CENTRO UNIVERSITÁRIO ASSIS GURGACZ ERON OLDONI MARTINI

COMPARATIVO DE CUSTOS ENTRE ESTRUTURA METÁLICA ESPACIAL TUBULAR E ESTRUTURA METÁLICA PLANA

CENTRO UNIVERSITÁRIO ASSIS GURGACZ ERON OLDONI MARTINI

COMPARATIVO DE CUSTOS ENTRE ESTRUTURA METÁLICA ESPACIAL TUBULAR E ESTRUTURA METÁLICA PLANA

Trabalho apresentado na disciplina de Trabalho de Conclusão de Curso II, do Curso de Engenharia Civil, do Centro Universitário Assis Gurgacz, como requisito parcial para obtenção do título de Bacharel em Engenharia Civil.

Professor Orientador: Engenheiro Civil Especialista Ricardo Paganin.

CENTRO UNIVERSITÁRIO FAG

ERON OLDONI MARTINI

COMPARATIVO DE CUSTOS ENTRE ESTRUTURA METÁLICA ESPACIAL TUBULAR E ESTRUTURA METÁLICA PLANA

Trabalho apresentado no Curso de Engenharia Civil, do Centro UniversitárioAssis Gurgacz, como requisito parcial para obtenção do título de Bacharel em Engenharia Civil, sob orientação do Professor **Engenheiro Civil Especialista Ricardo Paganin.**

BANCA EXAMINADORA

Orientador Prof. Especialista Ricardo Paganin

Centro Universitário Assis Gurgacz Engenheiro Civil

Professor Mestre Julio Tozo Neto Centro Universitário Assis Gurgacz Engenheiro Civil

Professor **Mestre Izan Gomes de Lacerda** Centro Universitario Assis Gurgacz Engenheiro Civil

Cascavel, 09de Novembro de 2017.

AGRADECIMENTOS

Agradeço a Deus, por sempre me guiar e me iluminar durante toda a minha vida, nos momentos bons e ruins, principalmente durante a trajetória do curso, me dando determinação para a realização desse sonho, tornando-o possível.

Á toda a minha família, em especial aos meus pais, pelo apoio e incentivo, os quais me ajudaram a crescer pessoalmente e profissionalmente; por acreditar e por nunca desistirem de mim, mesmo em tempos difíceis, fornecendo-me ainda mais força para continuar em frente.

Aos meus amigos, que estão sempre ao meu lado, em especial aos que conquistei na trajetória do curso, os quais foram fundamentais para continuar nessa caminhada.

À empresa e os colegas de trabalho, na qual faço parte desde o terceiro ano do curso até o presente momento, por todo o aprendizado e conhecimento adquirido, pelas diversas experiências e crescimento profissional.

Ao meu orientador, Eng. Civil Espescialista Ricardo Paganin, pelo comprometimento, dedicação, ensinamentos e auxílio para realização deste trabalho.

A todos os professores do curso, que se dedicaram a compartilhar conhecimentos importantes durante todo o curso.

À instituição, administração, direção e todos os seus colaboradores pela estrutura e serviços prestados.

A todos que participaram desta trajetória, auxiliando para a conclusão deste sonho.

RESUMO

Com o constante crescimento da utilização do aço na construção civil, novos sistemas estruturais foram sendo cada vez mais desenvolvidos e difundidos no Brasil, como o sistema estrutural espacial tubular e a estrutura treliçada plana. O presente estudo tem como objetivo comparar os custos dos materiais entre esses dois métodos construtivos de cobertura em estrutura metálica, apresentando suas características, seus respectivos projetos e elaborando os levantamentos quantitativos de materiais necessários. Foi verificado que a estrutura espacial tubular apresenta um peso 19% superior ao da estrutura plana treliçada, custos de ligações parafusadas 2.958% maior do que o sistema em treliças, custo de ligações soldadas 900% menor que a treliçada plana, e pode-se observar que ela é 61% mais cara que a estrutura plana treliçada. Com o desenvolvimento do trabalho foi possível afirmar que a estrutura espacial tubular é mais cara que a estrutura treliçada plana.

Palavras-chave: Cobertura. Métodos Construtivos. Estrutura metálica.

LISTA DE FIGURAS

Figura 1: Ponte Ironbridge	15
Figura 2: Ponte Hercílio Luz	16
Figura 3: Representação de funcionamento do alto-forno	19
Figura 4: Representação do conversor de oxigênio	20
Figura 5: Processo de lingoteamento contínuo	21
Figura 6: Processo de laminação do aço	22
Figura 7: Estrutura treliçada	25
Figura 8: Tipos de treliça	25
Figura 9: Primeira estrutura espacial	26
Figura 10: Arranjo dos elementos em treliças espaciais	27
Figura 11: Treliça quadrado sobre quadrado com defasagem de meio módulo	27
Figura 12: Tipos de apoio	28
Figura 13: Sistema MERO	29
Figura 14: Nó típico.	29
Figura 15: Nó com chapas planas	29
Figura 16: Nó com ponteiras	30
Figura 17: Localização do terreno onde será construída a edificação do estudo	32
Figura 18: Perspectiva 3D da edificação com cobertura metálica plana	33
Figura 19: Perspectiva 3D da edificação com cobertura metálica espacial tubular	33
Figura 20: Planta de cobertura espacial tubular	35
Figura 21: Corte transversal da cobertura metálica espacial tubular da loja	36
Figura 22: Planta de cobertura metálica plana treliçada	43
Figura 23: Corte transversal da cobertura metálica plana treliçada	44
Figura 24: Comparativo de peso dos sistemas estruturais	50
Figura 25: Comparativo de custos das ligações	50
Figura 26: Comparativo de custos das ligações soldadas	51
Figura 27: Comparativo de custos dos sistemas estruturais	52

LISTA DE QUADROS

Quadro 1: Categorias dos aços-carbono	23
Quadro 2: Propriedades mecânicas de aços-carbono	23
Quadro 3: Propriedades mecânicas de aços de baixa liga.	24
Quadro 4: Levantamento quantitativo de materiais	33
Quadro 5: Levantamento quantitativo das ligações	34
Quadro 6: Quantitativo de barras tubulares (loja)	36
Quadro 7: Quantitativo de perfis (loja)	38
Quadro 8: Quantitativo total de aço (loja)	39
Quadro 9: Quantitativo de barras tubulares (depósito)	39
Quadro 10: Quantitativo de perfis (depósito)	40
Quadro 11: Quantitativo total de aço (depósito)	41
Quadro 12: Quantitativo total das ligações parafusadas	41
Quadro 13: Quantitativo total das ligações soldadas	41
Quadro 14: Orçamentos dos perfis tubulares	42
Quadro 15: Orçamentos dos perfis de aço	42
Quadro 16: Orçamento dos parafusos e acessórios	42
Quadro 17: Orçamento dos elementos para solda	43
Quadro 18: Quantitativo de materiais (loja)	45
Quadro 19: Quantitativo de materiais (depósito)	46
Quadro 20: Quantitativo total das ligações parafusadas	47
Quadro 21: Quantitativo total das ligações soldadas	48
Quadro 22: Orçamento do perfil tubular	48
Quadro 23: Orçamento dos perfis de aço	48
Quadro 24: Orçamento dos parafusos e acessórios	49
Quadro 25: Orcamento dos elementos para solda	49

SUMÁRIO

CAPÍTULO 1	11
1.1 INTRODUÇÃO	11
1.2 OBJETIVOS	12
1.2.1 Objetivo geral	12
1.2.2 Objetivos específicos	12
1.3 JUSTIFICATIVA	12
1.4 FORMULAÇÃO DO PROBLEMA	13
1.5 FORMULAÇÃO DA HIPÓTESE	13
1.6 DELIMITAÇÃO DA PESQUISA	13
CAPÍTULO 2	15
2.1 REVISÃO BIBLIOGRÁFICA	15
2.1.1 Estruturas metálicas na construção civil	15
2.1.3 Estruturas treliçadas	24
2.1.4 Estruturas espaciais reticuladas	26
CAPÍTULO 3	31
3.1 METODOLOGIA	31
3.1.1 Tipo de estudo e local da pesquisa	31
3.1.2 Caracterização da amostra	31
3.1.3 Coleta de dados	33
3.1.4 Análise dos dados	34
CAPÍTULO 4	35
4.1 RESULTADOS E DISCUSSÕES	35
4.1.1 Estrutura metálica espacial tubular	35
4.1.2 Estrutura metálica plana treliçada	43
4.1.3 Comparativos	49
CAPÍTULO 5	53
5.1 CONSIDERAÇÕES FINAIS	53
CAPÍTULO 6	54
6.1 SUGESTÕES PARA TRABALHOS FUTUROS	54
REFERÊNCIAS	55

CAPÍTULO 1

1.1 INTRODUÇÃO

O aço começou a ser utilizado na construção civil no século XVIII e, desde então, tem proporcionado a engenheiros e arquitetos soluções de alta qualidade, arrojadas e eficientes, sempre trazendo consigo a ideia de modernidade, inovação e segurança (INABA, 2002).

Existem relatos que o início da utilização de estruturas metálicas em escala industrial no Brasil foi em 1812, sendo que a implantação de grandes companhias siderúrgicas, como a Companhia Siderúrgica Nacional – CSN em 1941, permitiram o avanço na fabricação de perfis em larga escala (PINHEIRO, 2005).

