CENTRO UNIVERSITÁRIO ASSIS GURGACZ MATHEUS RAMOS SANTOS

ANÁLISE DE SOLO PARA SUPORTE DE PAVIMENTO RÍGIDO DO TRECHO DE DUPLICAÇÃO DA BR-163 DO KM 172,40 AO KM 182,40 ENTRE SANTA MARIA E VILA GOES

CENTRO UNIVERSITÁRIO ASSIS GURGACZ MATHEUS RAMOS SANTOS

ANÁLISE DE SOLO PARA SUPORTE DE PAVIMENTO RÍGIDO DO TRECHO DE DUPLICAÇÃO DA BR-163 DO KM 172,40 AO KM 182,40 ENTRE SANTA MARIA E VILA GOES

Trabalho apresentado na disciplina de Trabalho de Conclusão de Curso II, do Curso de Engenharia Civil, do Centro Universitário FAG, como requisito parcial para obtenção do título de Bacharel em Engenharia Civil.

Professor Orientador: Engenheiro Civil Especialista Lincoln Salgado

DEDICATÓRIA Dedico este trabalho à minha família e aos meus amigos que compartilharam da minha caminhada, em tempos bons e em tempo difíceis.

AGRADECIMENTOS

Primeiramente agradeço ao meu pai Josemar, minha mãe Marli e meus irmãos Diogo e Tiago (em memória), que sempre me apoiaram tanto financeiramente quanto psicologicamente, e me incentivaram para conquistar este momento.

Agradeço a vida que levo, abençoado por Deus.

Aos meus amigos de infância que também vivenciaram tudo junto comigo: Lucas e Luciane.

Aos meus amigos que a faculdade me proporcionou e levarei para a vida toda. Amigos que me apoiaram em momentos difíceis e estavam sempre presentes.

A meu professor orientador Lincoln, por nortear o caminho correto para finalizar este trabalho com maestria e aos seus ensinamentos notáveis.

A todos os professores que passaram em minha vida acadêmica e contribuíram para o profissional que me tornei.

Ao Centro Universitário Assis Gurgacz, por me fornecer uma estrutura exemplar de ensino.

Agradeço ao Laboratorista Anderson, por me supervisionar em todos os ensaios realizados e apresentados nesse trabalho.

Um agradecimento especial aos engenheiros: Clair, Chirley, Elves, Iziquia, por estarem sempre à disposição para minhas constantes dúvidas, contribuindo significativamente para meu desenvolvimento profissional.

Agradeço também a empresa Prosul, por me proporcionar a oportunidade de obter conhecimento sobre a duplicação da BR – 163, Cascavel à Marmelândia.

EPÍGRAFE "Muitos querem aquilo que você tem, mas vão desistir quando souberem o preço que você pagou." (Autor desconhecido).

RESUMO

Objetivando efetivar uma abordagem sobre solos, mais especificamente no trecho de duplicação da BR-163 do km 172,40 ao km 182,40 entre Santa Maria, distrito de Santa Tereza do Oeste e Vila Goes, onde está sendo executada uma obra de pavimentação em pavimento rígido, foi efetuada uma análise do suporte de solo necessário para fundação do mesmo. Ao analisar o solo local, através de ensaios em laboratório para estudo da capacidade de suporte e suas características para projeto, verificou-se que os materiais e métodos executivos utilizados foram adequados, conforme normas de desempenho mínimo e manuais de execução de pavimento rígido; e comparando-se resultados obtidos com o projeto executivo. Esta abordagem foi embasada em: Manual de Pavimento Rígido do DNIT, Manual de Projetos do DNIT, Manual de Pavimentação do DNIT e outras normativas do DNIT, DNER, DER, PCA e ABCP em relação a método de ensaios, especificações de serviços e especificações técnicas. Após realizados os ensaios e analisados os resultados, verificou-se que é um solo de argila siltosa avermelhada, laterítica, derivada do processo de intemperismo físico e químico da rocha basáltica. Verificou-se que o valor médio encontrado de CBR do solo é de 12,26%, sendo que o projeto executivo considera 10% e sugere uma solução de troca de material do solo por uma camada de macadame seco no subleito com CBR de 15,5%. Assim, o solo possui uma boa capacidade de suporte de tensões para o pavimento rígido, mas em comparação com o projeto precisaria de uma maior espessura da pista de concreto devido ao projeto substituir o solo na camada de subleito por macadame seco, que apresenta um valor maior de CBR, influenciando em uma menor espessura de pavimento. O que não é necessariamente positivo no sentido financeiro, cabendo para esta afirmação estudo mais aprofundado.

Palavras-chave: Pavimentação. Classificação de Solo. Ensaios. Pavimento Rígido.

LISTA DE FIGURAS

Figura 1- Decomposição de rochas.	18
Figura 2 – Perfil resultante da decomposição das rochas.	18
Figura 3 - As bases sucessivas da construção de rodovias em baixadas	19
Figura 4 - Talude de aterro.	23
Figura 5 - Faixa granulométrica.	26
Figura 6 - Granulometria do material.	27
Figura 7 - Faixa granulométrica do material de enchimento	29
Figura 8 - Faixa granulométrica do material de enchimento	31
Figura 9 - Valores de K (N) em função do número de golpes	37
Figura 10 - Leituras obtidas no extensômetro do anel em função da penetração do pi	stão no
solo e do tempo	40
Figura 11 - Tabela para cálculo de expansão.	41
Figura 12 - Cálculo do Índice de Suporte Califórnia (ISC)	42
Figura 13 - Classificação de solos pela Tabela HRB.	46
Figura 14 - Classificação de solos pela Tabela HRB.	47
Figura 15 - Classificação de solos pela Tabela HRB.	48
Figura 16 - Classificação de solos pela Tabela HRB.	49
Figura 17 - Identificação da derivação do solo	49
Figura 18 - Coeficiente de recalque máximo	53
Figura 19 - Valor correspondente de K em relação a CBR.	53
Figura 20 - Coeficiente K para presença de sub-base de CCR	54
Figura 21 - Valor correspondente de K em relação a CBR	55
Figura 22 - Coeficiente K para presenca de sub-base de CCR	55

LISTA DE TABELAS

Tabela 1 - Ensaio Granulométrico	45
Tabela 2 - Limites Físicos	47
Tabela 3 - Ensaio Proctor	51
Tabela 4 - Ensaio de CBR	51
Tabela 5 - Ensaio de Expansão	52

LISTA DE EQUAÇÕES

Equação 1: Determinação do teor de umidade	35
Equação 2: Determinação do teor de umidade	36
Equação 3: Determinação do Limite de Liquidez	37
Equação 4: Determinação do Limite de Liquidez	37
Equação 5: Determinação da massa específica.	40
Equação 6: Determinação da massa específica	40
Equação 7: Determinação do teor da umidade do solo compactado	40
Equação 8: Determinação da expansão.	41
Equação 9: Determinação do Índice de Suporte Califórnia	42
Equação 10 - Classificação entre solos A-7-5 ou A-7-6.	48

LISTA DE ABREVIATURAS E SIGLAS

DNIT – Departamento Nacional de Infraestrutura de Transportes

DER – Departamento de Estradas de Rodagem

DNER - Departamento Nacional de Estradas de Rodagem

ABNT - Associação Brasileira de Normas Técnicas

NBR – Normativa Brasileira

ABCP - Associação Brasileira de Cimento Portland

CCR - Concreto Compactado ao Rolo

ME - Método de Ensaio

ES – Especificação de Serviço

EM – Especificação de Material

ISC - Índice de Suporte Califórnia

BGTC - Brita Graduada Tratada com Cimento

AASHTO - American Association of State Highway Officials

HRB - Highway Research Bord

FATEC - Faculdade de Tecnologia de Pavimentação

PCA - Portland Cement Association

SUMÁRIO

CAPÍTULO 1	14
1.1 INTRODUÇÃO	14
1.2 OBJETIVOS	15
1.2.1 Objetivo geral	15
1.2.2 Objetivos específicos	15
1.3 JUSTIFICATIVA	15
1.4 FORMULAÇÃO DO PROBLEMA	16
1.5 FORMULAÇÃO DA HIPÓTESE	16
1.6 DELIMITAÇÃO DA PESQUISA	16
CAPÍTULO 2	17
2.1 REVISÃO BIBLIOGRÁFICA	17
2.1.1 Origem dos solos	17
2.1.2 Solo residual	17
2.1.3 Solos orgânicos	18
2.1.4 Classificação de materiais e solos	19
2.1.5 Compactação	20
2.1.6 Aterro	21
2.1.6.1 Critério de compactação	21
2.1.7 Corte	22
2.1.8 Talude	22
2.1.9 Compensação de corte e aterro	23
2.1.10 Regularização de subleito	23
2.1.10.1 Classificação de qualidade mínima de material	24
2.1.10.2 Critério de tratamento de solo local	24
2.1.11 Sub-base	24
2.1.11.1 Classificação de qualidade mínima de material	25
2.1.11.2 Critério de tratamento de solo local	25
2.1.12 Britagem	25
2.1.13 Brita graduada tratada com cimento (BGTC)	25
2.1.13.1 Composição granulométrica	26
2.1.13.2 Adição de cimento	26
2.1.14 Base	27
2.1.14.1 Classificação de qualidade mínima de material	28
2.1.15 Pavimento rígido	28
2.1.15.1 Definicões granulométricas	28

APÊNDICE B – ENSAIOS: CBR, COMPACTAÇÃO, DETERMINAÇÃO DE UMIDADE E EXPANSÃO	68
APÊNDICE A – LIMITES FÍSICOS	
REFERÊNCIAS	
6.1 SUGESTÕES PARA TRABALHOS FUTUROS	
5.1 CONSIDERAÇÕES FINAIS	
CAPÍTULO 5	
4.3 RESULTADOS DA COMPARAÇÃO	
4.2.2 Dimensionamento de projeto da empreiteira	
pelo autor	52
4.2.1 Dimensionamento de espessura de pavimento rígido seguindo os ensaios encontra	
4.1.4 Expansão do Solo	
4.1.3 Índice de Suporte Califórnia (ISC)	
4.1.1 Classificação do Solo	
4.1 1 Classificação do Solo	
CAPÍTULO 4	
3.1.3 ABCP (Associação Brasileira de Cimento Portland)	
3.1.2.7 Análise dos métodos empregados para correção	
3.1.2.6 Classificação dos solos	
3.1.2.5 Ensaio de Índice Suporte Califórnia	
3.1.2.4 Ensaio de Limite de Liquidez	
3.1.2.3 Ensaio de Limite de Plasticidade	
3.1.2.2 Propriedades do solo local	
3.1.2.1 Solo local	
3.1.2 Métodos	
3.1.1.1 Propriedades inerentes do solo para fundação do pavimento rígido	
3.1.1 Materiais	33
3.1 METODOLOGIA	
CAPÍTULO 3	
2.1.19 Método PCA 84 (Portland Cement Association)	
2.1.18.1 Definições granulométricas	31
2.1.18 Macadame seco	30
2.1.17 Tabela HRB (Highway Research Bord) - AASHTO	30
2.1.16 Serviços preliminares	29

APÊNDICE C – GRÁFICOS DE PENETRAÇÃO	73
APÊNDICE D -GRÁFICOS DE COMPACTAÇÃO, EXPANSÃO E I.S.C	78

CAPÍTULO 1

1.1 INTRODUÇÃO

Segundo o Manual de Pavimento Rígido, o pavimento é uma estrutura construída e destinada, econômica e simultaneamente, a resistir e distribuir ao subleito os esforços verticais produzidos pelo tráfego; melhorar as condições de rolamento quanto à comodidade e segurança e resistir aos esforços horizontais que nela atuam, tornando a superfície do rolamento mais durável.

Para o pavimento rígido, a sua fundação deve apresentar uma capacidade de suporte mínima conforme Manual de Pavimento Rígido, então será analisado o solo local, através de ensaios de laboratório, ensaios "*in loco*" e sondagens do terreno, para classificação do solo e identificação de suas propriedades, e assim feita a análise final de suporte do solo.

Os pavimentos rígidos são constituídos por camadas que trabalham essencialmente à tração. Seu dimensionamento é baseado nas propriedades resistentes de placas de concreto de Cimento Portland, as quais são apoiadas em uma camada de transição, denominada sub-base. Pavimentos flexíveis são aqueles compostos por camadas que não trabalham à tração. Normalmente são constituídos de revestimento asfáltico delgado sobre camadas puramente granulares nas quais existem sistemas de camadas superpostas, as quais as de melhor qualidade encontram-se mais próximas da carga aplicada (Manual do Pavimento Rígido, 2005).

A fundação do pavimento rígido será constituída pelas camadas de subleito, sub-base e a base e revestimento unificados. O que difere do pavimento flexível é a grande área de distribuição de carga por sua extensão e a baixa pressão na fundação do pavimento.

O terreno de fundação onde será apoiado o pavimento deve ser submetido a estudos até as profundidades em que atuam significativamente as cargas impostas pelo tráfego. Uma análise do solo local foi elaborada para fundação das placas de pavimento rígido, por meio de ensaios de laboratório (CBR) para o subleito e sub-base, para assim determinar se o solo local poderá ser utilizado como material para fundação ou será necessário tratamento ou substituição do solo.

1.2 OBJETIVOS

1.2.1 Objetivo geral

Analisar o solo local onde foi executada a estrutura do Pavimento Rígido no trecho da BR-163, km 172,40 ao km 182.40, localizados entre o Distrito de Santa Maria e Vila Goes, no município de Santa Tereza do Oeste – PR.

1.2.2 Objetivos específicos

- Analisar o solo local através de ensaios em laboratório e in loco para estudo da capacidade de suporte e suas características para projeto;
- Verificar se os materiais e métodos executivos utilizados foram adequados para o solo, conforme normas de desempenho mínimo e manuais de execução de pavimento rígido;
- Comparar resultados obtidos com projeto.

1.3 JUSTIFICATIVA

O pavimento rígido consiste em concreto usinado podendo ser armado, usado na pista de rolamento e sua vida útil mínima é de vinte anos de operação, com baixo nível de manutenção.

O pavimento flexível é a alternativa mais comum de estrutura de pavimento para a região. Possui uma metodologia de tratamento de solo para fundação similar ao do pavimento rígido, mas alguns critérios diferenciados devem ser levados em consideração em seu dimensionamento e execução, e o tratamento nas camadas de compactação.

O estudo da fundação adequada é extremamente importante para que tudo ocorra como foi solicitado. O concreto em si é extremamente resistente e durável, mas se a fundação não estiver conforme as solicitações para dar suporte à capa de rolamento, sua vida útil será

reduzida, aumentando assim a necessidade de manutenção e possivelmente inviabilizando a obra em pavimento rígido.

1.4 FORMULAÇÃO DO PROBLEMA

O solo local, embasado em normativas e manuais de pavimentação, está adequado para solicitações de suporte para pavimento rígido?

1.5 FORMULAÇÃO DA HIPÓTESE

O maior causador de patologias e redução de vida útil do pavimento rígido é o tratamento irregular do solo, podendo causar movimentação do solo ou recalque, que irá influenciar diretamente na capa de rolamento em concreto usinado. Uma fundação na qual as solicitações de desempenho mínimas não estão conforme o Manual de Pavimento Rígido e as normativas, não irão cumprir com sua vida útil mínima, aumentando assim sua necessidade de manutenções.

1.6 DELIMITAÇÃO DA PESQUISA

A pesquisa será limitada na análise do solo do local, indicando se o referido foi executado conforme as normas de qualidade e desempenho e os padrões do Manual de Pavimento Rígido.

Serão executados ensaios em laboratório e ensaios "in loco" para identificação de qualidade de material do local.

