	-112,352	-433,47	-272,911	-229,867	-514,019	-371,943	-3,526	18,567	7,52	-2,405	7,5	2,547	-0,019 1,591	-0,805
4x5	270,231	712,197	491,214	3038,633	-1986,477	526,078	18,866	6,642	12,754	-6,989	-1,042	-4,015	0,398 · 1,091	-0,347
4x6	231,481	386,489	308,985	-4405,659	-1032,769	-2719,214	19,074	5,173	12,123	17,595	6,875	12,235	0,606 0,909	0,758
4x7	-750,936	-360,928	-555,932	-3479,576	-3254,852	-3367,214	1,81	0,26	1,035	-5,53	0,833	-2,348	0,981 1,159	1,07
4x8	-104,186	579,947	237,881	2168,591	1263,648	1716,119	32,028	34,444	33,236	3,845	1,458	2,652	1,523 2,659	2,091
4x8	-179,686	-449,678	-314,682	-7146,742	1902,439	-2622,152	30,057	-13,761	8,148	-8,864	4,375	-2,244	0,064 0,909	0,487
4x10	139,564	479,905	309,735	-424,409	439,231	7,411	18,005	19,415	18,71	0,303	4,167	2,235	0,814 0,159	0,487
5x6	199,939	-59,928	70,006	-3998,117	3337,064	-330,527	51,559	20,464	36,012	-5,947	1,25	-2,348	0,814-0,591	0,112
5x7	267,023	-277,845	-5,411	3927,466	1115,481	2521,473	-26,365	-12,11	-19,238	-6,572	-4,792	-5,682	1,689 0,341	0,674
5x8	380,773	346,53	363,652	2575,633	78,481	1327,057	-18,331	-1,098	-9,715	-7,197	0,833	-3,182	-0,269 1,841	-1,055
5x9	11,273	-415,095	-201,911	3038,799	717,273	1878,036	-8,475	-2,148	-5,311	12,595	13,75	13,172	-1,727-0,591	-1,159
5x10	164,023	-1172,011	-503,994	-16,867	698,564	340,848	8,335	-10,708	-1,186	-5,739	-6,458	-6,098	-0,977 1,341	-1,159
6x7	-998,727	-202,553	-600,64	-4961,326		-2168,318	-56,296			-11,989	-9,375	-10,682	1,898 1,659	
6x8	-787,477	206,822	-290,328	575,841	-412,311	81,765	-21,084	-4,193	-12,638	-0,114	1,25	0,568	2,439 3,159	2,799
6x9	268,523	357,697	313,11	1038,508	1670,981		,	,	-18,402		-8,333	,	-1,519-1,591	,
6x10	-221,727		-602,723	-572,159	-1125,727			-5,682			1,458		-0,769 2,341	
7x8		-478,595		-3942,576	2809,606		-2,48				10,208		0,314-2,591	
7x9	212,106	544,78	378,443	9076,091	4892,898		,		18,018		0,625	3,589	-0,644 1,659	
7x10	-485,144		25,11	4575,924		2669,807	-8,779				2,917	5,568	-2,394 0,909	
8x9		-513,845		723,758	1078,398	901,078	-0.083	5,2			-1,25		-0,102 0,159	
8x10	-1633,394			-6442,909		-2691,61	.,		-16,825		-3,958		0,648 0,591	
9x10		-293,386		2353,758					28,745			-1,828	0,689 0,659	
				S=peso de mil semen							_	_		.,

Kg ha 1=rendimento, Pop ha 1= população por hectare, P1000S=peso de mil sementes, AEP=altura da espiga em cm, DFL=dias ao florescimento, A1=primeira época de plantio, A2=segunda época de plantio

438	Conclusões
439	Para as condições e o local onde o experimento foi conduzido conclui-se que:
440	✓ Os estudos demonstraram que híbridos comerciais são fontes possíveis de
441	extração de linhagens existindo variabilidade possível para utilização na
442	formação de novas combinações,
443	✓ As melhores combinações para extração de linhagens foram:
444	- AS1551 VT PRO2 / DKB290 VT PRO3
445	- AS1551 VT PRO2 / 2B210 PW
446	- AS1551 VT PRO2 / STATUS VIP
447	✓ Para capacidade geral de combinação sobressaíram os progenitores abaixo:
448	- AS1551 VT PRO2
449	- DKB290 VT PRO3
450	- 2B210 PW
451	
452	
453	
454	
455	
456	
457	
458	
459	
460	
461	
462	
463	
464	
465	
466	
467	
468	
469	
470	
471	