Segundo Du Chateau (1984, *apud* SOUZA, 2002), o primeiro sistema de estrutura espacial pré-fabricado foi criado por Alexander Graham Bell (1847-1922), em 1907, o qual desenvolveu uma estrutura espacial formada de elementos tetraédricos, unidos *in loco*, o resultado atingido foi uma torre para experiências com aeroplanos de 30 metros de altura.

As estruturas planas treliçadas são abundantemente utilizadas em arranjos onde se deseja obter uma estrutura consideravelmente leve, porém de elevada resistência. Esse método construtivo é muito comum em projetos de grandes construções (SOUZA, 2002).

Estruturas espaciais tubulares apresentam peso próprio reduzido e grande rigidez estrutural, sendo amplamente utilizadas em edificações que possuem necessidade de grandes áreas livres, permitindo grande liberdade arquitetônica (SOUZA, 2003).

No mercado nacional de construção civil observa-se uma propensão ao uso de sistemas de cobertura pré-fabricados, em substituição às estruturas tradicionais, principalmente, em função desse sistema apresentar maior velocidade tanto de projeto, quanto de fabricação e montagem, racionalização no uso de materiais e mão de obra e considerável aumento de produtividade (SOUZA, 2003).

Levando em consideração dois sistemas de cobertura, com esse estudo, pretende-se apresentar a diferença de custo dos materiais entre uma cobertura em estrutura metálica espacial tubular e uma plana em uma edificação na cidade de Toledo – PR.

1.2 OBJETIVOS

1.2.1 Objetivo geral

Comparar os custos dos materiais entre dois métodos construtivos de cobertura em estrutura metálica na cidade de Toledo – PR.

1.2.2 Objetivos específicos

- Apresentar o projeto e o quantitativo de materiais de uma cobertura em estrutura metálica espacial com barras tubulares;
- Apresentar o projeto e o quantitativo de materiais de uma cobertura em estrutura metálica plana;
- Apresentar as principais características das coberturas em estruturas metálicas levantadas:
- Elaborar planilha descritiva com levantamento de materiais e custos das coberturas em estrutura metálica levantadas.

1.3 JUSTIFICATIVA

Segundo Souza (2002), a aplicação estrutural de barras de aço de seção transversal tubular tem crescido no Brasil. Dentre os motivos deste crescimento está relacionado principalmente a sua geometria, pois é possível adequá-la em diversos tipos de solicitações, tendo como resultado configurações arquitetônicas visíveis com formas inovadoras.

As formas, dimensões do contorno e pontos de apoio existentes em projeto são fatores que são levados em conta para a escolha do tipo de estrutura a ser utilizada, pois existem vários arranjos geométricos possíveis para esse tipo de estrutura.

Estruturas metálicas planas treliçadas são concebidas por barras retas unidas apenas pelas extremidades por meio de nós articulados. Segundo Souza (2003), nos dias atuais, é cada vez mais comum utilizar esse tipo de estrutura em projetos de grandes construções, pois essa configuração das barras garante leveza à estrutura e ao mesmo tempo muita resistência.

Segundo Pinheiro (2005), alguns aspectos favorecem a utilização do aço como meio estrutural, dentre eles: alta resistência estrutural, proporcionando a execução de estruturas mais leves e atendendo grandes vãos, característica de ser um material muito resistente a vibrações e choques mecânicos, segurança das dimensões e propriedades dos materiais, precisão milimétrica na etapa de fabricação, obras executadas com maior rapidez e limpeza, possibilidade de desmontagem da estrutura e posterior montagem em outro local, possibilidade de reaproveitamento dos materiais em estoque.

Tendo como fato a possibilidade de diversas soluções estruturais, em função disso a importância deste trabalho está no fato de analisar os custos de materiais de duas soluções para a cobertura de uma edificação, uma estrutura espacial tubular e uma estrutura plana, a fim de verificar a mais vantajosa nesse sentido.

1.4 FORMULAÇÃO DO PROBLEMA

Qual das estruturas estudadas possui menor custo de materiais para a execução da cobertura de uma obra na cidade de Toledo, região oeste do estado do Paraná?

1.5 FORMULAÇÃO DA HIPÓTESE

A estrutura metálica plana treliçada é comumente vista e atende diversas solicitações em obras. Porém a estrutura metálica espacial não é tão comum, pois exige uma mão de obra especializada para sua execução, mas seu uso está em crescimento no Brasil devido às suas excelentes propriedades mecânicas, especialmente ligadas à sua geometria. Por ser uma estrutura mais rígida e com maior número de barras, a estrutura espacial tem maior custo de materiais.

1.6 DELIMITAÇÃO DA PESQUISA

A pesquisa será limitada ao comparativo de custos dos materiais entre uma cobertura em estrutura metálica espacial tubular com uma plana, que foi projetada para uma edificação com área aproximada de 4.853,18m², na cidade de Toledo – PR.

O estudo abrange particularidades de projeto e planilha orçamentária dos materiais de ambas as estruturas, o dimensionamento de cálculo não será contemplado no estudo.

Serão utilizados os programas AutoCad para análise do projeto e Excel para execução das planilhas orçamentárias, sendo os valores levantados por meio de pesquisa de mercado.

CAPÍTULO 2

2.1 REVISÃO BIBLIOGRÁFICA

2.1.1 Estruturas metálicas na construção civil

Segundo INABA (2012), o começo da utilização de estruturas metálicas na construção civil em escala industrial foi no século XVIII e em 1779 teve como primeira grande construção a ponte *Ironbridge*, sobre o rio Severn na Inglaterra, projetada por Abraham Darby com vão de 30m, conforme ilustra a Figura 1. Permitindo que um material mais resistente e de maior valor fosse amplamente utilizado para criar estruturas maiores, tornando-se, mais tarde, um importante feito na construção civil.

Figura 1: Ponte Ironbridge

Fonte: ROSS (2015)

Desde então o uso do aço na construção civil foi difundido mundialmente, sempre trazendo consigo o conceito de modernidade, em obras de grande expressão arquitetônicas. Um dos principais motivos que retardou o uso do ferro e do aço no Brasil foram as altas temperaturas necessárias para sua fabricação, o que encarecia esse processo, resultando em dificuldade na comercialização e na popularização (FERRAZ, 2005).

As primeiras estruturas eram montadas por processo de rebitagem, que se baseava no conceito de que, diferentemente de uma solda mal executada, um rebite, mesmo mal cravado, poderia suportar um esforço considerável. Devido a essa opção, a construção metálica necessitava de um número grande de operários no canteiro. Com o passar do tempo, o

processo de soldagem foi sendo aperfeiçoado, possibilitando a fabricação de estruturas mais simples, diminuindo; portanto, a mão de obra necessária (NAKAZATO, 2008).

Um marco na construção em aço no Brasil foi a ponte Hercílio Luz construída em Florianópolis no estado de Santa Catarina, ilustrada na Figura 2. Sua construção teve início em 1922 e o material utilizado foi importado dos Estados Unidos.

Figura 2: Ponte Hercílio Luz

Fonte: CAMPECHE (2011)

O grande impulso das construções com estruturas metálicas no Brasil veio somente na década de 1950 com a criação da Companhia Siderúrgica Nacional (CSN) e sua fábrica de estruturas metálicas (NAKAZATO, 2008).

Com o passar dos anos, outras siderúrgicas cada vez mais modernas foram sendo criadas, modernidade esta, que somada ao processo de soldagem por arco submerso, tornou possível a composição de perfis soldados e a execução de juntas de extensão, resultando em um aumento de produtividade e qualidade. Na década de 80, o Brasil deixava de ser importador de aço, passando a ser exportador do produto (NAKAZATO, 2008).

A indústria de estruturas metálicas vem crescendo muito no Brasil, principalmente por apresentar redução no tempo de construção, racionalização de materiais e mão de obra e edificações modernas e arrojadas (INABA, 2012). Segundo o *Instituto Brasileiro de Geografia e Estatística* (IBGE, 2010), o consumo de aço destinado às estruturas metálicas passou de 324 mil toneladas em 2002 para 1,6 milhão em 2009.

2.1.1.1 Vantagens da utilização do aço

São muitas as vantagens da utilização do aço na construção civil, principalmente quando o material é comparado com outros sistemas estruturais. Segundo Inaba (2012) e Pinheiro (2015), pode-se citar entre as principais vantagens:

- A simplicidade e agilidade no uso do aço na construção resultam em melhor utilização de insumos e mão de obra;
- Menores prazos de execução;
- O aço garante uma precisão milimétrica;
- Maior organização e limpeza, resultando em maior segurança e aproveitamento do espaço no canteiro de obras;
- Devido ao peso das estruturas metálicas, temos menores cargas nas fundações, resultando em menores custos com a mesma;
- As estruturas metálicas têm todo seu detalhamento definido em projeto, assim como ordem de fabricação e montagem, facilitando o momento da execução, evitando desperdício de tempo e materiais;
- Qualidade do aço verificada por rigorosos testes das usinas siderúrgicas, o que resulta em obras de qualidade;
- O aço tem capacidade de ser 100% reciclado;
- A estrutura pode ser montada e posteriormente desmontada para utilização em outro local.