CAPÍTULO 2

2.1 REVISÃO BIBLIOGRÁFICA

Neste capítulo serão abordados os materiais e métodos executivos que serão descritos conforme normativas e manuais.

2.1.1 Origem dos solos

O solo, do latim *solum*, é o material existente na crosta terrestre, que conforme o Manual de Pavimentação, não é consolidado, originado de rochas, cuja decomposição/processo de intemperismo químico provêm da simples agitação da água em suas partículas sólidas.

Geologicamente, o solo é definido como material intemperizado de rochas, ou seja, considera-se solo todo tipo de material que possa ser escavado sem necessidade de explosivos.

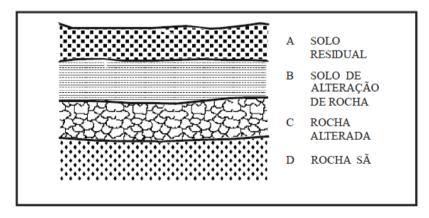
Como o Manual de Pavimentação comenta, os solos possuem dois grandes grupos: solo residual, onde os produtos da rocha intemperizada permanecem ainda no local de sua origem; solo transportado, quando o material intemperizado foi transportado por um agente qualquer, para um local diferente de sua origem.

2.1.2 Solo residual

Segundo Manual de Pavimentação, solo residual é aquele que em sua composição depende do tipo da composição mineralógica da rocha original.

Para o caso da decomposição de basaltos, forma um solo típico conhecido como terra-roxa, de composição argilo-arenosa. Já a decomposição de arenitos ou quartzitos irão formar solos arenosos constituídos de quartzo. Rochas metamórficas do tipo filito, formando um solo de composição argilosa e bastante plástico. Como demonstra a Figura 1.

Figura 1- Decomposição de rochas.


Tipo de rocha	Composição mineral	nposição mineral Tipo de solo	
basalto	plagioclásio piroxênios	argiloso (pouca areia)	argila
quartzito	quartzo	arenoso	quartzo
filitos	micas (sericita)	argiloso	argila

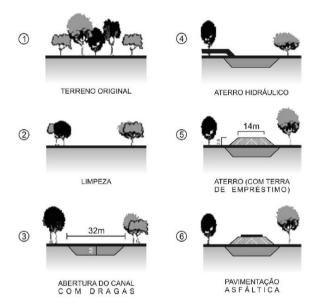
Tipo de rocha	Composição mineral	Tipo de solo	Composição
granito	quartzo feldspato mica	areno-argiloso (micáceo)	quartzo e argila (micáceo)
calcário	calcita		argila

Fonte: Manual de Pavimentação.

O Manual de Pavimentação cita que, o solo residual é um solo que apresenta as características da rocha que lhe deu origem. Já o solo de alteração de rocha, representa alguns elementos da rocha matriz, como estrutura ou minerais não decompostos. A rocha alterada é um mineral que representa características da rocha de origem, preservando parte de sua estrutura, porém um estado de dureza e resistência menor ao que a rocha sã. A rocha sã é a rocha inalterada em sua natureza. Como a Figura 2 demonstra.

Figura 2 – Perfil resultante da decomposição das rochas.

Fonte: Manual de Pavimentação.


2.1.3 Solos orgânicos

Conforme Manual de Pavimentação, solos orgânicos geralmente são originados de áreas topográficas e geograficamente bem caracterizadas: em bacias e depressões

continentais, em baixadas marginais e litorâneas ou baixadas de rios, sendo um solo com resistência baixa e altamente plástico, sendo impróprio para qualquer tipo de fundação.

O tratamento básico para o solo orgânico seria a própria limpeza e remoção do solo em questão, e reposição desse espaço físico com solo não-orgânico ou rochas, para obtenção da resistência necessária de projeto. Como representado na Figura 3.

Figura 3 - As bases sucessivas da construção de rodovias em baixadas.

Fonte: Manual de Pavimentação.

2.1.4 Classificação de materiais e solos

Segundo o Manual de Pavimentação, as frações de classificação de material estão compreendidas nas seguintes espessuras em relação a granulometria:

- Pedregulho: é a fração passando na peneira de 3" e retida na peneira de 2,00 mm;
- Areia: é a fração que passa na peneira 2,00 mm e retida na peneira de 0,075 mm;
- Areia grossa: é a fração passando na peneira 2,00 mm e retida na peneira 0,42 mm;
- Areia fina: é a fração passando na peneira 0,42 mm e retida na peneira 0,075 mm;
- Sitle: fração de grãos que passa na peneira de 0,075 mm e retida na peneira de 0,005
 mm;
- Argila: fração de grãos passando na peneira 0,005 mm e com tamanhos abaixo de 0,001 mm.

O Manual de Pavimentação também comenta que, os solos na natureza representam compostos com mais de uma destas composições citadas acima, contendo uma certa fração de cada tipo de solo ou rocha, dependendo da localização geográfica. O Manual de Pavimentação cita que os tipos de solos possuem as seguintes características comuns:

- Areias e pedregulhos são solos de granulometria grossa, podendo ser compostos de grãos de forma cúbica ou arredondadas, constituídas de quartzo (sílica pura). Seus grãos possuem um comportamento que varia pouco em relação à quantidade de água em sua composição, sendo solos de baixa coesão, dependendo do atrito entre seus grãos para assumir a resistência à deformação;
- Siltes são os solos intermediários, têm uma tendência para o comportamento arenoso ou para o argiloso, dependendo da distribuição granulométrica e da composição mineralógica de seus grãos;
- Argilas tem por classificação de granulação fina com grãos de formas lamelares, alongadas e tubulares, cuja constituição principal é de minerais argílicos: caulinita, ilita e montmorilonita, isto é, silicatos hidratados de alumínio e/ou ferro e magnésio, que formam arcabouços cristalinos constituídos de unidades fundamentais. Devido a composição fina e mineralógica, o comportamento da argila é delicado conforme a quantidade de água envolvendo os grãos, onde a quantidade de água define características marcantes de plasticidade, permitindo a moldagem dessa massa de argila sem alteração de volume. Quando se tem menor umidade na composição da argila, maior sua coesão;
- Solo laterítico é um solo que comumente forma-se de crostas contínuas, como concreções pisolíticas isoladas, ou na textura de solos finos, pouco ou nada ativos. As cores podem variar de vermelho a amarelo;
- Saibro é composto por um solo areno-siltoso; pode conter pedregulhos, provenientes de alteração de rochas graníticas ou gnáissicas.

2.1.5 Compactação

Conforme a normativa DNIT 108/2009 – ES, a compactação é classificada como uma operação por processo manual ou mecânico, destinada a reduzir o volume dos vazios de

um solo ou outro material, com a finalidade de aumentar a resistência e estabilidade do solo local.

2.1.6 Aterro

Segundo a normativa do DNIT 108/2009 - ES, aterros são os segmentos de rodovia cuja implantação requer depósito de materiais provenientes de cortes e/ou de empréstimos, que são devidamente compactados de acordo com projeto para sua finalidade préestabelecida.

2.1.6.1 Critério de compactação

De acordo com a normativa DNIT 108/2009 – ES - Aterros, o lançamento do material do aterro deve ser executado em camadas sucessivas em toda a sua seção transversal e nas extensões longitudinais, permitindo o umedecimento e a compactação. Para o corpo de aterro, a espessura das camadas não deve exceder 30cm e em camadas finais não deve ultrapassar 20cm.

Para o corpo de aterro deve-se trabalhar com a umidade ótima de aproximadamente 3%, até se obter a massa específica aparente seca, correspondente a 100% da massa específica aparente máxima seca, como diz a normativa DNER - ME 129/94, Método A.

Em camadas finais de aterro, a massa específica aparente seca deve corresponder a 100% da massa específica aparente máxima seca, na normativa DNER - ME 129/94, Método B.

Para qualquer trecho que não se adequar às condições impostas da norma, devem ser escarificados e homogeneizados para levá-los à umidade ótima, assim podendo ser compactado.

2.1.7 Corte

A normativa DNIT 106/2009 - ES diz que os segmentos de rodovia, na qual a implantação requer a remoção e movimentação do terreno primitivo, ao longo de seu eixo e nos limites das seções de projeto, podem ser dos seguintes tipos:

- Corte a céu aberto é a escavação na superfície do solo;
- Corte à meia encosta é a escavação para o seguimento do traçado de uma rodovia,
 que atinge parcialmente sua seção transversal;
- Corte em caixão seria a escavação de taludes com sua inclinação parcialmente na vertical.

Categorias de corte:

- Primeira categoria: solos em geral residuais ou sedimentares, com diâmetro máximo de 0,15 m, independentemente de sua umidade;
- Segunda categoria: são solos que apresentam resistência ao desmonte mecânico inferior ao da rocha sã, cuja a extração obriga a utilização de equipamentos pesados, e eventualmente pode envolver o uso de explosivos ou remoção por processo manual. Estão incluídos nesta categoria blocos de até 2m³ e os matacões ou rochas com diâmetro compreendido em 0,15 m a 1,00m;
- Terceira categoria: são os materiais com resistência ao desmanche equivalentes ao da rocha sã, com blocos de 2 cm³ ou superiores, com diâmetros correspondentes superiores a 1,00 m, para possibilitar o carregamento e transporte, tendo a utilização constante de explosivos.

2.1.8 Talude

Superfície inclinada em relação ao terreno primitivo, para escavação de corte ou aterro, segue em Figura 4.

Coroamento ou crista

Corpo do aterro

Angulo de inclinação

Talude

Pé

Terreno de fundação

Talude de aterro

Altura do corte

Angulo de inclinação

Pé inclinação

Figura 4 - Talude de aterro.

Fonte: DNIT 106/2009 - ES.

Para o talude escalonado se executam banquetas com intenção da diminuição da velocidade de águas pluviais, aumentando a drenagem e estabilizando o talude (DNIT 106/2009 – ES).

2.1.9 Compensação de corte e aterro

Igualar a quantidade de corte considerando o coeficiente de compactação de cada solo, para determinar a quantidade de solo que será utilizado para aterro do local préestabelecido, diminuindo ao máximo a necessidade do empréstimo de solos (DNIT 106/2009 – ES).

2.1.10 Regularização de subleito

De acordo com a normativa DNIT 137/2010 – ES, as operações de compactação mecânica das camadas finais de aterro do local onde estará o traçado de rodovia, devem obedecer às larguras e cotas do projeto, compreendendo às espessuras máximas de 20 cm para compactação e estabilização.

Caso haja espessuras superiores a 20 cm, devem ser executados previamente conforme especificações da normativa DNIT 105/2009 - ES, DNIT 107/2009 - ES e DNIT 108/2009 - ES.

É expressamente proibida a execução de serviços em dias de chuva.

2.1.10.1 Classificação de qualidade mínima de material

O ensaio de *Índice de Suporte Califórnia* descrito na normativa do DNIT 172/2016 - ME e ensaio de compactação, segundo normativa DNER - ME 129/94, demonstra a capacidade de suporte e expansão referente a amostra de solo local, sendo classificado como solo orgânico, no caso de um valor de CBR < 2%, e podendo ser utilizado como sub-base para CBR > 20%.

2.1.10.2 Critério de tratamento de solo local

Seguindo as especificações da normativa DNIT 137/2010 – ES, toda a vegetação e materiais orgânicos existentes no leito da rodovia devem ser removidos.

Após a execução dos serviços iniciais de terraplenagem, deve-se adicionar o material necessário para chegar a cota do greide de projeto, procedendo com a escarificação na profundidade de 20cm, pulverizando, umedecendo ou secando o material para enfim compactá-lo e dar o seu devido acabamento.

2.1.11 Sub-base

Segundo a normativa DNIT - ES 139/2010, a pavimentação de sub-base estabilizada granulometricamente, é uma camada de pavimentação complementar à base e com a mesma função estrutural, executada sobre o subleito ou reforço do subleito, devidamente compactado e regularizado.

Não devem ser executados serviços em dias de chuva.

2.1.11.1 Classificação de qualidade mínima de material

O ensaio de *Índice de Suporte Califórnia* descrito na normativa do DNIT 172/2016 - ME e ensaio de compactação segundo normativa DNER - ME 129/94, demonstra a capacidade de suporte e expansão referente à amostra de solo local. Deve-se obter os valores de CBR > 20% e expansão < 1%.

2.1.11.2 Critério de tratamento de solo local

Para a normativa DNIT - ES 139/2010, a execução da sub-base compreende as operações em conjunto de mistura e pulverização, umedecimento ou secagem dos materiais em centrais de mistura ou na pista; seguidas de espalhamento, compactação e acabamento, na largura e extensão da pista. O material deve ser distribuído e homogeneizado até atingir a cota de projeto desejada.

2.1.12 Britagem

É o processo de reduzir os pedaços de uma rocha por esmagamento ou rotação para se obter uma rocha no diâmetro desejado.

2.1.13 Brita graduada tratada com cimento (BGTC)

Segundo a normativa DER ET - DE - P00/009, a brita graduada tratada com cimento é o produto resultante da mistura em uma usina das pedras britadas, água e Cimento Portland, e eventualmente aditivos. Seu uso mais comum é em camadas de sub-base ou base, tendo como sua principal característica a estabilização das camadas finais de compactação para maior resistência em pistas de rolamento.

2.1.13.1 Composição granulométrica

Os agregados da mistura devem ser duros, limpos e duráveis, livres de excessos de partículas lamelares ou alongadas, ou de fácil desintegração. Devem seguir os mínimos dos seguintes ensaios:

- Desgaste inferior de 50% no ensaio de abrasão Los Angeles, conforme normativa DNER - ME 035/98:
- Equivalente de areia do agregado miúdo superior a 55%, definido na normativa
 DNER ME 054/97;
- Índice de forma superior a 0,5 e porcentagem de partículas lamelares inferior a 10%, segundo normativa DNER - ME 086/94;
- Ensaio de durabilidade conforme DNER ME 089/94.
 Segue na Figura 5 a faixa granulométrica imposta pela normativa DER ET DE P00/009.

Figura 5 - Faixa granulométrica.

Peneira de Malha Quadrada		% em Massa,	Tolerâncias
ASTM	mm	Passando	Tolerancias
1 ½"	37,5	100	± 7%
1"	25,0	90 – 100	± 7%
3/4"	19,0	75 – 95	± 7%
3/8"	9,5	45 – 64	± 7%
Nº 4	4,8	30 – 45	± 5%
Nº 10	2,0	18 – 33	± 5%
Nº 40	0,42	7 – 17	± 5%
Nº 80	0,18	1 – 11	± 3%
Nº 200	0,075	0 – 8	± 2%
Espessura da camada acabada (cm)		12 a 18	

Fonte: Normativa DER ET - DE - P00/009.

2.1.13.2 Adição de cimento

O cimento empregado deve seguir as especificações mínimas da normativa DNER - EM 036/95, devendo ser incorporado aos agregados para constituição da mistura, sendo

fixado de modo a atender os valores de compressão simples e a tração por corpo de prova diametral.

2.1.14 Base

Conforme normativa DNIT - ES 141/2010, uma camada estabilizada granulometricamente da pavimentação, destina-se a resistir aos esforços verticais causados pelo fluxo de veículos, distribuindo-os adequadamente à camada subjacente, executada sobre a sub-base, subleito ou reforço do subleito devidamente regularizado.

Os materiais constituintes são solos, misturas e materiais britados, devendo por ensaios de caracterização de agregados serem classificados de acordo com a Figura 6.

Figura 6 - Granulometria do material.