AGUIAR, C.G.; Determinação de grupos heteróticos em milho utilizando marcadores 474 475 moleculares e cruzamentos teste. Maringá-PR, 2007, 73p. 476 477 AGUIAR. C. G.; SCAPIM, C. A.; PINTO, R. J. B.; AMARAL JÚNIOR, A. T.; SILVÉRIO, L.; 478 ANDRADE, C. A. B. Análise dialélica de linhagens de milho na safrinha. Ciência Rural, Santa 479 Maria, v. 34, n. 6, p. 1731-1737, 2004. 480 481 BASTOS, E. Guia para o cultivo do milho. São Paulo-SP: Ícone, 1987. 190 p. 482 483 BISUS. **Boletim** de inovação sustentabilidade. Disponível e < 484 http://www.pucsp.br/sites/default/files/download/posgraduacao/programas/administracao/bisus/bi 485 sus_2_2011.pdf > Acesso em: 17 out. 2017. 486 487 BORÉM, A.; GIÚDICE; M.P. Cultivares transgênicos. In: GALVÃO, J.C.C.; CAVALCANTI, 488 G.S. Cultura de milho. Campinas: Instituto Campineiro de Ensino Agrícola, 1987. 38 p. 489 490 BORDALLO, P. N.; PEREIRA, M. G.; AMARAL JÚNIOR, A. T.; GABRIEL, A. P. C. 491 Análise dialélica de genótipos de milho doce e comum para caracteres agronômicos e proteína 492 total. Horticultura Brasileira, Brasília, v. 23, n. 1, p. 123-127, 2005. 493 494 CONAB. Acompanhamento da safra brasileira: Grãos, Primeiro levantamento, outubro 495 2016 – Brasília. 496 497 CRUZ, C.D.; **Programa Genes: Biometria**. Editora UFV. Viçosa(MG), 382p. 2006. 498 499 CRUZ, C. D.; REGAZZI, A. J. Modelos biométricos aplicados ao melhoramento genético. 500 2. ed. Viçosa: Editora UFV, 1997. 390 p. 501 502 DESTRO D. e MONTALVÀN, R. Melhoramento Genético de Plantas. 1999. Londrina: Ed. 503 UEL, 749 p. 504 FANCELLI, A.L.; DOURADO NETO, D. Produção de Milho. Guaíba: Agropecuária, 2000. 505 506 360p. 507 508 GALINAT, W.C. The origin of maize: grain of humanity. New York: New YorkBotanical 509 **Garden Journal**, v. 44, p.3-12, 1995. 510 511 GOMES, F.P. Curso de estatística experimental. Piracicaba: ESALQ/USP, 7ª 512 ed., 1977. 468p. 513 514 IMEA, Instituto Mato-Grossense de Economia e Agropecuária. 2014. Custo de produção de 515 milho safra 2013/2014. Disponível em http://www.imea.com.br/upload/publicacoes/arquivos- 516 /R410_2013_01_CPMilho.pdf> Acesso em: 12 out. 2017. 517 LOCATELLI, A.B.; FEDERIZZI, L.C.; NASPOLINI FILHO, V. Capacidade combinatória 518 519 de nove linhagens endogâmicas de milho (Zea mays L.) em dois ambientes. Ciência Rural, 520 Santa Maria, v.32, n.3, p.365-370. 2002. 521

Referências

472

- 522 MELO, W. M. C.; VON PINHO, R. G.; FERREIRA, D. F. Capacidade combinatória
- **genética em híbridos comerciais de milho**. *Ciência e Agrotecnologia*, Lavras, v. 25, n. 4, p.
- 524 821-830, 2001.

525

- 526 MAPA, Ministério da Agricultura, Pecuária e Abastecimento. 2014. Zoneamento agrícola de
- 527 **risco climático.** Disponível em http://www.agricultura.gov.br/politica-agricola/zoneamento-
- 528 agricola> Acesso em: 10 out. 2017.

529

- 530 MIRANDA, G.V. (Eds.) **Tecnologia de produção do milho.** 20.ed. Viçosa: Universidade
- 531 Federal de Viçosa, v.1, p.13-53, 2004.

532

- 533 SANTOS, F.M.C.; Capacidade de combinação híbridos comerciais de milho visando a
- obtenção de híbridos F2. Campinas, 2009, 80p.

535

- 536 SCAPIM, C.A.; CARVALHO, C.G.P.; CRUZ, C.D. Uma proposta de classificação dos
- 537 coeficientes de variação para cultura do milho. Pesq. Agropec. Bras., Brasília, v.30, n.5,
- 538 p.683-685. 1995.

539

- 540 SPRAGUE, G.F.; TATUM, L.A. General vs. specific combining ability in single crosses of
- corn. **Journal of the American Society of Agronomy**, Madison, v.34, p.923-932. 1942.

542

- VASAL, S.K.; SRINIVASAN, G.; GONZÁLES, F.C.; HAN, G.C.; PANDEY, S.; BECK,
- 544 D.L.; GROSSA, J. Heterosis and combining ability of CIMMYT's tropical x subtropical
- 545 maize germoplasm. **Crop Science**., v.32, n.6, p.1483-1489. 1992.

546

- VENCOVSKY, R. Alguns aspectos teóricos e aplicados relativos a cruzamentos dialélicos
- de cultivares. Piracicaba, ESALQ, 1970. 59 f. Tese (Livre-Docência).