2.1.1.2 Desvantagens da utilização do aço

O aço, como todo material, também apresenta desvantagens, segundo Inaba (2012) e Pinheiro (2005), as principais desvantagens são:

- Limitação na distribuição de perfis estruturais;
- Necessidade de utilização de mão-de-obra qualificada e equipamentos especializados nos processos de fabricação e montagem;
- Tratamento superficial dos perfis contra oxidação;
- Limitação de fabricação em função do transporte até o local de montagem.

2.1.2 O aço

O aço é uma liga metálica formada quase em sua totalidade pelo minério de ferro e carbono, em sua composição encontra-se entre 0,008% e 2,11% de carbono, além de elementos residuais resultantes do processo de fabricação, como silício, enxofre, fósforo e manganês. O carbono é o elemento que mais exerce efeito nas propriedades do aço, pois eleva a resistência do aço, porém o torna mais frágil. O aço é um material de alta resistência mecânica e grande ductibilidade (BELLEI, 1998).

2.1.2.1 Processo de fabricação do aço

A ciência que estuda a produção de aços é denominada siderurgia. O processo é dividido em redução, refino e conformação mecânica. A redução visa transformar os minérios de ferro em ferro-gusa, por meio do alto forno. O refino é a transformação dos produtos do minério de ferro em aço com composições químicas específicas para cada aço. A conformação mecânica consiste em transformar o aço em produtos que sejam utilizados nas indústrias, por meio da laminação (SCHEID, 2010).

2.1.2.1.1 Alto forno

Segundo Pfeil e Pfeil (2009), o principal processo de fabricação do aço é baseado na produção de ferro fundido no alto-forno, conforme representado pela Figura 3. O objetivo no processo é o refinamento do ferro fundido e, depois, são incluídos elementos de liga para produção do aço especificado em conversor de oxigênio.

Câmara aquecida

Câmara aquecida

Silo de minério e calcário

Silo de calcário

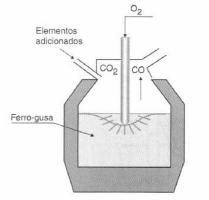
Carro de escória

Carro de escória

Carro de escória

Carro de gusa

Figura 3: Representação de funcionamento do alto-forno


Fonte: PFEIL e PFEIL (2009)

Na parte superior do alto-forno são depositados calcário, coque e minério. Pela parte inferior é inserido um jato de ar quente. Ocorre então a queima do coque, gerando calor e monóxido de carbono, ocasionando a redução do óxido de ferro a ferro liquefeito, com excesso de carbono. O calcário converte o pó do coque e os minerais terrosos do minério em escória fundida (PFEIL e PFEIL, 2009).

2.1.2.1.2 Conversor de oxigênio

No conversor de oxigênio é onde acontece o refinamento do ferro fundido em aço, removendo o excesso de carbono e reduzindo as impurezas, conforme a Figura 4. O refinamento do aço consiste na remoção de grande parte dos óxidos insolúveis, que tem como finalidade de evitar que as propriedades mecânicas do aço sejam prejudicadas (PFEIL e PFEIL, 2009).

Figura 4: Representação do conversor de oxigênio

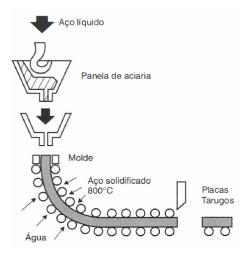
Fonte: PFEIL e PFEIL (2009)

Sua ação consiste na queima do excesso de carbono presente na forma de dióxido de carbono e monóxido de carbono, pela injeção de oxigênio, reduzindo; assim; a quantidade de impurezas a limites prefixados. É realizada análise do aço líquido, podendo trabalhar a mistura até que se obtenha a composição desejada (PFEIL e PFEIL, 2009).

2.1.2.1.3 Tratamento

O tratamento do aço líquido é feito com o seu superaquecimento, o mesmo então absorve os gases da atmosfera e oxigênio da escória. O gás é expelido lentamente com o resfriamento da massa líquida, até sua solidificação. Durante esse processo, deve-se realizar a desgaseificação, que é o adicionamento de alumínio e silício (SCHEID, 2010).

2.1.2.1.4 Classificação

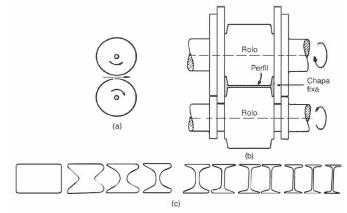

Os aços são classificados baseados em seu grau de desgaseificação, resultando em aços efervescentes, capeados, semiacalmados e acalmados. Os aços efervescentes e os capeados são equivalentes e são utilizados na fabricação de chapas finas. Os aços semiacalmados apresentam menor segregação que os capeados e são os mais utilizados em produtos siderúrgicos como, perfis, barras e chapas grossas. Já nos aços acalmados são eliminados todos os gases, resultando em melhor uniformidade de estruturas, sendo eles os

aços-ligas, aços de baixo carbono e alto carbono, utilizados para produção de trilhos, barras e estampagem (MACHADO, 2003)

2.1.2.1.5 Lingoteamento

O aço previamente fundido é colocado em fôrmas metálicas chamadas de lingoteiras, permitindo a produção de blocos chamados de lingotes. As usinas siderúrgicas mais modernas possuem estações de lingoteamento contínuo, conforme Figura 5 (CHIAVERINI, 1986).

Figura 5: Processo de lingoteamento contínuo


Fonte: PFEIL e PFEIL (2009)

O lingoteamento contínuo produz uma placa de aço continuamente direto do aço líquido em uma única máquina, chegando nos laminadores em placas de seção retangular, cortadas em comprimentos estabelecidos. Esse foi o avanço tecnológico mais importante nos processos siderúrgicos desde os anos sessenta, pois permitiu a substituição do lingoteamento convencional, que consiste em um processo bastante trabalhoso, pois necessita de equipamentos adicionais, diminuindo os custos e tempo para obter a placa de aço (MACHADO, 2003).

2.1.2.1.6 Laminação

A laminação ocorre quando a peça sólida de aço passa entre dois cilindros de mesma velocidade, mas em sentidos contrários, resultando em uma deformação plástica na peça durante a passagem, promovendo redução em sua seção transversal, pequeno aumento na largura e um ganho no comprimento (CHIAVERINI, 1986).

Figura 6: Processo de laminação do aço

Fonte: PFEIL e PFEIL (2009)

Segundo a Figura 6, o item (a) representa a peça metálica que é prensada entre dois rolos giratórios; o item (b) simboliza o processo em que os laminadores dos produtos acabados têm seus rolos com as superfícies cortadas nas formas adequadas; o item (c), por sua vez, mostra as sucessivas fases da laminação do perfil I a partir do perfil retangular produzido no laminador desbastador (PFEIL e PFEIL, 2009).

2.1.2.2 Variedades de aço estruturais

Segundo Pfeil e Pfeil (2009), a classificação dos aços estruturais é baseada em sua composição química, sendo divididos em dois grupos distintos: aços carbono e aços de baixa liga.

2.1.2.2.1 Aços carbono

Os aços-carbono são os mais utilizados, onde o aumento de resistência em relação ao ferro puro é resultado da adição de carbono e em menor escala do manganês em sua composição. Utilizam-se aços com teor de carbono máximo de 0,45% para uma boa soldabilidade, o aumento no teor de carbono eleva a resistência e a dureza do aço, porém o torna mais quebradiço e menos soldável (BELLEI, 1998).

Para que seja classificado como aço carbono, os elementos adicionados a sua composição devem ter as seguintes porcentagens máximas: Carbono \leq 2,0 %; Manganês \leq 1,65%; Silício \leq 0,60% e Cobre \leq 0,35% (PFEIL e PFEIL, 2009).

Segundo Pfeil e Pfeil (2009), em função do teor de carbono, há a possibilidade de descrever três categorias, conforme o Quadro 1.

Quadro 1: Categorias dos aços-carbono

Categoria	Teor de Carbono (C)
Baixo carbono	C< 0,29%
Médio carbono	0,30% < C < 0,59%
Alto carbono	0,60% < C < 2,0%.

Fonte: PFEIL e PFEIL (2009)

Os principais tipos de aço-carbono usados em estruturas, segundo os padrões da ABNT (Associação Brasileira de Normas Técnicas), da ASTM (*American Society for Testing and Materials*) e das normas europeias EN, são os apresentados no Quadro 2 (PFEIL e PFEIL, 2009).

Quadro 2: Propriedades mecânicas de Aços-carbono

Especificação	Teor de carbono (%)	Limite de escoamento (MPa)	Resistência à ruptura (MPa)
ABNR MR250	Baixo	250	400
ASTM A7	-	240	370-500
ASTM A36	0,25-0,29	250 (36 ksi)	400-500
ASTM A307 (parafusos)	Baixo	-	415
ASTM A325 (parafusos)	Médio	635 (min)	825 (min)
EM S235	Baixo	235	360

Fonte: PFEIL e PFEIL (2009)

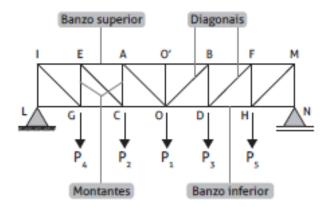
2.1.2.2.2 Aços de baixa liga

Os aços de baixa liga são os aços-carbono acrescidos de elementos de liga que melhoram algumas propriedades mecânicas do mesmo, como: cromo colúmbio, cobre, manganês, molibdênio, níquel, fósforo, vanádio e zircônio. Os elementos de liga promovem um aumento na resistência do aço, por meio da modificação de sua microestrutura para grãos finos. Com este fato pode-se observar uma resistência elevada com um teor de carbono na faixa de 0,20%, garantindo assim maior soldabilidade ao aço (BELLEI, 1998).