Tipos	Para N > 5 X 10 ⁶			Para N		Tolerâncias	
Peneiras	Α	В	С	D	E	F	da faixa
		9	6 em pes	o passando			de projeto
2"	100	100	-	-	-	-	± 7
1"	•	75-90	100	100	100	100	± 7
3/8*	30-65	40-75	50-85	60-100	-	-	± 7
N° 4	25-55	30-60	35-65	50-85	55-100	10- 100	± 5
N° 10	15-40	20-45	25-50	40-70	40-100	55- 100	± 5
N° 40	8-20	15-30	15-30	25-45	20-50	30- 70	± 2
N° 200	2-8	5-15	5-15	10-25	6-20	8-25	± 2

Fonte DNIT - ES 141/2010.

A fração que passa na peneira de malha 40 deve apresentar Limite de Liquidez inferior ou igual a 25%, e Índice de Plasticidade inferior a 6%. Caso esses itens sejam ultrapassados, o equivalente de areia deve ser maior que 30%.

A porcentagem do material que passa na peneira de malha 200 não deve ultrapassar 2/3 da porcentagem que passa na peneira malha 40.

2.1.14.1 Classificação de qualidade mínima de material

O Índice de Suporte Califórnia deverá, de acordo com normativa DNER - ME 049/94 e DNER - ME 129/94, obter um valor de ISC > 60% para o número N < $5x10^6$, ISC > 80% para o número N > $5x10^6$ e a expansão < 0.5%.

2.1.15 Pavimento rígido

Conforme Manual de Pavimento Rígido, é uma camada de rolamento de alta resistência e durabilidade que funciona como distribuidor dos esforços, diminuindo assim a tensão pontual imposta à fundação.

2.1.15.1 Definições granulométricas

De acordo com o Manual de Pavimento Rígido, todo o ensaio do agregado graúdo deve ser constituído por pedra britada tipo rachão, produto final da britagem primária, fragmentos duros e duráveis, livres de excessos de partículas lamelares, alongadas ou quebradiças, matéria orgânica e quaisquer substâncias prejudiciais para sua integridade e resistência, seguindo os seguintes requisitos:

• O diâmetro do agregado deve estar compreendido entre 1/2 e 2/3 da espessura final da camada compactada, podendo ter em sua composição até 10% de agregado situado entre 4" e 6", conforme Figura 7.

Figura 7 - Faixa granulométrica do material de enchimento.

Peneira de Malha Quadrada		% em Massa, Passando
ASTM	mm	I
6"	152,4	100
4"	101,6	90 – 100
3"	76,2	65 – 80
2"	50,8	15 – 55
1"	25,4	5 – 30
1/2"	12,7	2 – 18
nº 4	4,8	0 - 15

Fonte: DER ET-DE-P00/011.

O material para enchimento e camada de isolamento, deve constituir-se por britagem com 50%, com granulometria compreendida entre a peneira 3/4 e 3/8 e 50% passando na peneira 3/8, para permitir o travamento da camada de pedra rachão evitando a penetração do material na camada do subleito, seguindo os mínimos de norma citados a seguir:

- A perda no ensaio de durabilidade conforme DNER ME 089/94, em cinco ciclos, com solução de sulfato de sódio, deve ser inferior a 20% e com sulfato de magnésio inferior a 30%;
- Equivalente de areia do agregado miúdo superior a 55%, definido na normativa
 DNER ME 054/97;
- A fração que passa na peneira de malha 40, deve apresentar Limite de Liquidez, conforme normativa DNER - ME 122/94, igual ou inferior a 25% e Índice de Plasticidade inferior ou igual a 6%, segundo normativa DNER-ME 082/94.

2.1.16 Serviços preliminares

A normativa DNER-ES 278/97, comenta que para os serviços preliminares de terraplenagem, todas as operações de preparação das áreas destinadas à implantação da pavimentação, como áreas de empréstimos e ocorrências de material, deve-se remover o material vegetal e outros que sejam considerados como elementos de obstrução.

2.1.17 Tabela HRB (Highway Research Bord) - AASHTO

Conforme a FATEC (Faculdade de Tecnologia de Pavimentação), a classificação de solos que foi originada na data de 1929 pela AASHTO (*American Association of State Highway Officials*), é um sistema de classificação dos solos baseado nos limites físicos e na granulometria do material.

Existem nessa tabela 7 (sete) classes e 11 (onze) grupos como representado a seguir:

- A 1: A 1 a e A 1 b;
- A 2: A 2 4, A -2 5, A -2 6 e A -2 7;
- A 3;
- A 4;
- A 5;
- A 6:
- A 7: A 7 5 e A 7 6.

As classes A - 1, A - 2 e A - 3, são classificações de solos de granulometria mais graúda, apresentando um máximo de 35% de material retido na peneira de malha 200.

Para as classes A-1 e A3, o Índice de Plasticidade é limitado em 6%, o que caracteriza materiais com predominância de não plástico (pedra britada, pedregulho e areias).

Os grupos A-2-4 e A-2-5 o Índice de Plasticidade é limitado em 10%, nos grupos A-2-6 e A-2-7, especifica um mínimo de 11% no Índice de Plasticidade. Na classe A- 2, considera-se o Limite de Liquidez (areias e areias argilosas ou siltosas).

Para as classes A-4, A-5, A-6 e A-7, determina-se no mínimo 35% de material passado na peneira de malha 200 e considera-se, tanto o Índice de Plasticidade, como o Limite de Liquidez (solos finos argilas e siltes).

2.1.18 Macadame seco

A normativa do DER ET-DE-P00/011 por definição, comenta que a sub-base ou base de macadame seco é constituída por agregados graúdos, podendo ser naturais ou britados. Seus vazios são preenchidos a seco por agregados miúdos, geralmente pó de pedra, cuja estabilização é obtida pela ação da energia de compactação. A camada de bloqueio ou isolamento é a parte inferior da camada de macadame seco, limitada a espessura de 4cm após a compactação. São constituídos por finos da britagem, aplicados nos casos que a camada

subjacente ao macadame seco é constituída por solos com mais de 35%, passando na peneira 200, evitando então que o agregado graúdo do macadame seco desça para a camada inferior, devido à compactação.

2.1.18.1 Definições granulométricas

De acordo com o Manual de Pavimento Rígido, todo ensaio do agregado graúdo deve ser constituído por pedra britada tipo rachão, produto final da britagem primária, fragmentos duros e duráveis, livres de excessos de partículas lamelares, alongadas ou quebradiças, matéria orgânica e quaisquer substâncias prejudiciais para sua integridade e resistência, seguindo os seguintes requisitos:

• O diâmetro do agregado deve estar compreendido entre 1/2 e 2/3 da espessura final da camada compactada, podendo ter em sua composição até 10% de agregado situado entre 4" e 6", conforme Figura 8.

Figura 8 - Faixa granulométrica do material de enchimento.

Peneira de Malha Quadrada		% em Massa, Passando
ASTM	mm	1
6"	152,4	100
4"	101,6	90 – 100
3"	76,2	65 – 80
2"	50,8	15 – 55
1"	25,4	5 – 30
1/2"	12,7	2 – 18
nº 4	4,8	0 - 15

Fonte: DER ET-DE-P00/011.

O material para enchimento e camada de isolamento, deve constituir-se por britagem com 50%, com granulometria compreendida entre a peneira 3/4 e 3/8 e 50% passando na peneira 3/8, para permitir o travamento da camada de pedra rachão evitando a penetração do material na camada do subleito, seguindo os mínimos de norma citados a seguir.

- A perda no ensaio de durabilidade conforme DNER ME 089/94, em cinco ciclos, com solução de sulfato de sódio, deve ser inferior a 20% e com sulfato de magnésio inferior a 30%;
- Equivalente de areia do agregado miúdo superior a 55%, definido na normativa
 DNER ME 054/97;
- A fração que passa na peneira de malha 40 deve apresentar Limite de Liquidez, conforme normativa DNER - ME 122/94, igual ou inferior a 25% e Índice de Plasticidade inferior ou igual a 6%, segundo normativa DNER-ME 082/94.

2.1.19 Método PCA 84 (Portland Cement Association)

É um método de dimensionamento do pavimento rígido em função dos valores obtidos de CBR do subleito, o número de repetições previstas e cargas por eixo.

O Método da PCA/84 baseia-se em quatro pontos, descritos abaixo:

- Estudos teóricos clássicos sobre o comportamento de placas de concreto (Teorias de Westergaard e Pickett) e modernas análises de computador empregando elementos finitos, de acordo com Tayabji e Colley;
- Ensaios de laboratórios e de modelos sobre o comportamento de juntas, sub-bases e acostamentos e sua influência no desempenho do pavimento;
- Pistas experimentais, especialmente a da então AASHO, hoje denominada de ASSHTO, e estudos específicos levados a efeito por diversos órgãos rodoviários e aeroportuários; e
- Observação metódica de pavimentos em serviço.

A conexão entre essas informações teóricas, de pesquisa e práticas, necessárias para a concepção de um procedimento de dimensionamento (em contraposição aos métodos empíricos), no qual se integram os distintos parâmetros, é resolvida por uma análise completa das tensões e deformações em um modelo que emprega elementos finitos. Em linhas gerais, o modelo trabalha com as propriedades do concreto, o tipo de fundação e os carregamentos solicitantes.

CAPÍTULO 3

3.1 METODOLOGIA

3.1.1 Materiais

Conforme Embrapa Florestas, o material de solo local, de características Latossolo, foi o objeto de estudo.

3.1.1.1 Propriedades inerentes do solo para fundação do pavimento rígido

O solo local deve atender às normas de desempenho dos ensaios conforme norma DNIT 172/2016 – ME Determinação do Índice de Suporte Califórnia, utilizando amostras não trabalhadas, como um solo de qualidade superior, descartando-o como solo orgânico, podendo assim ser usado na camada de subleito. Caso não atenda as solicitações dos esforços, será substituído por um material que atenda às solicitações de esforços mínimos, segundo normativa de desempenho citada acima.

3.1.2 Métodos

Os métodos analisados serão entre o dimensionamento da espessura do pavimento rígido de projeto da empreiteira, e os resultados encontrados pelo autor do trabalho.

3.1.2.1 Solo local

Em um estudo feito pela Embrapa Florestas, o Laboratório de Monitoramento Ambiental e a Universidade Federal do Paraná em 2012, citam que a região de Cascavel - PR

tem um solo característico chamado de Latossolo, sendo um solo bem drenado, com elevado potencial de resistência e utilização.

3.1.2.2 Propriedades do solo local

Para a definição das propriedades do solo local para projeto, procedeu-se a análise estatística dos valores de capacidade de suporte do material a ser empregado como camada final de terraplenagem. Obtendo, através de ensaios, derivado de propriedades de um solo drenante e de elevado potencial de resistência a tensões axiais, determinando também que a utilização do solo local será uma potencial opção de material para subleito.

3.1.2.3 Ensaio de Limite de Plasticidade

Limite de Plasticidade é o limite de teor de umidade que marca a transição do estado plástico da amostra tornando-se quebradiço ou semissólido.

Todo o método de ensaio segue a normativa do DNER-ME 082/94, Solos - determinação do Limite de Plasticidade. Inicialmente será feita a preparação da amostra para ensaios de caracterização de solos conforme norma DNER - ME 041/94, tomam-se cerca de 50 gramas da amostra do solo, prosseguindo assim com a execução do ensaio. Coloca-se a amostra na cápsula adicionando quantidade suficiente para se obter a massa plástica da amostra, adicionando água aos poucos, misturando com a espátula a amostra continuamente, até se obter a homogeneização completa da amostra.

Separa-se aproximadamente 20 gramas da amostra homogeneizada, modelando-a de forma elipsoidal. Rolando a amostra, em valores de 80 a 90 rotações por minuto, considerando uma rotação o movimento da mão de frente para trás, retornando ao ponto de partida, sendo que a amostra deve ser compreendida entre os dedos e a face rugosa da placa de vidro, com pressão suficiente para formar o chamado, rolinho, formando um cilindro de diâmetro uniforme. As dimensões do cilindro estão compreendidas na norma DNER - ME 082/94.

A partir do momento que se fragmenta o cilindro, transfere-se imediatamente os pedaços para determinação da umidade, com a Equação 1:

Equação 1: Determinação do teor de umidade.

$$h = \frac{Ph - Ps}{Pc}$$

Onde:

- h = Teor de umidade, em porcentagem;
- Ph = Peso do material úmido;
- Ps = Peso do material seco em estufa a 105 °C, até a constância de peso.

As pesagens devem ser feitas em uma balança de precisão de 0,01 gramas.

Deve-se repetir os processos citados acima até que se obtenha três valores que mantenham uma constância de 5% entre os cálculos das amostras.

Os resultados esperados destes ensaios são os seguintes:

- Calcula-se o Índice de Plasticidade de um solo pela diferença numérica entre o Limite de Liquidez e o Limite de Plasticidade;
- Quando o Limite de Liquidez ou Limite de Plasticidade não puderem ser determinados, anota-se um Índice de Plasticidade como NP (não plástico). No caso do solo extremamente arenoso, o ensaio de Limite de Plasticidade deve ser feito antes do ensaio de Limite de Liquidez. Se o Limite de Plasticidade não puder ser determinado, também deve-se anotar ambos como NP. Quando o Limite de Plasticidade for igual ou maior do que o Limite de Liquidez, também se anota o Índice de Plasticidade como NP.

3.1.2.4 Ensaio de Limite de Liquidez

Limite de Liquidez é o limite de teor de umidade que marca a transição do estado plástico da amostra para o estado líquido.

Todo o método de ensaio a seguir estará segundo a normativa DNER - ME 122/94, Solos - determinação do Limite de Liquidez, com as definições pré-estabelecidas na normativa em relação a Limite de Liquidez e curva de fluidez. Inicialmente será feita a preparação da amostra para ensaios de caracterização de solos, conforme norma DNER - ME 041/94. Tomam-se cerca de 70 gramas da amostra do solo, prosseguindo assim com a execução do ensaio, coloca-se a amostra na cápsula, acrescenta-se de 15 cm³ a 20 cm³ de água destilada e homogeneíza-se a mistura do solo e água. Após a homogeneização da amostra, se

faz adições de água da ordem de 1cm³ a 3cm³, procedendo-se sempre a perfeita homogeneização da mistura, que deve se apresentar como uma massa plástica. O tempo de homogeneização de cada amostra deve compreender entre 15min e 30min, sendo o maior intervalo para o solo argiloso.

Utilizar uma porção de amostra misturada suficiente para espalhar a massa plástica, de tal modo que a mesma se aproxime de 2/3 da superfície da concha. Empregar o menor número de passadas da espátula na superfície da amostra para evitar formação de bolhas de ar no interior da massa, alisar com a espátula a massa de solo, até que esta se apresente com 1cm de espessura no ponto de máxima. Quaisquer excessos de massa devem ser retirados e devolvidos à cápsula de armazenamento respectiva.

Produzir uma canelura na massa de solo, segundo o plano de simetria do aparelho, usando o cinzel, de tal modo que a espessura da massa na parte central seja de 1cm. Segue a utilização específica do cinzel para cada tipo de solo, citado na norma DNER - ME 122/94.

Golpear contra a base do aparelho casa grande, pelo acionamento da manivela, a concha que contém a amostra, com uma velocidade constante de duas voltas por segundo, até que as bordas da canelura se unam na extensão de 1cm.

Transferir uma porção da amostra com a espátula para uma cápsula, pesando imediatamente o conjunto recipiente mais solo, levando-o para a estufa a 105 °C - 110 °C, para determinação da umidade, utilizar uma balança de precisão de 0,01 gramas, determinando a umidade pela Equação 2:

Equação 2: Determinação do teor de umidade.

$$h = Ph - Ps \times 100$$

Onde:

- h = Teor da umidade, em porcentagem;
- Ph = Massa do solo úmido;
- Ps = Massa do solo seco em estufa, seco até constância de massa.