Alguns tipos de aço de baixa liga usados em estruturas estão descritos no Quadro 3.

Quadro 3: Propriedades mecânicas de Aços de Baixa liga

Especificação	Principais elementos de liga	Limite de escoamento (MPa)	Resistência à ruptura (MPa)
ABNR A572 Gr. 50	C < 0,23%; Mn < 1,35%	345	450
ASTM A588	C < 0,17%; Mn <1,20%; Cu < 0,50%	345	485
ASTM A992	C < 0,23%; Mn < 1,50%	345	450


Fonte: PFEIL e PFEIL (2009)

2.1.3 Estruturas treliçadas

Estruturas treliçadas são compostas por barras retas conectadas apenas pelas extremidades, por meio de nós articulados e, por isso, estão sujeitas somente a esforços axiais de tração e compressão, característica que garante leveza à estrutura, porém com elevada resistência. As barras são unidas por meio de solda, parafusos ou rebites (SILVA, 2015).

Esse tipo de estrutura é formada por barras distribuídas em: banzo superior, banzo inferior, montantes e diagonais, conforme a Figura 7.

Figura 7: Estrutura treliçada

Fonte: SILVA (2015)

As treliças planas são capazes de cobrir grandes distâncias de apoios por meio de elementos sujeitos a esforços à tração e à compressão. As cargas aplicadas nesse tipo de treliça vão sendo transferidas pelos montantes e diagonais até que sejam descarregadas nos apoios.

Existem três tipos de arranjos estruturais de treliças mais conhecidos, Howe, Pratt e Warren, conforme Figura 8.

Figura 8: Tipos de treliça

Fonte: SILVA (2015)

A Figura 8, o item (a) representa a treliça Howe, onde as diagonais são comprimidas e os montantes tracionados. O item (b) representa a treliça Pratt, onde as diagonais são tracionadas e os montantes comprimidos. Já no item (c) está representado a treliça Warren, onde existem apenas diagonais e parte está tracionada ou comprimida (SILVA, 2015).

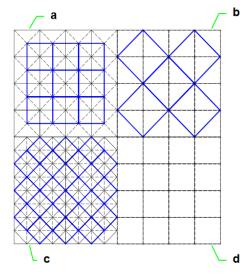
Em treliças, os nós geralmente são constituídos por chapas denominadas *gussets*, onde ocorre a fixação das hastes por meio de solda ou de parafusos. Aliado a isso, também existe a

possibilidade de as barras serem ligadas umas às outras diretamente, sem chapa auxiliar. As ligações soldadas acabam tornando-se mais baratas em relação às parafusadas (PFEIL e PFEIL, 2009).

2.1.4 Estruturas espaciais reticuladas

Estruturas reticuladas tridimensionais são aquelas constituídas por barras em planos diversos e tiveram seu primeiro uso por volta do século XVIII. Alexander Graham Bell desenvolveu um reticulado espacial formados por barras de mesma dimensão conectadas por um único tipo de nó, criando elementos modulares tetraédricos, conforme a Figura 9, assim demonstrando a alta capacidade de padronização e facilidade de industrialização desse tipo de estrutura (SOUZA, 2002).

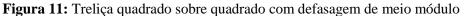
Figura 9: Primeira estrutura espacial



Fonte: DU CHATEAU (1984)

2.1.4.1 Arranjos

Segundo Souza (2002), esse tipo de estrutura é indicado para coberturas de edificações que apresentem vãos livres grandes. O comportamento estrutural das treliças espaciais é função do arranjo dos elementos que a compõem. Os principais arranjos dos elementos de duas camadas paralelas estão apresentados na Figura 10.

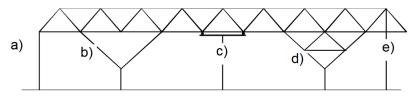

Figura 10: Arranjo dos elementos em treliças espaciais

Fonte: SOUZA (2002)

É representado pela Figura 10: a) quadrado sobre quadrado; b) quadrado sobre quadrado em diagonal; c) quadrado diagonal sobre quadrado diagonal; d) quadrado sobre quadrado sem diagonais esconsas (SOUZA, 2002).

A disposição mais utilizada é o arranjo das barras de quadrado sobre quadrado com defasagem de meio módulo, o qual está ilustrado na Figura 11.

Fonte: Zanella (2016)

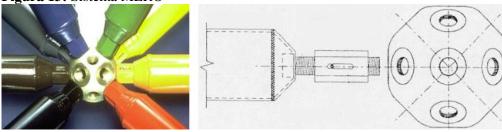

2.1.4.1 Apoios

As treliças espaciais podem ser apoiadas em pilares de concreto armado ou de aço, diretamente em um nó do banzo inferior ou superior. Quando as reações de apoio são elevadas é usual adotar elementos adicionais para absorvê-las, minimizando os esforços

normais nas diagonais que convergem para o nó de apoio. Esses elementos podem ser vigas de transição, utilizando dois nós para apoio, ou pirâmides invertidas, também conhecidas como pés de galinha (SOUZA, 2002).

Os tipos de apoios mais comuns são os apresentados na Figura 12, em que o item (a) apresenta apoio direto no banzo inferior, (b) pé de galinha, (c) apoio com viga de transição, (d) pé de galinha com travejamento interno, (e) apoio direto no banzo superior (SOUZA, 2002).

Figura 12: Tipos de apoio


Fonte: SOUZA (2002)

2.1.4.3 Nós

O encontro das barras de uma estrutura é chamado de nó. Nas treliças espaciais o tipo da seção transversal das barras determinará qual tipo de nó a ser utilizado. Existem vários perfis de nós, desde os mais simples, utilizando superposição de barras com amassamento nas extremidades conectadas por um parafuso, até os mais elaborados, com peças esféricas fundidas e usinadas com elementos especiais rosqueados (SOUZA, 2002).

O grande avanço na difusão das estruturas espaciais foi o surgimento da MERO, na Alemanha em 1943, que desenvolveu um sistema pré-fabricado. O sistema MERO é o sistema mais conhecido e de uso mais difundido em todo mundo. Consiste em barras de seção transversal tubular circular de aço com parafusos nas extremidades que são conectados a nós esféricos, conforme demonstra a Figura 13 (SOUZA, 2002).

Figura 13: Sistema MERO

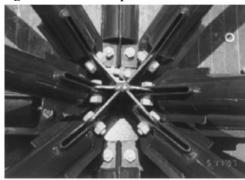
Fonte: SOUZA (2002)

Vários sistemas de ligação surgiram como uma alternativa mais econômica em relação aos nós esféricos industrializados. No mais comum deles as ligações entre as barras são feitas com a superposição das extremidades amassadas das barras, unidas por um único parafuso, processo denominado de nó típico, conforme mostra a Figura 14 (SOUZA, 2002).

Figura 14: Nó típico

Fonte: SOUZA (2002)

Utilizam-se, também, nós formados pela associação de chapas planas ligadas diretamente às extremidades amassadas dos tubos, representado pela Figura 15 (SOUZA, 2002).


Figura 15: Nó com chapas planas

Fonte: SOUZA (2002)

Existe, ainda, o sistema que é ligado por chapas de ponteiras soldadas internamente ao tubo, neste caso, sem amassamento das extremidades, conforme a Figura 16 (SOUZA, 2002).

Figura 16: Nó com ponteira

Fonte: SOUZA (2002)

CAPÍTULO 3

3.1 METODOLOGIA

3.1.1 Tipo de estudo e local da pesquisa

A realização desse estudo foi baseada no levantamento quantitativo e nos custos de materiais de duas estruturas metálicas de cobertura, que foram executadas na cidade de Toledo – PR.

Trata-se de uma pesquisa quantitativa, pois foram analisadas as diferenças de materiais e seus custos, que foram levantados com base nas estruturas metálicas utilizadas neste estudo, não levando em consideração as principais características de cada sistema estrutural, tempo de fabricação e de montagem, mão de obra de fabricação e de montagem.

A execução do projeto estrutural metálico foi de responsabilidade de uma empresa especializada em estruturas metálicas, com sede em Cascavel – PR, em que o autor desta pesquisa esteve presente acompanhando o desenvolvimento do mesmo.

3.1.2 Caracterização da amostra

O estudo foi realizado por meio dos projetos de uma edificação já construída. A edificação em questão é uma loja de materiais de construção e artigos para casa, que está localizada no bairro Vila Industrial, na cidade de Toledo – PR, conforme Figura 17. A edificação abrange uma área de 4.853,18 m². O vão máximo de apoio entre os pilares é de 20,00 metros.

Figura 17: Localização do terreno onde está construída a edificação do estudo

Fonte: Google Maps (2017)

Para relacionar as diferenças de custo entre a estrutura metálica espacial tubular e a estrutura metálica plana, foram executados os projetos de ambas por Zanella (2017), que foi o projetista responsável pela edificação, conforme figuras 18 e 19 e, em seguida, realizado o quantitativo de materiais.

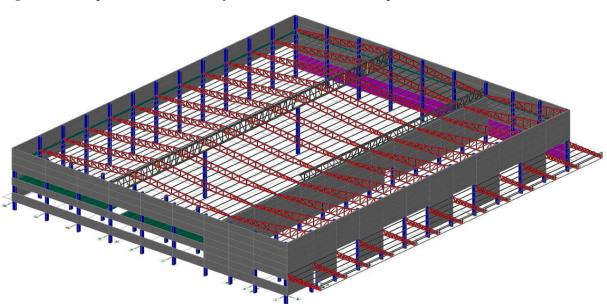


Figura 18: Perspectiva 3D da edificação com cobertura metálica plana

Fonte: Zanella (2017)

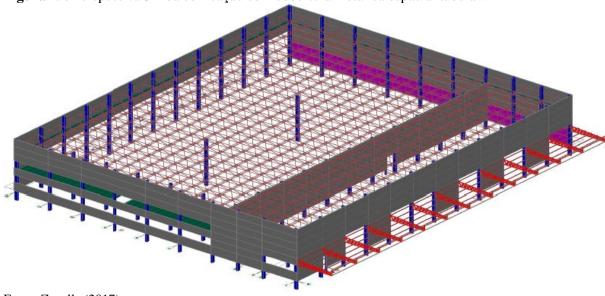


Figura 19: Perspectiva 3D da edificação com cobertura metálica espacial tubular.

Fonte: Zanella (2017)

3.1.3 Coleta de dados

Os dados para o estudo foram coletados na empresa responsável pela execução da estrutura metálica, localizada em Cascavel – PR, onde foi acompanhado o desenvolvimento do projeto executivo e o levantamento do material necessário para execução da cobertura em ambas as opções de execução.

O levantamento de material foi baseado nos projetos executivos da estrutura metálica de cobertura, contemplando a edificação toda. Este levantamento foi realizado por meio de planilhas. Esses dados sobre a estrutura foram coletados conforme o Quadro 4 e o levantamento das ligações parafusadas e soldadas foi realizado conforme Quadro 5.

Quadro 4: Levantamento quantitativo de materiais

ESTRUTURA METÁLICA			
DESCRIÇÃO QUANTIDADE COMPRIMENTO (mm) PESO (kg		PESO (kg)	

Fonte: Autor (2017)

Quadro 5: Levantamento quantitativo das ligações

ESTRUTURA METÁLICA – LIGAÇÕES		
DESCRIÇÃO QUANTIDAD		

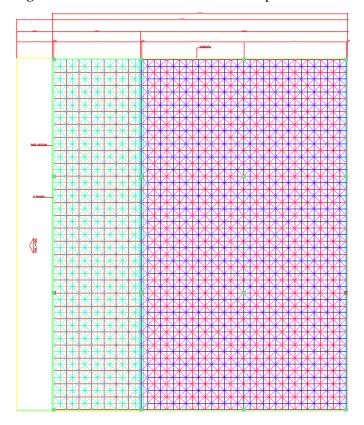
Fonte: Autor (2017)

Os custos foram estimados por meio de orçamentos de 03 (três) empresas especializadas no fornecimento dos materiais solicitados em projeto, o menor valor de orçamento repassado pelas mesmas será utilizado no cálculo final de custo dos materiais para comparativo das estruturas.

3.1.4 Análise dos dados

Após todos os dados serem levantados, foi realizada a análise dos quantitativos de materiais necessários para as duas estruturas metálicas base do estudo, verificando qual apresenta maior peso e maior custo para sua execução em relação aos materiais. Por fim, os dados foram lançados no programa Excel, gerando tabelas e gráficos.

CAPÍTULO 4


4.1 RESULTADOS E DISCUSSÕES

A apresentação dos resultados será feita, incialmente, demonstrando o quantitativo de materiais de cada tipo de sistema, começando pelo sistema espacial tubular. Após a apresentação dos quantitativos, serão apresentados os comparativos entre os dois sistemas.

4.1.1 Estrutura metálica espacial tubular

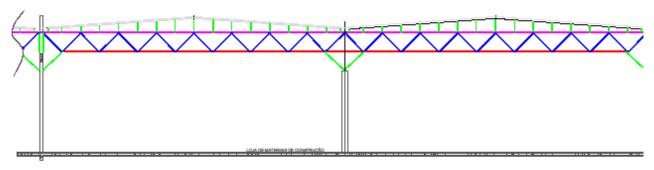

O sistema de estrutura espacial dimensionada para a obra em estudo é composto de perfis tubulares, que formam as malhas inferior e superior e as diagonais que fazem a ligação entre as malhas. As Figuras 20 e 21 ilustram o projeto da estrutura espacial tubular juntamente com o ANEXO A.

Figura 20: Planta de cobertura metálica espacial tubular

Fonte: GMZ Engenharia (2017)

Figura 21: Corte transversal da cobertura metálica espacial tubular da loja

Fonte: GMZ Engenharia (2017)

Com o dimensionamento e projeto básico em mãos, foi realizado o quantitativo de materiais necessário para realização da estrutura espacial. No levantamento do quantitativo da obra foi realizado uma divisão em duas partes distintas denominadas de loja, com 2.794,96m² e depósito com 2.058,22m².

4.1.1.1 Levantamento quantitativo estrutura espacial tubular

Por efeito de dimensionamento, os perfis tubulares utilizados na estrutura apresentam diferenças de comprimento, diâmetro e espessura, dependendo do local onde são utilizados, e já são solicitados direto da indústria no comprimento exato, por esse motivo foi realizado o quantitativo seguindo essas variáveis, começando pela parte da loja, como apresentado no Quadro 6.

Quadro 6: Quantitativo de barras tubulares (loja)

ESPACIAL – LOJA			
QUANTIDADE	DESCRIÇÃO	COMPRIMENTO (mm)	PESO (kg)
83	Tubos Ø41,27 x 2,25mm	6000	1078,17
		TOTAL	1078,17
293	Tubos Ø50,8 x 2,25mm	2652	2097,9972
510	Tubos Ø50,8 x 2,25mm	2500	3442,5
1420	Tubos Ø50,8 x 2,25mm	2182	8365,788
		TOTAL	13906,2852

175	Tubos Ø50,8 x 2,65mm	2652	1461,915
87	Tubos Ø50,8 x 2,65mm	2500	685,125
130	Tubos Ø50,8 x 2,65mm	2182	893,529
		TOTAL	3040,569
68	Tubos Ø60,3 x 2,25mm	2652	582,48528
51	Tubos Ø60,3 x 2,25mm	2500	411,825
37	Tubos Ø60,3 x 2,25mm	2182	260,77082
		TOTAL	1255,0811
15	Tubos Ø63,5 x 2,65mm	2652	158,3244
10	Tubos Ø63,5 x 2,65mm	2500	99,5
9	Tubos Ø63,5 x 2,65mm	2182	78,15924
		TOTAL	335,98364
	T. 1. (77.6.2	2652	54.4006
5	Tubos Ø76,2 x 2,25mm	2652	54,4986
15	Tubos Ø76,2 x 2,25mm	2500	154,125
		TOTAL	208,6236
183	Tubos Ø88,9 x 2,25mm	2652	2334,36996
95	Tubos Ø88,9 x 2,25mm	2500	1142,375
68	Tubos Ø88,9 x 2,25mm	2182	713,68856
		TOTAL	4190,43352
		-	
16	Tubos Ø101,6mm x 2,00mm	2652	208,76544
6	Tubos Ø101,6mm x 2,00mm	2500	73,8
8	Tubos Ø101,6mm x 2,00mm	2182	85,88352
		TOTAL	368,44896
36	Tubos Ø101,6mm x 2,25mm	2652	526,05072
11	Tubos Ø101,6mm x 2,25mm	2500	151,525
29	Tubos Ø101,6mm x 2,25mm	2182	348,66178
		TOTAL	1026,2375
32	Tubos Ø127,0mm x 2,25mm	2652	588,10752
50	Tubos Ø127,0mm x 2,25mm	2500	866,25
19	Tubos Ø127,0mm x 2,25mm	2182	287,30394
		TOTAL	1741,66146
20	Tubes (4127.0	2652	421 2152
20	Tubos Ø127,0mm x 2,65mm	2652	431,2152
7	Tubos Ø127,0mm x 2,65mm	2500	142,275

8	Tubos Ø127,0mm x 2,65mm	2182	141,91728
		TOTAL	715,40748
4	Tubos Ø127,0mm x 3,00mm	2652	97,38144
7	Tubos Ø127,0mm x 3,00mm	2500	160,65
		TOTAL	258,03144
12	Tubos Ø127,0mm x 3,35mm	2652	325,24128
4	Tubos Ø127,0mm x 3,35mm	2500	102,2
		TOTAL	427,44128
16	Tubos Ø127,0mm x 3,75mm	2652	483,7248
		TOTAL	483,7248
24	Tubos Ø127,0mm x 4,75mm	2700	928,584
24	Tubos Ø127,0mm x 4,75mm	1850	636,252
		TOTAL	1564,836
		TOTAL TUBOS	30.600,93

Fonte: Autor (2017)

A estrutura espacial além de perfis tubulares, também contemplou chapas planas para fabricação de chapas de apoio e dos nós, que realizaram a ligação dos elementos, perfis dobrados a frio em forma de "U" para terças da cobertura e barras redondas para chumbadores dos apoios, conforme descrito no Quadro 7.