Retirar o solo remanescente na concha, transferindo-a para a concha de porcelana. Repetir estes procedimentos pelo menos mais três vezes, com adições de água gradativamente crescentes. Objetivando esse processo a fim de obter solo de consistência que permita pelo menos uma determinação do número de golpes em cada um dos intervalos: 25-35, 20-30 e 15-25.

Tendo como resultado os valores de umidade e número de golpes que serão representados em um sistema de eixos ortogonais, ordenado em escala logarítmica, sendo representados a abscissa e os números de golpes, na escala aritmética, correspondendo com os teores de umidade. Deve ser traçada uma reta dos pontos lançados no gráfico de pelo menos três pontos.

O Limite de Liquidez é expresso em teor de umidade.

Na impossibilidade de se conseguir a abertura de uma canelura na massa de solo existente na concha ou o seu fechamento ultrapassar o valor de 25 golpes, considerar a amostra como não apresentando Limite de Liquidez.

O ensaio deve ser realizado para duas determinações diferentes, atendendo ao intervalo de 20-30 para número de golpes (N) e da faixa de umidade de no máximo 150%, conforme Figura 9.

Figura 9 - Valores de K (N) em função do número de golpes.

Nº de golpes, (N)	K (N)
20	0,966
21	0,973
22	0,980
23	0,987
24	0,994
24 25	1,000
26	1,006
27	1,012
28	1,018
29	1,023
30	1,029

Fonte: DNER - ME 122/94, p. 05.

O Limite de Liquidez é determinado pela Equação 3 e 4:

Equação 3: Determinação do Limite de Liquidez.

LL = h x (N/25) x 0,156

Equação 4: Determinação do Limite de Liquidez.

 $LL = h \times K$

Onde:

- h = Teor de umidade (%), corresponde a N golpes;
- N = Número de golpes na determinação de um ponto do ensaio;
- LL = Limite de Liquidez (%).

No caso de os valores apresentarem importâncias com mais de 1% de variação, os ensaios devem ser refeitos.

O Limite de Liquidez é a média das duas determinações.

3.1.2.5 Ensaio de Índice Suporte Califórnia

Os ensaios de Índice de Suporte Califórnia determinam a capacidade de suporte do solo compactado, para o dimensionamento de pavimentos rodoviários.

Todo o método de ensaio a seguir estará segundo a normativa DNIT 172/2016 - ME, solos - determinação do *Índice de Suporte Califórnia*, utilizando amostras não trabalhadas. Inicialmente deve-se secar ao ar a amostra recebida, destorroando no almofariz pela mão de gral, homogeneizando e reduzindo a amostra, com o auxílio do quartiador de amostras, até se obter uma amostra representativa de 6000 gramas, para solos siltosos ou argilosos, e 7000 gramas, para solos arenosos e pedregulhosos. A amostra considerada deve passar na peneira de 19 mm de abertura (malha ¾) e reter na peneira de abertura 4,8 mm (malha N° 4). Repetindo o procedimento por quantas vezes necessárias conforme solicitação, mínimo de cinco 5 moldes.

Fixa-se o molde à sua base metálica, ajusta-se o cilindro complementar e apoia-se o conjunto em uma base fixa. Compacta-se o material referido com o disco espaçador usado como fundo falso, em cinco camadas iguais, de forma a se ter uma altura total de solo de 12,5cm, depois de compactado. Cada camada deve receber 12 (doze) golpes do soquete, no caso de material de subleito. Nos casos de sub-base, 26 (vinte e seis) golpes e base 55 (cinquenta e cinco) golpes, sendo distribuídos uniformemente sobre sua superfície. Ou conforme solicitação de projeto.

Remove-se o cilindro complementar, tendo-se antes cuidado de destacar, com o auxílio de uma espátula, o material a ele aderente. Com uma régua rígida bisela, rasa-se o material na altura exata do molde e determina-se o peso do material úmido compactado. Retira-se do material excedente da moldagem uma amostra representativa de cerca de 100g,

para determinação do teor de umidade. Pesa-se a amostra e seca-se em estufa a 105°C - 110°C, até constância de massa, e executam-se as pesagens de amostra seca.

Repete-se as operações acima, para teores crescentes de umidade, utilizando amostras de solo não trabalhadas, quantas vezes necessárias para caracterizar a curva de compactação. Estes corpos moldados serão utilizados nos ensaios de expansão e penetração.

O ensaio de expansão, com a utilização dos corpos de prova moldados anteriormente serão necessárias para caracterizar a curva de compactação, removendo o disco espaçador de cada corpo de prova deve e os moldes devem ser invertidos e fixados nos respectivos pratos base perfurados em local solido.

Em cada molde de corpo de prova, no espaço do disco espaçador, deve ser colocada a haste de expansão com os pesos anelares. Essa carga deve ser superior a 4,536kg.

Instala-se na haste de expansão um extensômetro fixo ao porta-extensômetro, posto na borda superior do cilindro, para a medir as expansões ocorridas, que devem ser anotadas a cada 24 horas, em porcentagens da relação de altura inicial do corpo de prova.

Os corpos de prova devem ficar submersos em água durante 96 horas.

Terminando o período de embebição que seria a imersão no período de 4 dias, cada molde deve ser retirado da imersão e mantido em repouso para escoar a água durante quinze minutos. Após esse tempo, o molde estará preparado para a penetração.

Para o ensaio de penetração é necessária a prensa de CBR. Para esse ensaio devem ser colocadas cada molde no encaixe de rompimento da prensa, as mesmas cargas utilizadas no ensaio de expansão anterior.

Esse conjunto deve ser transportado para o prato da prensa e inicia-se o ensaio com o pistão de penetração no molde, com a aplicação de uma carga média de 45N, controlada pela leitura no extensômetro do anel dinamométrico, que é o que mede a penetração do pistão no solo.

As leituras são obtidas no extensômetro do anel em função da penetração do pistão no solo e do tempo. As leituras efetuadas no extensômetro do anel medem encurtamentos diametrais provenientes da atuação das cargas. Considerando no extensômetro do anel, a função de uma penetração do pistão no solo e de um tempo especificado, conforme Figura 10.

Figura 10 - Leituras obtidas no extensômetro do anel em função da penetração do pistão no solo e do tempo.

Tempo	Penet	Leitura no extensômetro	
(min)	pol	mm	do anel (mm)
0,5	0,025	0,63	-
1,0	0,050	1,27	-
1,5	0,075	1,90	-
2,0	0,100	2,54	-
3,0	0,150	3,81	-
4,0	0,200	5,08	-
6,0	0,300	7,62	-
8,0	0,400	10,16	-
10,0	0,500	12,70	-

Fonte: DNIT 172/2016 - ME.

O cálculo da massa específica aparente do solo seco compactado é determinada a massa específica aparente úmida, como mostra a Equação 5:

Equação 5: Determinação da massa específica.

$$\frac{\mu = Ph}{V}$$

Onde:

- Ph = Massa do solo úmido compactado;
- V = Volume do solo úmido compactado.

Em seguida se obtém a massa específica aparente do solo seco compactado através da Equação 6 e 7:

Equação 6: Determinação da massa específica.

$$\mu z = \frac{\mu h \times 100}{100 + h}$$

Equação 7: Determinação do teor da umidade do solo compactado.

$$h = \underbrace{Ph - Ps \times 100}_{}$$

Ps

Onde:

- h = Teor de umidade do solo compactado;
- Ph = Massa do material úmido;
- Ps = Massa do material seco.

O cálculo da expansão e o cálculo da água absorvida durante a embebição, para cada corpo de prova, deve ser utilizado os seguintes dados representados na Figura 11.

Figura 11 – Tabela para cálculo de expansão.

			Molde nº							
Data	Hora	Tempo decorrido min.	Leituras no exten- sômetro Mm	Diferenças de leituras no extensômetro mm	Expansão %					
(1)	(2)	(3)	(4)	(5)	(6)					

Fonte: DNIT 172/2016 - ME.

- Coluna 1 Data do início do ensaio;
- Coluna 2 Horario das leituras efetuadas no extensômetro;
- Coluna 3 Variação de tempo decorrido entre as leituras do extensômetro, que devem ser de a cada 24 horas;
- Coluna 4 Leituras no extensômetro;
- Coluna 5 Diferença das leituras efetuadas de 24 em 24 horas;
- Coluna 6 Percentagem de expansão relativa à altura inicial do corpo de prova.

Equação 8: Determinação da expansão.

O Cálculo do Índice de Suporte Califórnia corresponde a leitura de cada corpo de prova, seguindo a tabela da Figura 12.

Figura 12 - Cálculo do Índice de Suporte Califórnia (ISC).

	Penetra	ıção (2)			Mok	de nº	
Tempo min	mm pol.		Pressão padrão	Leituras no extensômetro	Pre	essão	(7) ISC
(1)			kgf/cm² (3)			Corrigida kgf/cm² (6)	%
0,5	0,63	0,025	-				
1,0	1,27	0,050	-				
1,5	1,90	0,075	-				
2,0	2,54	0,100	70,31				
3,0	3,81	0,150	-				
4,0	5,08	0,200	105,46				
6,0	7,62	0,300	131,58				
8,0	10,16	0,400	161,71				
10,0	12,7	0,500	182,80				

Fonte: DNIT 172/2016 - ME.

- Coluna 1 Tempo;
- Coluna 2 Penetração ocorrida no tempo especificado;
- Coluna 3 Pressão exercida padrão, correspondente a um determinado tipo de pedra britada que apresenta Índice de Suporte Califórnia de 100%;
- Coluna 4 Leituras no extensômetro do anel;
- Coluna 5 Pressão correspondente as leituras do anel gráfico de aferição do mesmo;
- Coluna 6 Pressão corrigida;
- Coluna 7 Índice de Suporte Califórnia (ISC).

O Índice de Suporte Califórnia (ISC), em porcentagem, para cada corpo de prova deve seguir a Equação 9:

Equação 9: Determinação do Índice de Suporte Califórnia.

A determinação da massa específica aparente seca máxima e da umidade ótima é dada por valores das massas específicas aparentes secas de cada molde e corpo de prova e os valores correspondentes das umidades de moldagem permitindo o traçado da curva de

compactação do solo. A ordenada máxima da curva fornece a massa específica aparente seca máxima e a abscissa que lhe corresponde é a umidade ótima do solo.

A determinação gráfica do Índice de Suporte Califórnia final é obtida pelo valor da ordenada dessa curva, correspondente à umidade ótima antes determinada, fornece o Índice de Suporte Califórnia (ISC).

3.1.2.6 Classificação dos solos

Serão realizadas sondagens conforme respectiva normativa para classificação e identificação do solo local, executando também ensaios complementares para reconhecimento de suas propriedades.

3.1.2.7 Análise dos métodos empregados para correção

O subleito poderá ser executado com o solo local caso apresente um alto valor de CBR, determinados no ensaio DNIT 172/2016 - ME, mas usualmente pode se utilizar de material pétreo caso haja abundância deste, devido a possíveis detonações de rochas locais para traçado da pista projetada.

A regularização do subleito deve ser formada por uma camada que apresente elevado valor de suporte, sendo determinado conforme DNER-ME 024/94 Pavimento – determinação das deflexões pela Viga Benkelman, em relação às deflexões máximas dimensionadas em projeto para camada de regularização do subleito.

Sub-base é a camada final de terraplenagem antes da capa, sendo fixada por norma uma camada onde deve se haver um elevado valor de resistência, para obtenção dos valores máximos de deflexões dimensionados em projeto conforme Manual de Pavimento Rígido, mantendo uma fundação adequada para o pavimento rígido.

3.1.3 ABCP (Associação Brasileira de Cimento Portland)

O método ABCP de dimensionamento de pavimentos rodoviários de concreto, utilizado nesse trabalho como método de comparação do dimensionamento do projeto

executivo da duplicação e os resultados de Limites Físicos, Proctor, CBR e expansão encontrados pelo autor. Utilizando os valores de CBR para identificar qual o suporte que o solo apresenta e consequentemente através das tabelas, encontra-se a espessura da pista de concreto, podendo ser utilizados os mínimos sugeridos ou conforme solicitação um dimensionamento adequado para o mesmo.

CAPÍTULO 4

4.1 RESULTADOS

Os ensaios realizados e demonstrados nos Apêndices A e B foram executados por meio de coleta de amostra não trabalhada *in loco* e posteriormente preparação da amostra para execução dos ensaios laboratoriais, apresentaram os resultados demonstrados nos capítulos 4.1.1, 4.1.2, 4.1.3 e 4.1.4.

4.1.1 Classificação do solo

Conforme os ensaios apresentados no Apêndice A, demonstra-se a caracterização de solo e limites físicos, o solo foi classificado na tabela HRB como A-7-5, um solo argilosiltoso avermelhado laterítico, derivado do processo de intemperismo físico e químico da rocha basáltica. Conforme mostrado a seguir.

O ensaio granulométrico de peneiramento grosso e fino do solo está compreendido na amostragem apresentada na Tabela 1.

Tabela 1 - Ensaio Granulométrico.

Ensaio Granu	Ensaio Granulométrico										
	Coluna 1	Coluna 2	Coluna 3	Coluna 4	Coluna 5						
Resultados	Pedregulho > 4,8	Areia grossa	Areia média	Areia fina	Passando na #200						
Ensaio 01	0 %	0,21 %	1,49 %	0,99 %	97,31 %						
Ensaio 02	0 %	0,17 %	1,61 %	1,36 %	96,86 %						
Ensaio 03	0 %	0,53 %	2,11 %	1,12 %	96,5 %						
Ensaio 04	0 %	0,31 %	2,74 %	1,62 %	95,33 %						
Ensaio 05	0 %	0,11 %	2,23 %	0,99 %	96,67 %						
Média	0 %	0,266 %	2,036 %	1,216 %	96,53 %						

Fonte: Autor.

• Primeira etapa de classificação:

Para materiais granulares, é quando se passa 35% ou menos na peneira de malha 200. Quando materiais siltosos e argilosos, passando mais de 35% na peneira de malha 200.

Sendo classificado devido aos valores médios de peneiramento da Coluna 5 da Tabela 1, como um solo que passa mais de 35% do material na peneira de malha 200, como a Figura 13 representa.

Figura 13 - Classificação de solos pela Tabela HRB.

CLASSIFICAÇÃO DE SOLOS: Sugestão do Highway Research Board-HRB adotada pela AASHTO

			Mate	riais granı	llares			Materiais siltosos e argilosos					
Classificação Geral		(35% ou menos passando na peneira nº 200)								(mais de 35% passando na peneira nº 200)			
	Α	-1	A-3	A-2				A-4	A-5	A-6	A-7		
Grupo	A-1-a	A-1-b	A-3	A-2-4	A-2-5	A-2-6	A-2-7	A-4	h-3	A-0	A-7-5 / A-7-6		
Peneiração: % que passa:													
№ 10	50 máx.												
Nº 40	30 máx.	50 máx.	51 mín.										
№ 200 (p)	15 máx.	25 máx.	10 máx.	35 máx.	35 máx.	35 máx.	35 máx.	36 mín.	36 mín.	36 mín.	36 mín.		
Características da fração													
que passa nº 40													
Limite de Liquidez - LL (%)				40 máx.	41 mín.	40 máx.	41 mín.	40 máx.	41 mín.	40 máx.	41 mín.		
Indice de Plasticidade													
IP (%)	6 m	ıáx.	NP	10 máx.	10 máx.	11 mín.	11 mín.	10 máx.	10 máx.	11 mín.	11 mín.		
Índice de Grupo	(0	0	()	4 m	náx.	8 máx.	12 máx.	16 máx.	20 máx.		
Materiais que	Pedra	Britada	Areia fina	Aroi	o orojo sil	060 011 080	ilosa	Colos	iltoror	Colo	s arailasas		
predominam	pedregul	ho e areia	Areia iiiia	eia fina Areia e areia silosa ou argilosa			Solos Siltosos Solos argilosos						
Comportamento geral			Eve	Excelente a bom					Fraco a pobre				
como subleito			EXC	eiente a D	UIII				FIAC	о а робге			

Fonte: UDESC (Universidade do Estado de Santa Catarina).