Quadro 7: Quantitativo de perfis (loja)

ESPACIAL – LOJA			
QUANTIDADE	DESCRIÇÃO	COMPRIMENTO (mm)	PESO (kg)
36	U 38x75x38 x 2,25mm	71600	6588,35
925	CH 250x250 x 8,00mm	-	3626
1850	CH 150x320 x 6,35mm	-	4386,72
2	CH 400x400 x 19,00mm	-	48,64
20	CH 200x400 x 19,00mm	-	243,2
48	CH 280x250 x 9,50mm	-	268,8
1124	CH 110x250 x 8,00mm	-	1978,24
88	Red. 19,00mm	1000	220
		TOTAL PERFIS	17359,95

Fonte: Autor (2017)

O Quadro 8 apresenta o total de aço utilizado no dimensionamento da estrutura espacial tubular da loja.

Quadro 8: Quantitativo total de aço (loja)

ESPACIAL - LOJA			
DESCRIÇÃO	PESO (kg)		
TUBOS	30600,93		
PERFIS	17359,95		
TOTAL GERAL LOJA	47960,88		

Fonte: Autor (2017)

Terminado o levantamento quantitativo de aço empregado na cobertura da loja, realizou-se o mesmo procedimento para a estrutura do depósito, utilizando o mesmo método de dimensionamento adotado na loja, apresentado no Quadro 9.

Quadro 9: Quantitativo de barras tubulares (depósito)

ESPACIAL – DEPÓSITO			
	~	COMPRIMENTO	
QUANTIDADE	DESCRIÇÃO	(mm)	PESO (kg)
38	Tubos Ø41,27 x 2,25mm	6000	493,62
		TOTAL	493,62
209	Tubos Ø50,8 x 2,25mm	2833	1598,6619
108	Tubos Ø50,8 x 2,25mm	2652	773,3232
556	Tubos Ø50,8 x 2,25mm	2281	3424,2372
		TOTAL	5796,2223
27	Tubos Ø50,8 x 2,65mm	2833	240,94665
60	Tubos Ø50,8 x 2,65mm	2652	501,228
52	Tubos Ø50,8 x 2,65mm	2281	373,6278
		TOTAL	1115,80245
18	Tubos Ø60,3 x 2,25mm	2833	164,71062
43	Tubos Ø60,3 x 2,25mm	2652	368,33628
16	Tubos Ø60,3 x 2,25mm	2281	117,88208
		TOTAL	650,92898
4	Tubos Ø63,5 x 2,65mm	2652	42,21984
5	Tubos Ø63,5 x 2,65mm	2281	45,3919
		TOTAL	87,61174

4	Tubos Ø76,2 x 2,65mm	2833	54,50692
28	Tubos Ø76,2 x 2,65mm	2652	357,17136
		TOTAL	411,67828
22	Tubos Ø88,9 x 2,25mm	2833	299,78806
66	Tubos Ø88,9 x 2,25mm	2652	841,90392
7	Tubos Ø88,9 x 2,25mm	2281	76,80127
		TOTAL	1218,49325
3	Tubos Ø101,6mm x 2,00mm	2833	41,81508
		TOTAL	41,81508
20	Tubos Ø101,6mm x 3,00mm	2833	413,618
16	Tubos Ø101,6mm x 3,00mm	2700	315,36
36	Tubos Ø101,6mm x 3,00mm	2652	696,9456
12	Tubos Ø101,6mm x 3,00mm	2281	199,8156
16	Tubos Ø101,6mm x 3,00mm	1850	216,08
		TOTAL	1841,8192
		TOTAL GERAL	11.657,99

Da mesma forma que ocorreu na loja, a cobertura espacial do depósito também teve necessidade de abranger chapas planas para fabricação de chapas de apoio e dos nós, que realizaram a ligação dos elementos, perfis dobrados a frio em forma de "U" para terças da cobertura e barras redondas para chumbadores dos apoios, conforme descrito no Quadro 10.

Quadro 10: Quantitativo de perfis (depósito)

ESPACIAL – DEPÓSITO			
QUANTIDADE	DESCRIÇÃO	COMPRIMENTO (mm)	PESO (kg)
13	U 38x75x38 x 2,25mm	71600	2379,13
358	CH 250x250 x 6,35mm	-	1116,96
716	CH 150x320 x 6,35mm	-	1718,40
10	CH 200x400 x 19,00mm	-	121,60
20	CH 280x250 x 9,50mm	-	112
459	CH 110x250 x 8,00mm	-	807,84
40	Red. 19,00mm	1000	100
		TOTAL PERFIS	6355,93

Fonte: Autor (2017)

O Quadro 11 apresenta o total de aço utilizado no dimensionamento da estrutura espacial tubular do depósito.

Quadro 11: Quantitativo total de aço (depósito)

ESPACIAL - DEPÓSITO				
DESCRIÇÃO PESO (kg)				
TUBOS	11657,99			
PERFIS	6355,93			
TOTAL GERAL DEPÓSITO	18013,92			

Fonte: Autor (2017)

4.1.1.2 Levantamento quantitativo de ligações

O sistema de cobertura espacial adotado na edificação, os nós, são formados pela união de chapas planas através de solda, ligadas diretamente às extremidades amassadas dos tubos, e em cada nó desse, é necessário o uso de diversos parafusos, porcas e arruelas para perfeita estabilização da estrutura, conforme dimensionamento. O Quadro 12 apresenta o quantitativo de materiais utilizados nessas ligações parafusadas e o Quadro 13 os materiais das ligações soldadas.

Quadro 12: Quantitativo total das ligações parafusadas

ESTRUTURA ESPACIAL – LIGAÇÕES PARAFUSADAS			
DESCRIÇÃO	QUANTIDADE		
Parafusos Ø5/8" x 60,0mm	10600		
Porcas Ø5/8"	10600		
Arruelas Ø5/8"	21200		
Parafusos Ø3/8" x 31,75mm	4000		
Porcas Ø3/8"	4000		
Arruelas Ø3/8"	8000		
Parafusos 1" x 76,20mm	330		
Porcas 1"	330		
Arruelas 1"	660		

Fonte: Autor (2017)

Quadro 13: Quantitativo total das ligações soldadas

ESTRUTURA ESPACIAL – LIGAÇÕES SOLDADAS			
DESCRIÇÃO QUANTIDAD			
Arame ER70S-6	72,00 kg		
Gás Atal	50,00 kg		

4.1.1.3 Levantamento de custos dos materiais para estrutura espacial

Foi realizada uma pesquisa de mercado com 03 empresas especializadas nos materiais solicitados pelo Engenheiro calculista que executou o dimensionamento das estruturas do estudo. Como as empresas geralmente só trabalham com um ou dois tipos de perfis, os mesmos foram divididos em dois quadros para melhor visualização, o Quadro 14 apresenta os orçamentos dos perfis tubulares e o Quadro 15 os outros perfis solicitados.

Quadro 14: Orçamentos dos perfis tubulares

DESCRIÇÃO DO	V	VALORES (R\$/kg)		
PERFIL	EMPRESA A	EMPRESA B	EMPRESA C	
Tubos espessura 2,00mm	4,59	6,21	6,11	
Tubos espessura 2,25mm	4,59	6,21	6,11	
Tubos espessura 2,65mm	4,46	6,13	5,88	
Tubos espessura 3,00mm	4,59	6,21	6,11	
Tubos espessura 3,35mm	4,46	6,13	5,88	
Tubos espessura 3,75mm	4,46	6,13	5,88	
Tubos espessura 4,75mm	4,59	6,21	6,11	

Fonte: Autor (2017)

Quadro 15: Orçamentos dos perfis de aço

DESCRIÇÃO DO	VALORES (R\$/kg)		
PERFIL	EMPRESA A	EMPRESA B	EMPRESA C
Perfil U dobrado a frio	3,2	3,35	3,47
Perfil L laminado	3,2	3,35	3,47
Chapa lisa	3,2	3,35	3,47
Perfil Redondo	3,2	3,35	3,47

Fonte: Autor (2017)

Foi realizado o mesmo método de orçamento com as ligações parafusadas e soldadas, realizando-se pesquisa com 03 empresas especializadas para obtenção do custo final, conforme Quadro 16 e Quadro 17.

Quadro 16: Orçamento dos parafusos e acessórios

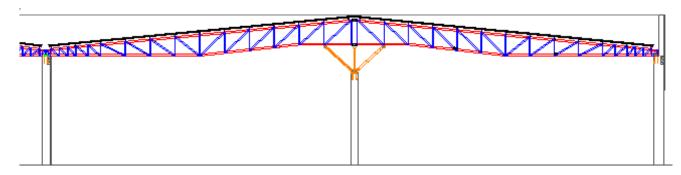
DESCRIÇÃO	VALORES (R\$/un)			
DESCRIÇAU	EMPRESA A	EMPRESA B	EMPRESA C	
Parafusos Ø5/8" x 60,0mm	1,43	1,51	1,8	
Porcas Ø5/8"	0,69	0,75	0,9	
Arruelas Ø5/8"	0,23	0,25	0,5	
Parafusos Ø3/8" x 31,75mm	0,22	0,25	0,35	
Porcas Ø3/8"	0,07	0,1	0,15	
Arruelas Ø3/8"	0,075	0,12	0,2	
Parafusos 1" x 76,20mm	4,46	4,54	5,15	
Porcas 1"	2,29	2,37	2,95	
Arruelas 1"	0,52	0,59	0,95	

Quadro 17: Orçamentos dos elementos para solda

DESCRIÇÃO DO	VALORES (R\$/kg) EMPRESA A EMPRESA B EMPRESA C		
PERFIL			
Arame ER70S-6	7,59	8,03	7,85
Gás Atal	5,57	5,89	6,03

Fonte: Autor (2017)

Após a execução dos quantitativos de materiais e realização dos orçamentos, pode-se observar que a "Empresa A" foi a que teve o melhor custo dos materiais, sendo que estes serão utilizados na estimativa de custos da estrutura.