Assim, por análise, a classificação geral do solo se trata de um material siltoso e argiloso.

• Segunda classificação:

A segunda classificação é de acordo com a porcentagem, passando nas peneiras de malhas 10,40 e 200.

Todos os solos da classificação geral de material siltoso e argiloso não devem possuir retenção nas peneiras números 10 e 40, apenas uma porcentagem mínima de 36 passando na peneira de malha 200.

• Terceira classificação:

A terceira classificação envolve o material passando na peneira 40, o Limite de Liquidez e o Índice de Plasticidade, sendo que, não há necessidade da classificação para fração que passa na peneira 40, pois, a porcentagem que passa nessa peneira é de 100%, então não há porcentagem que passa ou é retida.

A média dos valores encontrados no Apêndice A de Limites de Liquidez foi determinada através de ensaios realizados pelo autor, mostrado como valor médio na Coluna

1 da Tabela 2, com um valor de 53,44%, então seguimos a classificação mostrada da Figura 14.

Tabela 2 - Limites Físicos.

Ensaio de Lir	nites Fís	icos	e Classi	ifica	ıção do S	Solo		
	Coluna	1	Coluna	Coluna 2		. 3	Coluna 4	Coluna 5
Resultados	LL		LP		IP		IG	Classificação HRB
Ensaio 01	52	%	33,9	%	18,1	%	14	A-7-5
Ensaio 02	53,9	%	33,1	%	20,8	%	15	A-7-5
Ensaio 03	55,1	%	32,7	%	22,3	%	16	A-7-5
Ensaio 04	53,4	%	32	%	21,4	%	15	A-7-5
Ensaio 05	52,8	%	32,6	%	20,1	%	15	A-7-5
Média	53,44	%	32,86	%	20,54	%	15	A-7-5

Fonte: Autor.

Figura 14 - Classificação de solos pela Tabela HRB.

CLASSIFICAÇÃO DE SOLOS: Sugestão do Highway Research Board-HRB adotada pela AASHTO

			Mate	riais granı	ılares			Materiais siltosos e argilosos				
Classificação Geral		(35% ou menos passando na peneira nº 200)							(mais de 35% passando na peneira nº 200)			
	Α	-1	A-3	A-2				A-4	A-5	A-6	A-7	
Grupo	A-1-a	A-1-b	A-2	A-2-4	A-2-5	A-2-6	A-2-7	A-4	A-5	A-0	A-7-5 / A-7-6	
Peneiração: % que passa:												
Nº 10	50 máx.											
Nº 40	30 máx.	50 máx.	51 mín.									
№ 200 (p)	15 máx.	25 máx.	10 máx.	35 máx.	35 máx.	35 máx.	35 máx.	36 mín.	36 mín.	36 mín.	36 mín.	
Características da fração												
que passa nº 40												
Limite de Liquidez - LL (%)				40 máx.	41 mín.	40 máx.	41 mín.	40 máx.	41 mín.	40 máx.	41 mín.	
Indice de Plasticidade												
IP (%)	6 n	náx.	NP	10 máx.	10 máx.	11 mín.	11 mín.	10 máx.	10 máx.	11 mín.	11 mín.	
Índice de Grupo	(0	0	(0	4 m	ıáx.	8 máx.	12 máx.	16 máx.	20 máx.	
Materiais que	Pedra	Britada	Areia fina	Aroi	a o aroja ci	oca ou ard	iloca	Solor	Siltosos	Solo	s argilosos	
predominam	pedregul	ho e areia	Areia fina Areia e areia silosa ou argilosa			iiosa	30103	DIILUSUS	30103	s aigilosos		
Comportamento geral			Eve	elente a b	om			Fraco a pobre				
como subleito			LAC	eiente a D	OIII				riac	o a poble		

Fonte: UDESC (Universidade do Estado de Santa Catarina).

Os Grupos A-4 e A-6 foram descartados da classificação pois o Limite de Liquidez excede os limites por eles determinados.

A média dos Índices de Plasticidade obtidos pela relação dos ensaios de Limite de Liquidez e Limite de Plasticidade é de 20,54%, como a Coluna 3 do Tabela 2 apresenta, em seguida a classificação mostrada na Figura 15.

Figura 15 - Classificação de solos pela Tabela HRB.

CLASSIFICAÇÃO DE SOLOS: Sugestão do Highway Research Board-HRB adotada pela AASHTO

			Mate	riais granu	ılares			Materiais siltosos e argilosos			
Classificação Geral		(35% o	u menos p	assando n	a peneira	nº 200)		(mais de 35% passando na peneira nº 200)			
	A	-1	A-3		Α	-2		A-4	A-5	A-6	A-7
Grupo	A-1-a	A-1-b	A-3	A-2-4	A-2-5	A-2-6	A-2-7	A-+			A-7-5 / A-7-6
Peneiração: % que passa:											
Nº 10	50 máx.										
Nº 40	30 máx.	50 máx.	51 mín.								
№ 200 (p)	15 máx.	25 máx.	10 máx.	35 máx.	35 máx.	35 máx.	35 máx.	36 mín.	36 mín.	36 mín.	36 mín.
Características da fração											
que passa nº 40											
Limite de Liquidez - LL (%)				40 máx.	41 mín.	40 máx.	41 mín.	40 máx.	41 mín.	40 máx.	41 mín.
Indice de Plasticidade											
IP (%)	6 m	náx.	NP	10 máx.	10 máx.	11 mín.	11 mín.	10 máx.	10 máx.	11 mín.	11 mín.
Índice de Grupo	(0	0	()	4 m	ıáx.	8 máx.	12 máx.	16 máx.	20 máx.
Materiais que	Pedra I	Britada	Areia fina	Arois	o o orojo cil	loca ou ard	iloca	Solor	iltosos	Solo	e argilosos
predominam	pedregull	ho e areia	Areia fina Areia e areia silosa ou argilosa			iiosa	Solos Siltosos Solos argilosos				
Comportamento geral	Excelente a bom				om				Frac	o a pobre	
como subleito			LXC	elente a D	OIII				riac	o a poble	

Fonte: UDESC (Universidade do Estado de Santa Catarina).

O Grupo de solos A-5, também foi desclassificado, pois seu limite de Índice de Plasticidade de 11% foi excedido pelo valor encontrado no ensaio, que é de 32,86% como mostra na tabela 2.

O solo já pode ser classificado como Grupo A-7.

• Quarta classificação:

A quarta classificação consiste na avaliação do índice de grupo, que através dos resultados dos ensaios foi calculado, sendo seu valor médio de 15, como indicado na Coluna 4 do Tabela 2. A Figura 16 mostra a classificação final do solo.

A Tabela HRB define, quando IP<LL - 30, será solo A-7-5 e se IP>LL - 30, será solo A-7-6.

Equação 10 - Classificação entre solos A-7-5 ou A-7-6.

$$20,54 < 53,44 - 30 = 20,54 < 23,44$$

Solo classificado como Grupo A-7-5.

Figura 16 - Classificação de solos pela Tabela HRB.

CLASSIFICAÇÃO DE SOLOS: Sugestão do Highway Research Board-HRB adotada pela AASHTO

			Mate	riais granı	ılares			N	lateriais si	ltosos e ar	gilosos
Classificação Geral	(35% ou menos passando na peneira nº 200)							(mais de 35% passando na peneira nº 200)			
	Α	-1	A-3	A-2				A-4	A-5	A-6	A-7
Grupo	A-1-a	A-1-b	A-3	A-2-4	A-2-5	A-2-6	A-2-7	A-4	A-5	A-0	A-7-5 A-7-6
Peneiração: % que passa:											
Nº 10	50 máx.										
№ 40	30 máx.	50 máx.	51 mín.								
Nº 200 (p)	15 máx.	25 máx.	10 máx.	35 máx.	35 máx.	35 máx.	35 máx.	36 mín.	36 mín.	36 mín.	36 mín.
Características da fração											
que passa nº 40											
Limite de Liquidez - LL (%)				40 máx.	41 mín.	40 máx.	41 mín.	40 máx.	41 mín.	40 máx.	41 mín.
Indice de Plasticidade											
IP (%)	6 n	ıáx.	NP	10 máx.	10 máx.	11 mín.	11 mín.	10 máx.	10 máx.	11 mín.	11 mín.
Índice de Grupo	()	0	()	4 m	าáx.	8 máx.	12 máx.	16 máx.	20 máx.
Materiais que	Pedra	Britada	Areia fina	Aroi	a o aroja ci	loca ou ara	ilosa	Solor 9	Ciltoros	Solo	c argilococ
predominam	pedregul	no e areia	Areia fina Areia e areia silosa ou argilosa		iiosa	Solos Siltosos Solos argilosos					
Comportamento geral			Eve	elente a b	om				Erac	o a pobre	
como subleito			EXC	eiente a D	UIII				FIAC	o a poble	

Fonte: UDESC (Universidade do Estado de Santa Catarina).

Para definição de qual rocha originou o solo através de sua derivação pelo processo de intemperismo físico e químico, usa-se a Figura 17 como referência. Levam-se em consideração os valores de Limite de Liquidez e Limite de Plasticidade.

Figura 17 - Identificação da derivação do solo.

Material n.	Identificação	LL %	LP %	Granulometria % que passa na #s n. 10 / 40 / 200	Classificação HRB
0	Brita Graduada	NP	NP		
1	Brita Graduada	NP	NP		
2	Areia Argilosa Laterítica RJ, Brasil.	29	10		
3	Areia Silto-argilosa sedimentar, Suíça.	17	5		
4	Areia siltosa saprolítica sobre Gnaisse, SP, Brasil.	28	9		
5	Argila Laterítica de Basalto, SP, Brasil.	54	24		
6	Argila saprolítica sobre Basalto, SP, Brasil.	56	25		

Fonte Manual de Pavimentação DNIT.

Sendo que a numeração de cada material tem sua descrição:

 O material 0 corresponde ao material especificado pelo DNIT para construção de bases granulares para rodovias, com curva granulométrica dentro da Faixa Granulométrica D;

- O material 1 precisa sofrer estabilização granulométrica para atender às especificações do DNIT para constituir material de base granular de Faixa Granulométrica D:
- O material 2 tem sido utilizado como base de rodovias de baixo volume de tráfego.
 Apresenta baixo Índice de Expansão e alta resistência de CBR. Perde pouca resistência ao entrar em contato com a água;
- O material 3 foi estabilizado com cimento e utilizado como sub-base;
- O material 4 apresenta-se expansivo e de baixa resistência CBR. Perde consideravelmente sua resistência ao entrar em contato com a água e é altamente erosivo em taludes;
- O material 5 apesar de ser muito contrátil e apresentar trincamento, é pouco expansivo e possui resistência considerável. Perde pouca resistência ao entrar em contato com a água e tem sido utilizado frequentemente em bases de pavimento com baixo volume de tráfego;
- O material 6 pode ser contrátil e expansivo e perde resistência ao entrar em contato com a água.

Com as médias dos valores de Limite de Liquidez e Limite de Plasticidade apresentados na Tabela 10, é um solo de argila siltosa avermelhada, laterítica derivado do processo de intemperismo físico e químico da rocha basáltica.

4.1.2 Proctor

O ensaio de Proctor por energia normal de compactação; definido para solos que compõem a camada de subleito. Como o Apêndice B apresenta, foram moldados cinco pontos por ensaio para se obter uma curva de densidade aparente de maior precisão. Obtendo-se a média dos valores de densidade aparente seca, como indicado na Coluna 1, Tabela 3 e a umidade ótima de serviço, apresentada na Coluna 2, Tabela 3.

Tabela 3 - Ensaio Proctor.

Ensaio Proctor				
	Coluna 1		Coluna 2	
Resultados	Densidado	e Seca Máx	Umidade Ótima	l
Ensaio 01	1,385	g/cm ²	33,2	%
Ensaio 02	1,379	g/cm ²	33,1	%
Ensaio 03	1,419	g/cm ²	31,7	%
Ensaio 04	1,424	g/cm ²	33,1	%
Ensaio 05	1,424	g/cm ²	31,5	%
Média	1,406	g/cm ²	32,52	%

Fonte: Autor.

4.1.3 Índice de Suporte Califórnia (ISC)

O ensaio de Índice de Suporte Califórnia do Apêndice B apresentou uma média de CBR = 12,26% como a Tabela 4 demonstra, que segundo norma DNER – ME 049/94, deve estar compreendido entre 2% e 20% para poder ser utilizado para efetivo dimensionamento do projeto da pavimentação como subleito.

Tabela 4 - Ensaio de CBR.

Ensaio CBR		
Resultados	I.S.C	
Ensaio 01	12,6	6
Ensaio 02	12,2 9	6
Ensaio 03	13,5	6
Ensaio 04	10,8	6
Ensaio 05	12,2 9	6
Média	12,26 9	6

Fonte: Autor.

4.1.4 Expansão do Solo

A expansão do solo é apresentada de acordo com o Apêndice B, um baixo valor de expansão das amostras, segundo a Tabela 5, confirmando assim que o solo não é expansivo, ou seja, não faz parte do grupo dos solos orgânicos.

Tabela 5 - Ensaio de Expansão.

Ensaio de Expansão		
Resultados	Expansão	
Ensaio 01	0,15	%
Ensaio 02	0,24	%
Ensaio 03	0,17	%
Ensaio 04	0,17	%
Ensaio 05	0,08	%
Média	0,162	%

Fonte: Autor.

4.2 COMPARATIVO

Apresentação dos resultados demonstrados no projeto e os resultados encontrados pelo autor, visando a comparação de dimensionamento de espessura Coeficiente de Recalque da pista de concreto.

4.2.1 Dimensionamento do coeficiente de recalque do solo com os resultados encontrados neste trabalho

Para fatores de dimensionamento, adotando as tabelas preconizadas pela ABCP (Associação Brasileira de Cimento Portland), o coeficiente de recalque K deve ser menor que 60 Mpa/metros, como mostra a Figura 18.

Figura 18 - Coeficiente de recalque máximo.

Tipo de solo (AASHTO M 145)	Coeficiente de recalque (MPa/m)			
A1-a	≥ 110			
A1-b	70 a 165			
A2-4, A2-5	≥ 80			
A2-6, A2-7	50 a 90			
A3	55 a 90			
A4	25 a 80			
A5	≤ 50			
A6	≤ 60			
A7-5, A7-6	≤ 60			

Dimensionamento de pavimentos rodoviários de concreto, 1998, p. 12.

De acordo com o CBR médio encontrado com os ensaios apresentados no Apêndice B, pode-se adotar o valor de CBR = 12%, para fator de cálculo a favor da segurança, obtendo-se o valor de K = 53 MPa/m, como a Figura 19 representa.

Figura 19 - Valor correspondente de K em relação a CBR.

Índice de su- porte Califórnia, CBR (%)	orte Califórnia, recalque,		Coeficiente de recalque, k (MPa/m)	
2	16	12	53	
3	24	13	54	
4	30	14	56	
5	34	15	57	
6	38	16	59	
7	41	17	60	
8	44	18	61	
9	47	19	62	
10	49	20	63	
11	51			

Dimensionamento de pavimentos rodoviários de concreto, 1998, p. 13

Leva-se em consideração a contribuição estrutural da camada de sub-base em CCR (Concreto Compactado ao Rolo), com espessura de 10cm, obtendo um coeficiente de recalque K = 152MPa/m, assim como a Figura 20 indica.

Figura 20 – Coeficiente K para presença de sub-base de CCR.

	suporte do bleito			alque no topo do sistema suras de sub-base iguais		
CBR (%)	k (MPa/m)	10 cm	12,5 cm	15 cm		
2	16	65	77	98		
3	24	87	101	126		
4	30	101	118	145		
5	34	111	128	158		
6	38	120	138	169		
7	41	127	145	177		
8	44	133	152	186		
9	47	140	159	194		
10	49	141	164	199		
11	51	143	168	204		
12		152	173	209		
13	54	154	175	211		
14	56	158	179	216		
15	57	160	182	219		
16	59	164	186	224		
17	60	166	188	226		
18	61	168	190	220		
19	62	170	192	231		
20	63	172	194	233		

Dimensionamento de pavimentos rodoviários de concreto, 1998, p 17.

4.2.2 Dimensionamento de projeto da empreiteira

De acordo com o CBR médio encontrado com os ensaios, pode-se adotar o valor de CBR=10%, para fator de cálculo a favor da segurança, obtendo-se o valor de K=49 MPa/m, como visto na Figura 21.

Figura 21 - Valor correspondente de K em relação a CBR.

Índice de su- porte Califórnia, CBR (%)	Coeficiente de recalque, k (MPa/m)	Índice de su- porte Califórnia, CBR (%)	recalque, k (MPa/m)	
2	16	12	53	
3	24	13	54	
4	30	14	56	
5	34	15	57	
6	38	16	59	
7	41	17	60	
8	44	18	61	
9	47	19	62	
10	49	20	63	
11	51			

Dimensionamento de pavimentos rodoviários de concreto, 1998, p. 13.

Levando em consideração a contribuição estrutural da camada de sub-base em CCR (Concreto Compactado ao Rolo) com espessura de 10cm, obtendo um coeficiente de recalque K = 144MPa/m, de acordo com a Figura 22.

Figura 22 - Coeficiente K para presença de sub-base de CCR.

	suporte do bleito		Coeficiente de recalque no topo do siste (MPa/m), para espessuras de sub-base igu					
CBR (%)	k (MPa/m)	10 cm	12,5 cm	15 cm				
2	16	65	77	98				
3	24	87	101	126				
4	30	101	118	145				
5	34	111	128	158				
6	38	120	138	169				
7	41	1 4	145	177				
8	44	133	152	186				
9	47	140	159	194				
10		144	164	199				
11	51	148	168	204				
12	53	152	173	209				
13	54	154	175	211				
14	56	158	179	216				
15	57	160	182	219				
16	59	164	186	224				
17	60	166	188	226				
18	61	168	190	220				
19	62	170	192	231				
20	63	172	194	233				

Dimensionamento de pavimentos rodoviários de concreto, 1998, p 17.

4.3 RESULTADOS DA COMPARAÇÃO

Para o dimensionamento de espessura de pavimento rígido, foi verificado que o valor de CBR de ensaio do autor adotado foi de 12% resultando em k = 53 MPa/m e de projeto devido que para o dimensionamento da placa de concreto, foram adotadas as tabelas preconizadas pela ABCP – Associação Brasileira de Cimento Portland de correlação entre o coeficiente de recalque do subleito (k) e o Índice de Suporte Califórnia (ISC). Deste modo, para o projeto em questão, com o ISC estimado do subleito igual a 10%, obtém-se como resultado da tabela um k = 49 MPa/m para o subleito. Com o intuito de proteger a camada compactada do subleito, permitir a drenagem do pavimento e prevenir o bombeamento do solo do subleito para a sub-base de CCR, será colocada uma camada de macadame seco com espessura mínima de 15 cm. A presença desta camada de macadame seco promove um aumento no coeficiente de recalque do subleito, resultando em k = 58 MPa/m. Levando-se em consideração a contribuição estrutural da camada de sub-base de CCR – Concreto Compactado com Rolo de h = 10 cm, aplicado sobre a camada de macadame seco, obtém-se um coeficiente de recalque no topo do sistema (ou na camada imediatamente abaixo da placa) de k = 162 MPa/m.

CAPÍTULO 5

5.1 CONSIDERAÇÕES FINAIS

É importante ressaltar que a execução de ensaios de classificação e de suporte de tensões são essenciais para a análise e conhecimento do solo, possibilitando assim uma elaboração de projeto com maior viabilidade técnica financeira e econômica.

O solo local, como apresentado no Apêndice A, é composto por uma argila siltosa avermelhada, laterítica e derivada do processo de intemperismo físico e químico da rocha Basáltica, apresentando no Apêndice B um valor médio de CBR de 12,26%. Isto dá ao solo uma boa capacidade de suporte de tensões para o pavimento de concreto, mas em comparação com o projeto, precisaria de uma maior espessura da pista de concreto. Devido ao fato do projeto adotar uma solução de substituição do solo natural na camada de subleito por macadame seco, que apresenta no projeto executivo um CBR de 15,50%, influenciando na capacidade de suporte do solo e consequentemente em uma menor espessura da pista de concreto. O que pode não um fator que influencie positivamente na economia, pois a remoção e substituição do solo natural por macadame seco e os métodos de execução deste material na camada de subleito podem ser um agravante nos custos finais da obra.

Os materiais, ou seja, o solo local, de acordo com normativa de desempenho DNIT 137/2010 - ES, que determina que para dimensionamento da camada de subleito, o CBR deve-se estar compreendido entre 2% e 20%, o solo está em conformidade com a necessidade de suporte exigido por norma, podendo assim ser dimensionado como material de subleito para o pavimento rígido.

A qualidade dos métodos executivos, seguindo os valores de CBR do projeto executivo, está mantendo a conformidade com as normas e manuais.

Como dito nos capítulos anteriores, a vida útil do pavimento rígido pode ser seriamente comprometida quando as camadas de fundação são executadas de forma incorreta, mas no solo em questão poderá servir como material de fundação para o pavimento rígido, evitando também as patologias com uma manutenção regular.

O estudo de dimensionamento da camada de rolamento não pôde ser finalizado neste trabalho devido à falta das informações do Número N no projeto executivo e impossibilitando os cálculos pelo método PCA 84 de dimensionamento de pavimento rígido.

CAPÍTULO 6

6.1 SUGESTÕES PARA TRABALHOS FUTUROS

- Avaliar os solos considerando outro método de classificação;
- Avaliar a estrutura remanescente (sub-base, base e capa de rolamento);
- Comparar os resultados obtidos com resultados de outras obras executadas;
- Dimensionar o pavimento utilizando médias dos resultados encontrados;
- Comparar dimensionamento existente com o dimensionamento para os resultados encontrados.

REFERÊNCIAS

Janeiro: 1994.

Associação Brasileira de Cimento Portland. Engenheiro Civil Márcio Rocha Pitta. **DIMENSIONAMENTO DOS PAVIMENTOS RODOVIÁRIOS DE CONCRETO**.

Disponível em < file:///C:/Users/oito/Downloads/ABCP%20escaneado.pdf>acesso em: 04 out. 2017.

Associação Brasileira de Cimento Portland. Engenheiro Abdo Hallack. **PAVIMENTO DE CONCRETO.** Disponível em http://www.ufjf.br/pavimentacao/files/2012/10/Aula-Pav.-R%C3%ADgido.pdf>acesso em: 03 mar. 2017.

DEPARTAMENTO DE ESTRADAS DE RODAGEM. **DER ET-DE-P00/011 – Sub-base ou base de macadame seco – Especificação de Serviço.** Curitiba: 2005.

DEPARTAMENTO DE ESTRADAS DE RODAGEM. **DER ET - DE - P00/009 – Sub-base ou base de brita graduada tratada com cimento – BGTC – Especificação técnica.** Curitiba: 2005.

DEPARTAMENTO NACIONAL DE ESTRADAS DE RODAGEM. **DNER 278/97 - Terraplenagem - Serviços preliminares - Especificações de serviço**. Rio de Janeiro: 2009.

DEPARTAMENTO NACIONAL DE ESTRADAS DE RODAGEM. **DNER 082/94, Solos - determinação do limite de plasticidade – Método de Ensaio.** Rio de Janeiro: 1994.

DNER 041/94 - Solos - Preparação de amostras para ensaios de caracteriza	ıção –
Método de Ensaio. Rio de Janeiro: 1994.	
DNER 035/98 - Agregados - Determinação da abrasão <i>Los Angeles</i> – Métod	do de
Ensaio. Rio de Janeiro: 1998.	
DNER 054/97 - Equivalente de areia – Método de Ensaio. Rio de Janeiro: 19	97.
DNER - ME 086/94 - Agregado – Determinação do índice de forma. Rio de	

DNER 089/94 - Agregados – Avaliação da durabilidade pelo emprego de
soluções de sulfato de sódio ou de magnésio – Método de Ensaio. Janeiro: 1994.
DNER 024/94 - Pavimento – Determinação das deflexões pela viga Benkelman –
Método de Ensaio. Janeiro: 2009.
DNER 129/94 – Compactação utilizando amostras não trabalhadas – Método de
Ensaio, Método A. Janeiro: 1994.
DNER 036/95 – Cimento Portland – recebimento e aceitação – Especificação de
Material. Janeiro: 1995.
DNER 122/94 – Determinação do limite de liquidez – método de referência e
método expedito - Método de Ensaio. Janeiro: 1994.
DNER 082/94 - Solos - determinação do limite de plasticidade — Método de
Ensaio. Janeiro: 1994.
DEPARTAMENTO NACIONAL DE INFRAESTRUTURA DE TRANSPORTES. DNIT
$139/2010 \ - Pavimenta \\ \tilde{c}ao - Sub-base\ estabilizada\ granulometricamente\ - \ Especifica\\ \tilde{c}ao$
de serviço. Rio de Janeiro: 2010.
DEPARTAMENTO NACIONAL DE INFRAESTRUTURA DE TRANSPORTES. DNIT ES
141/2010 - Pavimentação - Base estabilizada granulometricamente - Especificação de
serviço. Rio de Janeiro: 2010.
DNIT 108/2009 – Terraplenagem – Aterros – Especificação de Serviço. Rio de
Janeiro: 2009.
DNIT 106/2009 – Terraplenagem – Cortes – Especificação de serviço. Rio de
Janeiro: 2009.
DNIT 137/2010 — Pavimentação — Regularização do subleito — Especificação de
servico. Rio de Janeiro: 2009.

DNIT 105/2009 – Terraplenagem – Caminhos de serviço – Especificação de
serviço. Rio de Janeiro: 2009.
DNIT 107/2009 – Terraplenagem – Empréstimos – Especificação de serviço. Rio
de Janeiro: 2009.
DNIT 172/2016 – Solos – Determinação do Índice de Suporte Califórnia
utilizando amostra não trabalhadas – Método de ensaio. Rio de Janeiro: 2009.
DNIT - MANUAL DO PAVIMENTO RÍGIDO 2. ED. Rio de Janeiro, 2004.
DNIT - MANUAL DE PAVIMENTAÇÃO 3. ED. Rio de Janeiro, 2006.
Embrapa Florestas e Universidade Federal do Paraná. Núcleo de pesquisadores. MAPA
SIMPLIFICADO DE SOLOS DO ESTADO DO PARANÁ, 2012. Disponível em
http://www.escola.agrarias.ufpr.br/arquivospdf/mapa_solos_pr.pdf >acesso em: 03 mar. 2017.
Faculdade de Tecnologia de Pavimentação. Professor Edson. CLASSIFICAÇÃO DE
SOLOS HRB – HIGHWAY RESEARCH BORD – AASHTO - PARA FINALIDADES
$\textbf{RODOVI\'ARIAS}.\ Dispon\'{(}vel\ em< http://www.professoredmoura.com.br/download/Class$
HRB.pdf>acesso em: 01 out. 2017.
Portland Cement Association. José Eudes Marinho da Silva, Luiz Antonio Vieira Carneiro.
PAVIMENTOS DE CONCRETO: HISTÓRICO, TIPOS E MODELOS DE FADIGA.
Disponível em
http://rmct.ime.eb.br/arquivos/RMCT_3_tri_2014/RMCT_012_E2C_11.pdf >acesso em: 08
out. 2017.
Universidade do Estado de Santa Catarina. Núcleo de pesquisadores. TABELA HRB
(HIGHWAY RESEARCH BORD) - AASHTO. Disponível em
http://www.cct.udesc.br/arquivos/id_submenu/1470/classificacaorodoviariahrb.pdf

>acesso em: 01 out. 2017.

Universidade Federal de Juiz de Fora. Professor Geraldo Luciano de Oliveira Marques.

NOTAS DE AULA DA DISCIPLINA PAVIMENTAÇÃO. Disponível em

http://www.ufjf.br/pavimentacao/files/2012/03/Notas-de-Aula-Prof.-Geraldo.pdf>acesso em: 03 mar. 2017.

APÊNDICE A – LIMITES FÍSICOS

				LIM	IITES FÍSI	cos						
Rodovia:	BR-163		Furo:		N° Golpes:	12		Proctor:	Normal			
Trecho:	KM 172,40 - KM 182,40)	Amostra:	1		Horizonte:			Data:	07/08/2017		
Segmento:	Santa Maria - Vila Goes		Estaca:	8620		Material:	ARGILA		Operador:	Matheus Ra	mos Santos	
			ANÁLI	S E G	RANU	LOMÉT	RICA					
	UMIDADE HIGROS	CÓPICA				P	ENEIRAMI	ENTO GR	osso			
Cápsula Nº		30	35	Per	neira	P	eso da Amos	tra Seca (gf)	% que Pa	% que Passa de Amostra	
(a) Solo Úmid	lo + Tara (gf)	57,10	62,80	N°	mm	Retio	do	Pas	sando		Total	
(b) Solo Seco	+ Tara (gf)	48,20	52,80	2"	50,8							
(c) Tara da Ca	ápsula (gf)	12,20	11,90	1 1/2"	38,1							
(d) Água (a-b) (gf)	8,90	10,00	1"	25,4							
(e) Solo Seco	(b-c) (gf)	36,00	40,90	3/4"	19,1							
(f) Teor de Ur	midade (100*d/e) (%)	24,72	24,45	3/8"	9,5							
Haridada M2d	L. (0/)			4	4,8	0,0	,00 1		207,3	100,0%		
Umidade Média (%)		4	24,59		2,0	2,50		204,8	99,8%			
AMOGETPA TROTTAN GEGA				PENEIRAMENTO FINO								
AMOSTRA TOTAL SECA:			Recipiente I	Recipiente N°: Peso da Am. Parcial Úmida (gf):		nida (gf):	100,1					
(a) Amostra T	Cotal Úmida (gf)	1.	503,5	Pen	eiras	Amostra S	Seca (gf)	gf) Porcentagem que Passa		sa		
(b) Solo Seco	Retido na #10 (gf)		2,5	N°	mm	Retido	Passando	Amost	ra Parcial	Amo	ostra Total	
(c) Solo Úmid	lo Pass. #10 (a-b) (gf)	1.	501,0	10	2,000	0,00				ğ	99,8%	
(d) Solo S. Pa	ass. #10 (c/(1+h)) (gf)	1.	204,8	40	0,420	1,20	79,15	98	3,5%	98,3%		
(e) Amostra T	Cotal Seca (b+d) (gf)	1.	207,3	200	0,075	0,80	78,35	97	7,5%	ğ	97,3%	
			I	ENSAI	OS F	ÍSICOS	•					
			LIMI	TE DE LIQ	UIDEZ			LIMI	TE DE PLAS	STICIDADE	2	
Cápsula Nº		23	29	06			11	12	28	04	38	
Cápsula + Sol	lo Úmido (gf)	26,10	28,90	24,80			18,30	19,90	18,70	20,80	19,50	
Cápsula + Sol	lo Seco (gf)	21,40	23,60	20,10			16,63	17,90	16,90	18,50	17,90	
Peso da Cáps	sula (gf)	12,60	13,30	11,30			11,80	12,10	11,70	12,70	12,90	
Peso da Água	(gf)	4,70	5,30	4,70			1,67	2,00	1,80	2,30	1,60	
Peso do Solo	Seco (gf)	8,80	10,30	8,80			4,83	5,80	5,20	5,80	5,00	
Porcentagem (de Água (%)	53,4%	51,5%	53,4%			34,6%	34,5%	34,6%	39,7%	32,0%	
N° de Golpes		22	23	24						NÃO		
Constante		1,016	1,010	1,005								
Limite de Liqu	idez Calculado	52,6%	50,9%	53,1%								