4.1.2 Estrutura metálica plana treliçada

A estrutura plana treliçada adotada na edificação é formada basicamente por perfis dobrados a frio em "U" e perfis laminados em "L", formando tesouras, vigas, entre outros. Foi elaborado o dimensionamento e o projeto básico da estrutura para que pudesse realizar o quantitativo de materiais empregados na estrutura. As Figuras 22 e 23 representam o projeto realizado juntamente com o ANEXO B.

Figura 22: Planta de cobertura metálica plana treliçada

Fonte: GMZ Engenharia (2017)

Figura 23: Corte transversal da cobertura metálica plana treliçada

Fonte: GMZ Engenharia (2017)

Com o dimensionamento e projeto básico em mãos, foi realizado o quantitativo de materiais necessários para a realização da estrutura plana treliçada. No levantamento do quantitativo, assim como na estrutura espacial tubular, foi realizado uma divisão em duas partes distintas denominadas de loja, com 2.794,96m² e depósito com 2.058,22m².

4.1.2.1 Levantamento quantitativo estrutura plana treliçada

Por efeito de dimensionamento, os perfis utilizados na estrutura apresentam diferenças de comprimento, seção e espessura; variando conforme o local onde são utilizados, neste caso são pedidos da indústria em barras de 06 metros de comprimento, para posteriormente serem modificados conforme projeto, por esse motivo foi realizado o quantitativo seguindo essas variáveis, começando pela parte da loja, como apresentado no Quadro 18.

Quadro 18: Quantitativo de materiais (loja)

TRELIÇADA – LOJA			
QUANTIDADE	DESCRIÇÃO	COMPRIMENTO (mm)	PESO (kg)
5	CH 350x350 x 16,00mm	-	78,4
20	CH 250x550 x 2,65mm	-	418
40	Red. 19,00mm	1.000	89,6
28	CH 95x200 x 2,65mm	-	51,07
6	Tubo red. 101,60x3,75	2.360	135,51
8	Tubo red. 101,60x3,75	2.400	183,74
26	CH 280x350 x 12,70mm	-	244,61
52	CH 400x150 x 9,50mm	-	249,6
164	Red. 16,00mm		255,84
15	CH 200x300 x 9,50mm	-	72
12	U 50x100x50 x 4,75mm	400	36,48
6	U 50x100x50 x 4,75mm	750	34,2
2 Vigas intermediárias			
8	U 50x127x50 x 4,75mm	24.600	1697,6
2	U 40x100x40 x 4,75mm	75.700	1035,58
8	U 50x115x50 x 6,35mm	500	43,44
1 Viga intermediária			
4	U 50x127x50 x 3,00mm	18.600	405,33
1	U 40x100x40 x 3,00mm	59.000	254,88
2	U 50x115x50 x 6,35mm	500	10,84
10 Tesouras apoiadas no centro e nas extremidades			
10	U 40x100x40 x 2,65mm	160.000	6105,6
10	U 38x75x38 x 2,65mm	80.000	2560,96

280	L 60x120 x 3,75 mm	160	241,92	
280	CH 55x100 x 3,00mm	-	36,96	
40	CH 100x250 x 8,00mm	-	64	
46	CH 200x350 x 4,75mm	-	122,36	
440	U 38x75x38 x 2,65mm	120	169,02	
	03 Tesouras mu	ılti-apoiadas		
3	U 50x100x50 x 3,00mm	80.000	1152	
3	L 38x38 x 3,00mm	160.000	887,04	
84	L 60x120 x 3,75mm	160	72,58	
	Terças de C	Cobertura		
	C 17x 50x127x50x17 x			
28	2,65mm	74.000	11464,79	
10 Vigas de Rigidez				
10	U 40x100x40 x 3,00mm	14.500	626,4	
10	L 38x38 x 3,00mm	29.000	535,92	
40	ch 100x200 #8,0 mm	-	51,2	
Agulhamento da Cobertura				
624	L 19x19 x 3,00mm	1.450	651,46	
1248	Red. 9,50mm	70	62,4	
Contraventamento da Cobertura				
72	Red 12,70mm	8.800	633,6	
144	L 50x50 x 6,35mm	60	44,42	
		TOTAL LOJA	30.779,35	

Terminado o levantamento quantitativo de aço empregado na cobertura da loja, realizou-se o mesmo procedimento para a estrutura do depósito, utilizando o mesmo método de dimensionamento adotado na loja, apresentado no Quadro 19.

Quadro 19: Quantitativo de materiais (depósito)

TRELIÇADA – DEPÓSITO				
QUANTIDADE	DESCRIÇÃO COMPRIMENTO (mm)		PESO (kg)	
28	CH 280x350 x 12,70mm	-	263,42	
56	CH 150x200 x 9,50mm	-	268,80	
184	Red. 16,00mm	1.000	287,04	
5	CH 200x250 x 9,50mm	-	20,00	
11 Tesouras bi-apoiadas				
11	U 50x100x50 x 3,00mm	116.400	9.218,88	
11	U 38x75x38 x 2,65mm	55.200	1.943,77	
11	U 38x75x38 x 4,75mm	13.300	839,47	
270	L 60x120 x 3,75mm	160	233,28	
270	CH 55x100 x 3,00mm	-	35,64	

02 Tesouras multi-apoiadas					
2	U 50x100x50 x 3,00mm	58.200	558,72		
2	L 38x38 x 3,00mm	137.000	506,35		
	01 Meia Tesoura	multi-apoiada			
1	U 40x100x40 x 2,65mm	59.600	227,43		
1	U 38x75x38 #2	34.300	63,39		
	Terças de C	Cobertura			
	C 17x 50x127x50x17 x				
10	2,65mm	74.000	4.094,58		
	C 17x 50x127x50x17 x				
10	2,65mm	77.900	4.310,36		
06 Vigas de Rigidez					
6	U 40x100x40 x 3,00mm	14.500	375,84		
6	L 38x38 x 3,00mm	29.000	321,55		
24	CH 100x200 x 8,00mm	-	30,72		
	Agulhamento da Cobertura				
441	L 3/4x3/4x2,25 mm	1.450	460,40		
882	Red. 9,50mm	70	44,10		
Contraventamento da Cobertura					
48	Red. 12,70mm	9.200	441,60		
96	L 50x50x6,35mm	60	29,61		
		TOTAL DEPÓSITO	24.574,95		

4.1.2.2 Levantamento quantitativo de ligações

Na estrutura treliçada também é necessário o uso de parafusos, porém em menor quantidade, sendo eles usados para juntas de dilatação nas terças da cobertura e para ligação nos pilares de concreto por meio de chapas de apoio previamente instaladas. O Quadro 20 apresenta o quantitativo de materiais utilizados nessas ligações parafusadas e o Quadro 21 os materiais das ligações soldadas.

Quadro 20: Quantitativo total das ligações parafusadas

ESTRUTURA TRELIÇADA – LIGAÇÕES PARAFUSADAS		
DESCRIÇÃO QUANTIDAD		
Parafusos Ø3/8" x 31,75mm	2150	
Porcas Ø3/8"	2150	
Arruelas Ø3/8"	4300	
Parafusos 1" x 76,20mm	16	
Porcas 1"	16	

Arruelas 1"	32
-------------	----

Quadro 21: Quantitativo total das ligações soldadas

ESTRUTURA TRELIÇADA – LIGAÇÕES SOLDADAS		
DESCRIÇÃO	QUANTIDADE	
Arame ER70S-6	648,00 kg	
Gás Atal	450,00 kg	

Fonte: Autor (2017)

4.1.2.3 Levantamento de custos dos materiais da estrutura plana

Assim como realizado na estrutura espacial, foi executada uma pesquisa de mercado com 03 empresas especializadas nos materiais solicitados pelo Engenheiro calculista que executou o dimensionamento das estruturas do estudo. O Quadro 22 apresenta o orçamento do perfil tubular e o Quadro 23 dos outros perfis solicitados.

Quadro 22: Orçamento do perfil tubular

DESCRIÇÃO DO	VALORES (R\$/kg)		
PERFIL	EMPRESA A	EMPRESA B	EMPRESA C
Tubos espessura 3,75mm	4,46	6,13	5,88

Fonte: Autor (2017)

Quadro 23: Orçamentos dos perfis de aço

DESCRIÇÃO DO	VALORES (R\$/kg)		
PERFIL	EMPRESA A	EMPRESA B	EMPRESA C
Perfil U dobrado a frio	3,2	3,35	3,47
Perfil C dobrado a frio	3,8	4,03	4,12
Perfil L laminado	3,2	3,35	3,47
Chapa lisa	3,2	3,35	3,47
Perfil Redondo	3,2	3,35	3,47

Fonte: Autor (2017)

O mesmo levantamento sucedeu-se com os parafusos e seus acessórios, apresentados no Quadro 24, e dos elementos de solda apresentados no Quadro 25.