RESUMO DOS ENSAIOS								
Pedregulho > 4,8 mm	Areia Grossa 4,8 - 2,0 mm	Areia Média 2,0 - 0,42 mm	Areia Fina 0,42 - 0,074 mm	Passando na #200				
0,00%	0,21%	1,49%	0,99%	97,31%				
LL	LP	IP	IG	Classificação HRB				
52,2%	33,9%	18,3%	14	A-7-5				

				L	IMITES F	ÍSICOS						
Rodovia:	BR-163		Furo:			Nº Golpes:	12		Proctor:	Normal		
Trecho:	KM 172,40 - KM 182,40		Amostra:	2		Horizonte:			Data:	14/08/2017		
Segmento:	Santa Maria - Vila Goes		Estaca:	8720		Material:	ARGILA		Operador:	Matheus Ramos Santos		
			ANÁI	LISE	GRAN	ULOMÉT	RICA					
	UMIDADE HIGROSO	CÓPICA				P	ENEIRAME	ENTO GRO	osso			
Cápsula Nº		11	09	Per	neira	Pe	eso da Amost	ra Seca (gf)		% que Pa	ssa de Amostra	
(a) Solo Úm	ido + Tara (gf)	65,30	58,20	N°	mm	Retid	О	Pas	sando	1	Total	
(b) Solo Sec	o + Tara (gf)	55,00	49,40	2"	50,8							
(c) Tara da (Cápsula (gf)	11,90	12,90	1 1/2"	38,1							
(d) Água (a-	b) (gf)	10,30	8,80	1"	25,4							
(e) Solo Sec	o (b-c) (gf)	43,10	36,50	3/4"	19,1							
(f) Teor de U	Jmidade (100*d/e) (%)	23,90	24,11	3/8"	9,5							
	(1° (0/)	2	1.00	4	4,8	0,00		1.1	191,7	1	00,0%	
Umidade Me	edia (%)	2	4,00	10	2,0	1,98	3	1.1	189,7	9	99,8%	
13406	CEDA TOTAL CECA.						PENEIRAN	MENTO FI	NO			
AMO	STRA TOTAL SECA:			Recipiente I	Nº:		Peso da An	n. Parcial Ún	nida (gf):		100,0	
(a) Amostra	Total Úmida (gf)	1.4	477,2	Pen	eiras	Amostra Se	eca (gf)		Porcent	agem que Pass	a	
(b) Solo Sec	o Retido na #10 (gf)		2,0	N°	mm	Retido	Passando	Amost	ra Parcial	Amostra Tota		
(c) Solo Úm	ido Pass. #10 (a-b) (gf)	1	475,3	10	2,000	0,00				9	99,8%	
(d) Solo S. F	Pass. #10 (c/(1+h)) (gf)	1.	189,7	40	0,420	1,30	79,34	98	3,4%	!	98,2%	
(e) Amostra	Total Seca (b+d) (gf)	1.	191,7	200	0,075	1,10	78,24	97	7,0%	9	96,9%	
		·		ENSA	I O S	FÍSICOS	•			•		
			LIM	IITE DE LI	QUIDEZ			LIMI	TE DE PLA	STICIDADE		
Cápsula Nº		03	30	22			28	39	06	35	04	
Cápsula + S	olo Úmido (gf)	24,30	27,90	22,20			18,10	20,60	19,60	20,00	19,20	
Cápsula + S	olo Seco (gf)	20,50	22,40	18,30			16,50	18,90	17,50	18,00	17,60	
Peso da Cáp	osula (gf)	13,30	12,20	11,50			11,70	13,80	11,30	11,90	12,60	
Peso da Águ	na (gf)	3,80	5,50	3,90			1,60	1,70	2,10	2,00	1,60	
Peso do Solo	o Seco (gf)	7,20	10,20	6,80			4,80	5,10	6,20	6,10	5,00	
Porcentagen	ı de Água (%)	52,8%	53,9%	57,4%			33,3%	33,3%	33,9%	32,8%	32,0%	
Nº de Golpe	s	22	24	21						•		
Constante		1,016	1,005	1,022			1					
Limite de Lic	quidez Calculado	51,9%	53,7%	56,1%								

	RESUMO DOS ENSAIOS												
Pedregulho > 4,8 mm	Areia Grossa 4,8 - 2,0 mm	Areia Média 2,0 - 0,42 mm	Areia Fina 0,42 - 0,074 mm	Passando na #200									
0,00%	0,17%	1,61%	1,36%	96,86%									
LL	LP	IP	IG	Classificação HRB									
53,9%	33,1%	20,8%	15	A-7-5									

Rodovia:	BR-163		Furo:			Nº Golpes:	12		Proctor:	Normal	
Trecho:	KM 172,40 - KM 182,40		Amostra:	3		Horizonte:			Data:	21/08/2017	
Segmento:	Santa Maria - Vila Goes		Estaca:	8820		Material:	ARGILA		Operador:	Matheus Ran	nos Santos
			ANÁI	ISE	GRAN	ULOMÉ	TRICA	1			
	UMIDADE HIGROSO	CÓPICA				1	PENEIRAM	ENTO GF	cosso		
Cápsula Nº		30	05	Pen	neira	I	Peso da Amos	stra Seca (g	f)		sa de Amosti
(a) Solo Úmi	do + Tara (gf)	72,60	66,40	N°	mm	Reti	do	Pa	ssando	7	Total
(b) Solo Seco	o + Tara (gf)	60,50	55,90	2"	50,8						
(c) Tara da C	Cápsula (gf)	12,20	12,30	1 1/2"	38,1						
(d) Água (a-l	o) (gf)	12,10	10,50	1"	25,4						
(e) Solo Seco	o (b-c) (gf)	48,30	43,60	3/4"	19,1						
(f) Teor de U	midade (100*d/e) (%)	25,05	24,08	3/8"	9,5						
(I'I. I. M/	F. (0/)	2.	1.57	4	4,8	0,0	0	1.	178,7	100,0%	
Umidade Mé	dia (%)	22	1,57	10	2,0	6,2	0	1.	172,5	9	9,5%
13500	ITTD A TROTTAL GERGA						PENEIRA	MENTO I	INO	•	
AMOS	TRA TOTAL SECA:			Recipiente I	Nº:		Peso da Am	. Parcial Úr	nida (gf):	1	00,0
a) Amostra Total Úmida (gf)		1.4	66,8	Pen	eiras	Amostra S	Seca (gf)		Porcent	agem que Passa	
(b) Solo Seco	Solo Seco Retido na #10 (gf) 6,2			N°	mm	Retido	Passando	Amos	tra Parcial	Amo	stra Total
(c) Solo Úmi	do Pass. #10 (a-b) (gf)	1.4	1.460,6 10 2,000 0,00				9	9,5%			
(d) Solo S. P	olo S. Pass. #10 (c/(1+h)) (gf) 1.172,5 40		40	0,420	1,70	78,58	9	7,9%	9	7,4%	
(e) Amostra	Total Seca (b+d) (gf)	1.1	78,7	200	0,075	0,90	77,68	9	6,8%	9	6,3%
				ENSA	IOS	FÍSICO	s			•	
			LIM	ITE DE LIC	QUIDEZ			LIM	ITE DE PLA	STICIDADE	
Cápsula Nº		11	22	29			06	04	35	39	09
Cápsula + So	olo Úmido (gf)	29,60	24,50	21,60			20,20	16,50	18,50	18,60	19,70
Cápsula + So	olo Seco (gf)	23,30	19,90	18,60			18,00	15,60	16,90	17,40	17,80
Peso da Cáp	sula (gf)	11,90	11,50	13,30			11,30	12,60	11,90	13,80	12,30
Peso da Água (gf)		6,30	4,60	3,00			2,20	0,90	1,60	1,20	1,90
Peso do Solo Seco (gf)		11,40	8,40	5,30			6,70	3,00	5,00	3,60	5,50
Porcentagem de Água (%)		55,3%	54,8%	56,6%			32,8%	30,0%	32,0%	33,3%	34,5%
N° de Golpes	S	24	24	22			<u>'</u>	NÃO	•	· '	NÃO
Constante		1,005	1,005	1,016			1				
Limite de Liq	uidez Calculado	55,0%	54,5%	55,7%			1				
			R	RESUMO D	OS ENSAI	ios					
	Pedregulho	Amin	Grossa	Areia	Mádio	Areia		·			

	RESUMO DOS ENSAIOS												
Pedregulho > 4,8 mm	Areia Grossa 4,8 - 2,0 mm	Areia Média 2,0 - 0,42 mm	Areia Fina 0,42 - 0,074 mm	Passando na #200									
0,00%	0,53%	2,11%	1,12%	96,25%									
LL	LP	IP	IG	Classificação HRB									
55,1%	32,7%	22,3%	16	A-7-5									

				LI	MITES FÍS	SICOS					
Rodovia:	BR-163		Furo:			Nº Golpes:	12		Proctor:	Normal	
Trecho:	KM 172,40 - KM 182,40		Amostra:	5		Horizonte:			Data:	04/09/2017	
Segmento:	Santa Maria - Vila Goes		Estaca:	9020		Material:	ARGILA		Operador:	Matheus Ran	nos Santos
			ANÁL	ISE G	RANU	LOMÉ	T R I C A				
	UMIDADE HIGROSCO	ÓPICA				P	ENEIRAMI	ENTO GR	osso		
Cápsula Nº		03	28	Per	neira	Pe	eso da Amost	ra Seca (gf))	% que Pas	sa de Amostra
(a) Solo Úmi	do + Tara (gf)	82,30	79,50	N°	mm	Reti	do	Pass	sando		Γotal
(b) Solo Seco	o + Tara (gf)	69,20	66,00	2"	50,8						
(c) Tara da C	Cápsula (gf)	13,30	11,70	1 1/2"	38,1						
(d) Água (a-l	o) (gf)	13,10	13,50	1"	25,4						
(e) Solo Seco	o (b-c) (gf)	55,90	54,30	3/4"	19,1						
(f) Teor de U	fmidade (100*d/e) (%)	23,43	24,86	3/8"	9,5						
	11. (0/)	2.1	15	4	4,8	0,0	0	1.1	81,3	10	00,0%
Umidade Mé	dia (%)	24	,15	10	2,0	1,2	6	1.1	80,0	9	9,9%
13.500	AMP A MOMAY GEORGA						PENEIRAN	MENTO FI	NO		
AMOS	AMOSTRA TOTAL SECA:			Recipiente 1	Nº:		Peso da An	n. Parcial Úr	nida (gf):	1	00,0
(a) Amostra	Total Úmida (gf)	1.4	56,2	Pen	eiras	Amostra S	Seca (gf)		Porcent	orcentagem que Passa	
(b) Solo Seco	o Retido na #10 (gf)	1	,3	N°	mm	Retido	Passando	Amostr	a Parcial	Amostra Tota	
(c) Solo Úmi	do Pass. #10 (a-b) (gf)	1.4	54,9	10	2,000	0,00				9	9,9%
(d) Solo S. P	ass. #10 (c/(1+h)) (gf)	1.1	80,0	40	0,420	1,80	78,75	97	,8%	9	7,7%
(e) Amostra	Total Seca (b+d) (gf)	1.1	81,3	200	0,075	0,80	77,95	96,8%		96,7%	
				ENSA	IOS F	ÍSICOS	3				
			LIM	ITE DE LI	QUIDEZ			LIMI	TE DE PLA	STICIDADE	;
Cápsula Nº		35	04	39			06	29	09	30	22
Cápsula + So	olo Úmido (gf)	18,60	20,10	19,60			20,30	21,50	23,60	25,10	23,00
Cápsula + So	olo Seco (gf)	16,30	17,50	17,60			18,10	19,50	20,80	21,90	20,00
Peso da Cáp	sula (gf)	11,90	12,60	13,80			11,30	13,30	12,30	12,20	11,50
Peso da Águ	a (gf)	2,30	2,60	2,00			2,20	2,00	2,80	3,20	3,00
Peso do Solo	Seco (gf)	4,40	4,90	3,80			6,80	6,20	8,50	9,70	8,50
Porcentagem	de Água (%)	52,3%	53,1%	52,6%			32,4%	32,3%	32,9%	33,0%	35,3%
N° de Golpes	S	25	25	26						•	NÃO
Constante		1,000	1,000	0,995			1				
Limite de Lia	uidez Calculado	52,3%	53,1%	52,9%			1				

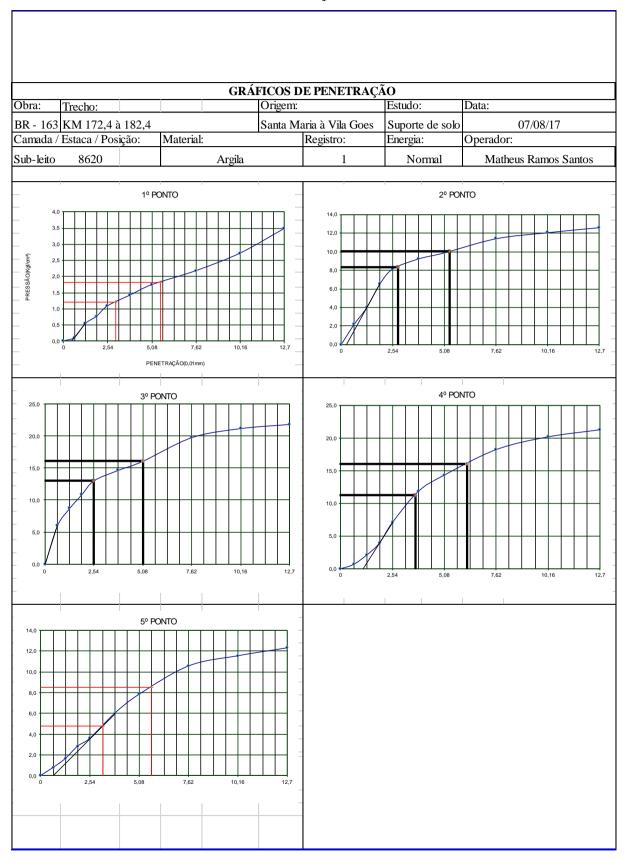
	RESUMO DOS ENSAIOS												
Pedregulho > 4,8 mm	Areia Grossa 4,8 - 2,0 mm	Areia Média 2,0 - 0,42 mm	Areia Fina 0,42 - 0,074 mm	Passando na #200									
0,00%	0,11%	2,23%	0,99%	96,67%									
LL	LP	IP	IG	Classificação HRB									
52,8%	32,6%	20,1%	15	A-7-5									