Quadro 24: Orçamento dos parafusos e acessórios

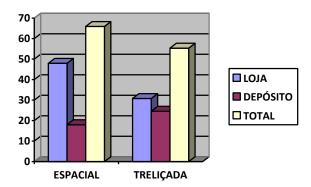
DESCRIÇÃO	VALORES (R\$/un)		
DESCRIÇAO	EMPRESA A	EMPRESA B	EMPRESA C
Parafusos Ø3/8" x 31,75mm	0,22	0,25	0,35
Porcas Ø3/8"	0,07	0,1	0,15
Arruelas Ø3/8"	0,075	0,12	0,2
Parafusos 1" x 76,20mm	4,46	4,54	5,15
Porcas 1"	2,29	2,37	2,95
Arruelas 1"	0,52	0,59	0,95

Fonte: Autor (2017)

Quadro 25: Orçamentos dos elementos para solda

DESCRIÇÃO DO	VALORES (R\$/kg)		
PERFIL	EMPRESA A	EMPRESA B	EMPRESA C
Arame ER70S-6	7,59	8,03	7,85
Gás Atal	5,57	5,89	6,03

Fonte: Autor (2017)


Novamente após a realização dos quantitativos de materiais e realização dos orçamentos da estrutura plana, pode-se observar que a "Empresa A" foi a que apresentou o melhor custo dos materiais, sendo que estes serão utilizados na estimativa de custos da estrutura.

4.1.3 Comparativos

4.1.3.1 Pesos

Foi realizado um gráfico comparativo apresentando o peso (em toneladas) da estrutura espacial tubular e treliçada, divididas conforme levantamentos em loja e depósito, e apresentado o total de cada uma, conforme gráfico da Figura 24.

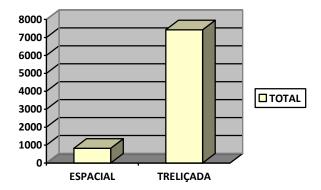
Figura 24: Comparativo de peso dos sistemas estruturais


Fonte: Autor (2017)

Com base nos resultados de pesos de ambos os sistemas construtivos analisados, levando em consideração a somatória da loja e do depósito, pode-se afirmar que a estrutura espacial tubular é 19% mais pesada que a estrutura metálica plana.

4.1.3.2 Ligações

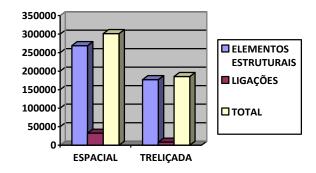
A fim de se obter dados comparativos para análise das ligações parafusadas de cada sistema construtivo, foi elaborado um gráfico apresentando o custo total destes itens. O gráfico da Figura 25 apresenta este comparativo.


Figura 25: Comparativo de custo das ligações parafusadas

Como a cobertura espacial apresenta um número de ligações muito superior ao da plana devido aos tipos de nós presentes na estrutura, esta apresentou um custo superior ao da estrutura metálica plana em 2.958%, uma vez que a estrutura espacial resultou em R\$ 31.678,70 e a estrutura plana R\$ 1.070,64.

Para as ligações realizadas através de solda, foi realizado o gráfico da Figura 26, apresentando os custos totais destes elementos, para obter dados comparativos de cada sistema construtivo.

Figura 26: Comparativo de custo das ligações soldadas


Fonte: Autor (2017)

Devido ao sistema treliçado ter um número de ligações através de solda muito superior ao da espacial, pelos tipos de nós presentes na estrutura, esta apresentou um custo superior ao da estrutura metálica espacial em 900%, uma vez que a estrutura espacial resultou em R\$ 824,98 e a estrutura plana R\$ 7.424,82.

4.1.3.3 Custos totais dos materiais

Após o levantamento dos custos dos elementos estruturais e também das ligações, pode-se então chegar ao valor dos custos totais dos materiais que serão necessários para a execução da estrutura, conforme gráfico da Figura 27.

Figura 27: Comparativo de custo dos sistemas estruturais

Fonte: Autor (2017)

Após realização do comparativo de custos das estruturas do estudo, pode-se observar que o custo da estrutura espacial foi 61% superior ao custo da estrutura plana. Isso se dá pelo fato de que a estrutura espacial possui um peso elevado devido aos nós que fazem as ligações das barras. Um fator de extrema relevância é o preço dos perfis tubulares ser consideravelmente superior aos perfis formados a frio utilizados na estrutura plana, pois estes requerem equipamentos sofisticados para sua produção. Por último, as ligações parafusadas também apresentaram uma quantidade elevada em relação a estrutura plana, resultando em uma diferença significativa entre elas.

CAPÍTULO 5

5.1 CONSIDERAÇÕES FINAIS

Com o comparativo de custos dos materiais dos dois sistemas construtivos de cobertura em estrutura metálica, foi possível atingir os objetivos pontuados no início deste estudo, levantando os materiais e seus respectivos custos. A estrutura espacial tubular com todos os materiais totalizou R\$ 301.502,58 enquanto a estrutura plana treliçada teve um total de R\$ 185.629,26.

A estrutura espacial teve um maior peso, sendo 19% superior a estrutura plana treliçada. Em relação as ligações, a estrutura espacial apresentou um custo 2.958% superior quando comparado á estrutura plana. Com base nas ligações de elementos através de solda, a estrutura treliçada teve um custo 900% maior quando comparado com a estrutura espacial tubular. Com relação ao custo total dos materiais necessários para execução de cada sistema construtivo abordado, a estrutura metálica espacial tubular teve um custo 61% superior ao da estrutura metálica treliçada plana.

Junto ao desenvolvimento desse estudo foi possível concluir, portanto, que o sistema estrutural espacial com barras tubulares é uma solução relevante para coberturas com grandes vãos livres, porém, acaba sendo mais cara que a estrutura em treliças planas.

CAPÍTULO 6

6.1 SUGESTÕES PARA TRABALHOS FUTUROS

Com o desenvolvimento do presente estudo, algumas sugestões reflexivas foram desenvolvidas, visando a produção de trabalhos futuros:

- Realizar a verificação do dimensionamento em relação a NBR 8800/2008 dos dois sistemas estruturais apontados no trabalho;
- Analisar o processo de execução dos sistemas estruturais e apontar vantagens e desvantagens;
- Levantar os custos totais dos sistemas, incluindo os da execução e montagem.

REFERÊNCIAS

BELLEI, I. H. **Edifícios industriais em aço** – 2. ed. – São Paulo: Pini, 1998.

CHIAVERINI V. **Tecnologia Mecânica** – 2. ed. – São Paulo: McGraw-Hill, 1986.

FERRAZ H. **O Aço na Construção Civil**, São Carlos. Dissertação (Graduação) – Escola de Engenharia de São Carlos, Universidade de São Paulo, 2005.

INABA R. Construções Metálicas: O uso do Aço na Construção Civil. Rio de Janeiro. Revista Arquitetura & Aço, 2012.

ZANELLA, L. L. Análise de execução de projeto de estrutura metálica espacial tubular na cidade de Mundo Novo – MS: um estudo de caso. Cascavel, 2016. – Centro Universitário Assis Gurgacz.

MACHADO L. P.; ARRIVABENE L. F.; SOBRINHO V. P. F. M. **Siderurgia para não siderurgistas**. Vitória, 2003. - Centro Federal de Educação Tecnológica do Espírito Santo.

NAKAZOTO B. **Breve histórico da construção em aço no Brasil**. São Paulo. Revista Téchne, 2008.

PFEIL W.; PFEIL M. Estruturas de Aço: Dimensionamento prático de acordo com a NBR 8800/2008 - 8. ed. - Rio de Janeiro: LTC, 2009.

PINHEIRO A.C.F.B. Estruturas metálicas: cálculos, detalhes, exercícios e projetos. São Paulo: Blucher, 2005.

SCHEID A. **Curso básico de aços.** Curitiba, 2010. – Departamento de Engenharia Mecânica, Universidade Federal do Paraná

SOUZA, A.N.; MALITE, M. Análise do projeto de estruturas metálicas espaciais: ênfase em coberturas. São Carlos, 2002. Dissertação (Mestrado) - Escola de Engenharia de São Carlos, Universidade de São Paulo.

SOUZA A.S.C.; GOLÇALVEZ R. M. **Análise teórica e experimental de treliças espaciais**, 2003. Tese (Doutorado) - Escola de Engenharia de São Carlos, Universidade de São Paulo.

SOUZA A.S.C.; GOLÇALVEZ R. M. Contribuição ao estudo das estruturas metálicas espaciais. São Carlos, 2002. Dissertação (Mestrado) — Escola de Engenharia de São Carlos, Universidade de São Paulo.

SILVA, D.M.; SOUTO, A.K. **Estruturas: uma abordagem arquitetônica**. Porto Alegre: UniRitter Ed., 2015.

ANEXO A – PROJETO ESTRUTURA ESPACIAL TUBULAR

ANEXO B – PROJETO ESTRUTURA TRELIÇADA