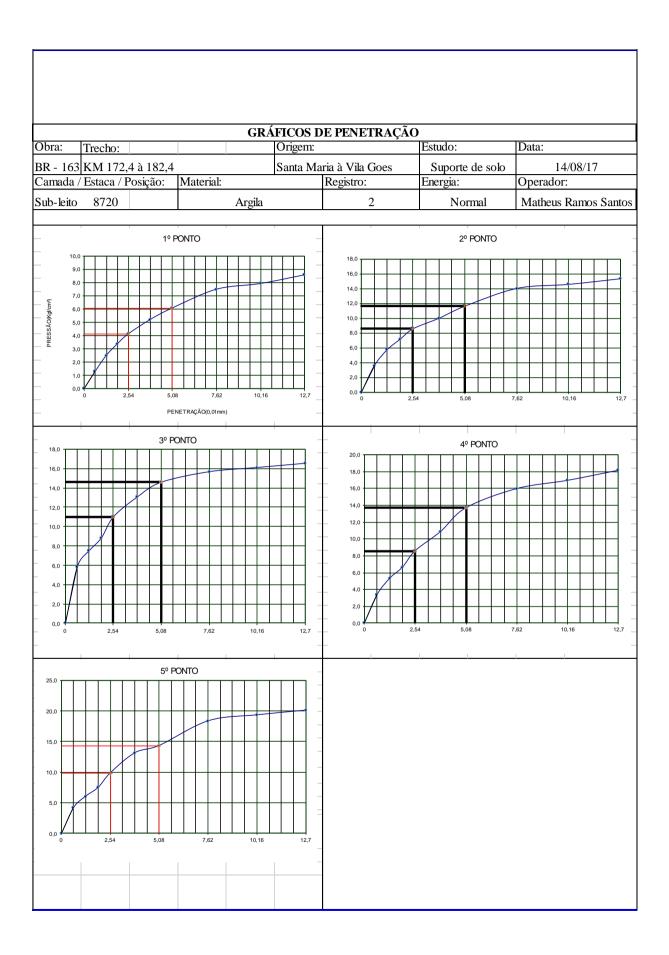
										N. 1	
Rodovia:	BR-163		Furo:			N° Golpes:	12		Proctor:	Normal	
Trecho:	KM 172,40 - KM 182,40		Amostra:	4		Horizonte:			Data:	28/08/2017	
Segmento:	Santa Maria - Vila Goes		Estaca:	8920		Material:	ARGILA		Operador:	Matheus Rar	nos Santos
			ANÁ	LISE	GRAN	ULOMÉ	TRICA	1			
	UMIDADE HIGROSC	ÓPICA					PENEIRAM	ENTO GRO	osso	1	
Cápsula Nº		23	12	Per	neira		Peso da Amos	tra Seca (gf)		_	sa de Amostra
(a) Solo Úmio	lo + Tara (gf)	80,20	84,60	N°	mm	Ret	ido	Pas	sando	· .	Total
(b) Solo Seco	+ Tara (gf)	66,80	70,00	2"	50,8						
(c) Tara da C	ápsula (gf)	12,50	12,10	1 1/2"	38,1						
(d) Água (a-b) (gf)	13,40	14,60	1"	25,4						
(e) Solo Seco	(b-c) (gf)	54,30	57,90	3/4"	19,1						
(f) Teor de U	midade (100*d/e) (%)	24,68	25,22	3/8"	9,5						
Umidade Mé	dia (%)	24	1,95	4	4,8	0,00		1.1	71,1	100,0%	
Ciliadae ivie	(70)	2-1	.,,,,	10	2,0	3,6	50	1.1	167,5	9	9,7%
AMOS'	TRA TOTAL SECA:						PENEIRA	MENTO FI	NO		
711100	TRIT TOTAL BLEIN			Recipiente I	Nº:		Peso da An	n. Parcial Úm	iida (gf):	1	100,0
(a) Amostra 7	Total Úmida (gf)	1.4	62,3	Pen	eiras	Amostra	Seca (gf)		Porcenta	agem que Passa	ı
(b) Solo Seco	Retido na #10 (gf)	3	3,6	N°	mm	Retido	Passando	Amost	ra Parcial	Amo	stra Total
(c) Solo Úmio	lo Pass. #10 (a-b) (gf)	1.4	58,7	10	2,000	0,00				9	9,7%
(d) Solo S. Pa	ass. #10 (c/(1+h)) (gf)	1.1	67,5	40	0,420	2,20	77,83	97	7,3%	9	7,0%
(e) Amostra T	Total Seca (b+d) (gf)	1.1	71,1	200	0,075	1,30	76,53	95	5,6%	9	5,3%
				ENSA	AIOS	FÍSICO	S				
			LIM	IITE DE LI	QUIDEZ			LIMI	TE DE PLA	STICIDADE	
Cápsula Nº		30	06	03			22	50	39	38	04
Cápsula + So	lo Úmido (gf)	24,90	27,30	21,90			17,00	17,60	20,40	19,20	18,40
Cápsula + So	lo Seco (gf)	20,50	22,40	18,90			15,70	16,60	18,70	17,70	17,00
Peso da Cáps	sula (gf)	12,20	13,30	13,30			11,50	13,60	13,80	12,90	12,60
Peso da Água	ı (gf)	4,40	4,90	3,00			1,30	1,00	1,70	1,50	1,40
Peso do Solo	so do Solo Seco (gf) 8,30		9,10	5,60			4,20	3,00	4,90	4,80	4,40
Porcentagem	de Água (%)	53,0%	53,8%	53,6%			31,0%	33,3%	34,7%	31,3%	31,8%
N° de Golpes		25	23	26					NÃO		
Constante		1,000	1,010	0,995							
Limite de Lia	uidez Calculado	53,0%	53,3%	53,9%							

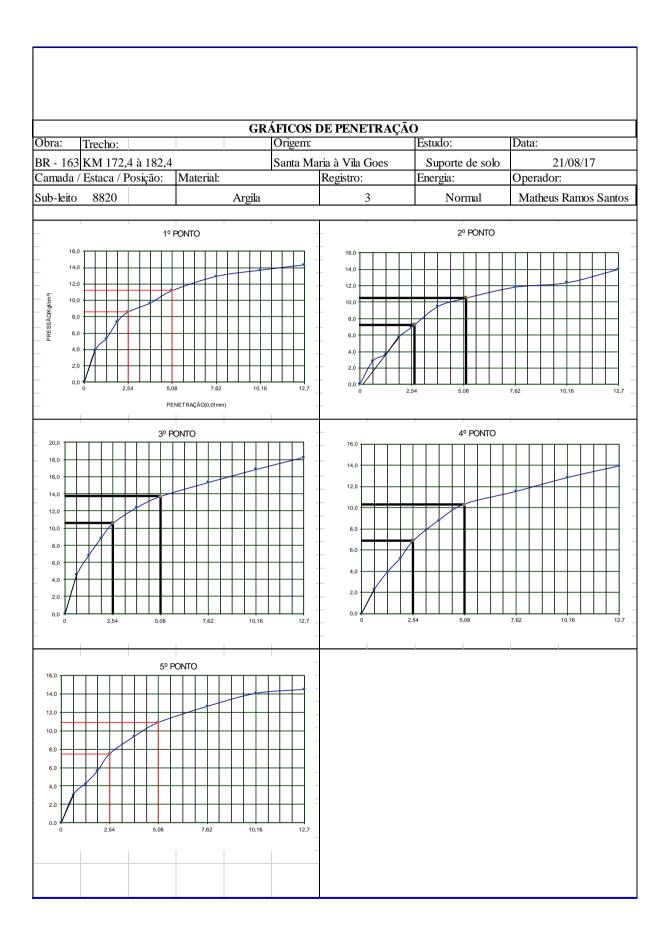
		RESUMO DOS ENSA	IOS	
Pedregulho > 4,8 mm	Areia Grossa 4,8 - 2,0 mm	Areia Média 2,0 - 0,42 mm	Areia Fina 0,42 - 0,074 mm	Passando na #200
0,00%	0,31%	2,74%	1,62%	95,33%
LL	LP	IP	IG	Classificação HRB
53,4%	31,8%	21,6%	15	A-7-5

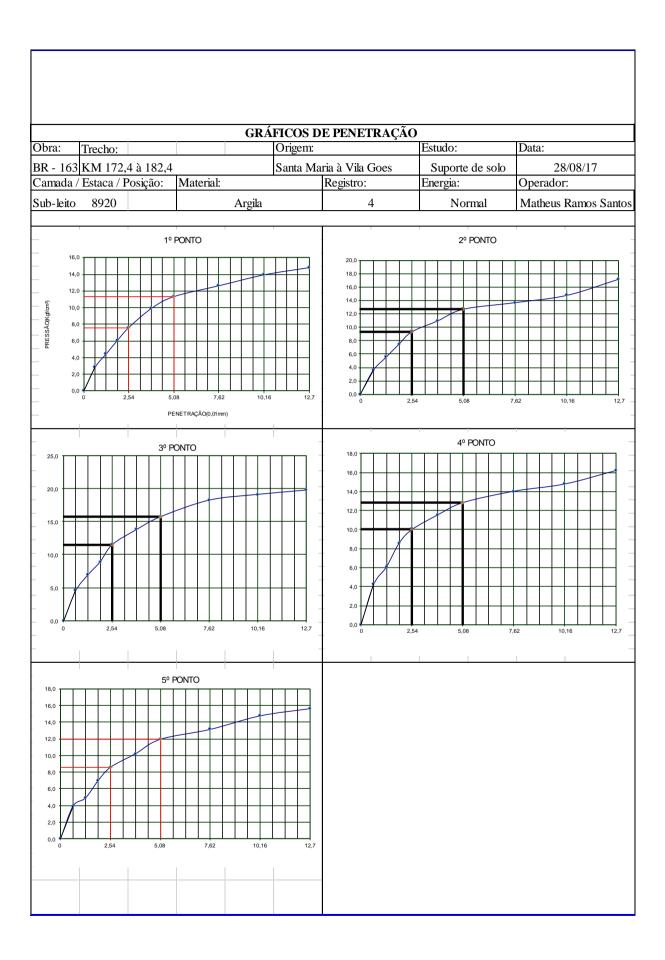
APÊNDICE B – ENSAIOS: CBR, COMPACTAÇÃO, DETERMINAÇÃO DE UMIDADE E EXPANSÃO

		ENICAI	O DE ÍND	TCE SIDOD	TE CALL	EÓDNIA DE	COLOC (DNER-ME (M0 04)		
Obra:	Trecho:	ENSAI	O DE IND	ICE SUPUR	Origem:	FUKNIA DE	SOLOS (Estudo:	149-94)	Data:	
BR - 163	KM 172,4 à 182	2.4			Santa Mar	ia à Vila Goes		Suporte d	e solo	07/08	8/17
	/ Estaca / Posição		Material:		Sum 1/10	Registro:		Energia:		Operador:	<i>3,</i> 1 <i>1</i>
Sub-leito	8620			Argila		1		Norm	nal	Matheus Rai	mos Santos
	0.00		l		COMP	ACTAÇÃO					
Cilindro 1		1:		9		5		17		2	
	icionada(ml) Solo Úmido(g)	7.1	-	200 8.15		300 8.40		400 7.71		50 9.50	
	Cilindro(g)	4.0		4.65		4.64		3.91		5.62	
	Solo Umido(g)	3.0		3.49		3.76		3.80		3.8	74
	lo Cilindro(cm³) par. Úmida(g/cm³)	2.0		2.07 1,68		2.080 1,80		2.07 1.83		2.0° 1,8°	
Dens. Ap	ai. Omida(g/cffr)	1,4	71	,		ÃO DA UMI		1,83	+	1,8	/ 1
Cápsula 1	nº	11	4	5	22	28	30	9	39	23	3
Cápsula+	Solo Umido(g)	101,50	112,80	80,30	86,00	71,40	74,50	79,80	71,90	87,20	97,70
Cápsula+ Peso da A	Solo Seco(g)	83,20 18,30	92,40 20,40	65,30 15,00	69,40 16,60	57,30 14,10	59,70 14,80	63,30 16,50	57,70 14,20	68,10 19,10	76,10 21.60
	Cápsula(g)	11,90	12,60	12,30	11,50	11,70	12,20	12,30	13,80	12,50	13.30
Peso do l	Solo Seco(g)	71,30	79,80	53,00	57,90	45,60	47,50	51,00	43,90	55,60	62,80
	Jmidade(%)	25,7	25,6	28,3	28,7	30,9	31,2	32,4	32,3	34,4	34,4
	Adotada(%) oar. Seca(g/cm³)	25	,	28, 1,31		31,1 1,38		32,4 1,38		34, 1.3	
Dens. 74	ar. Seed(genr)	1,1	07	1,51		ANSÃO	0	1,50	0	1,5) <u>2</u>
Data	Hora	Alt. CP (mm	114,30	Alt. CP (mm)		Alt. CP (mm)	114,30	Alt. CP (mm)	114,20	Alt. CP (mm)	114,30
Data	пога	Leitura	Expansão								
7/8/17	16:30	(mm) 1,00	(%) 0.00	(mm) 1,00	(%) 0.00	(mm) 1,00	(%) 0.00	(mm) 1,00	(%)	(mm) 1,00	(%)
8/8/17	16:30	1,00	0,00	1,12	0,00	1,00	0,08	1,00	0,00		0,00
9/8/17	16:30	1,54	0,47	1,44	0,39	1,14	0,12	1,12	0,11		0,03
10/8/17	16:30 16:30	1,69 1,98	0,60 0,86	1,51 1,78	0,45 0,68	1,20 1,23	0,17 0,20	1,14 1,18	0,12 0,16	1,04 1,05	0,03 0,04
11/8/17	10:50	1,90	0,80			CORPOS D		,	0,10	1,03	0,04
Anel dina	mométrico nº:		Constantes		0,1087		0,1087		0,1087		
tempo	penetração	Leitura	pressão								
min	(mm)	(0,001mm)	(kgf/cm²)	(0,001mm)	(kgf/cm²)	(0,001mm) 55	(kgf/cm²)	(0,001mm)	(kgf/cm²)	(0,001mm)	(kgf/cm²)
0,5 1	0,64 1,27	5	0,1 0,5	20 37	2,2 4,0	80	6,0 8,7	6 19	0,7 2,1	15	0,8 1,6
1,5	1,91	7	0,8	60	6,5	100	10,9	36	3,9	26	2,8
2	2,54	10		75 95	8,2	120	13,0	65	7,1	33	3,6
3 4	3,81 5,08	13 16	1,4 1,7	85 91	9,2 9,9	135 148	14,7 16,1	109 132	11,8 14,3	55 72	6,0 7,8
6	7,62	20	2,2	105	11,4	182	19,8	168	18,3	97	10,5
8	10,16	25	2,7	111	12,1	195	21,2	186	20,2	106	11,5
10 INDIC	12,70 CE SUPORTE	Garga.	3,5	116 Corres		201	21,8	196	21,3		12,3
	LIFÓRNIA	Carga Corrrigida	ISC (%)								
	S.C. 0,1"	1,2	(%)	8,4		13,0	18,6	11,3	16,0		(%)
	S.C. 0,2"	1,8		10,0		16,1	15,3	16,1	15,2	,	8,1
	SECA MÁX. (g/cm³)=	1,385	UMID. Ó	TIMA(%)=	33,2	I.S.C.(%)=		12,6	EXPANS	ÃO(%)=	0,15

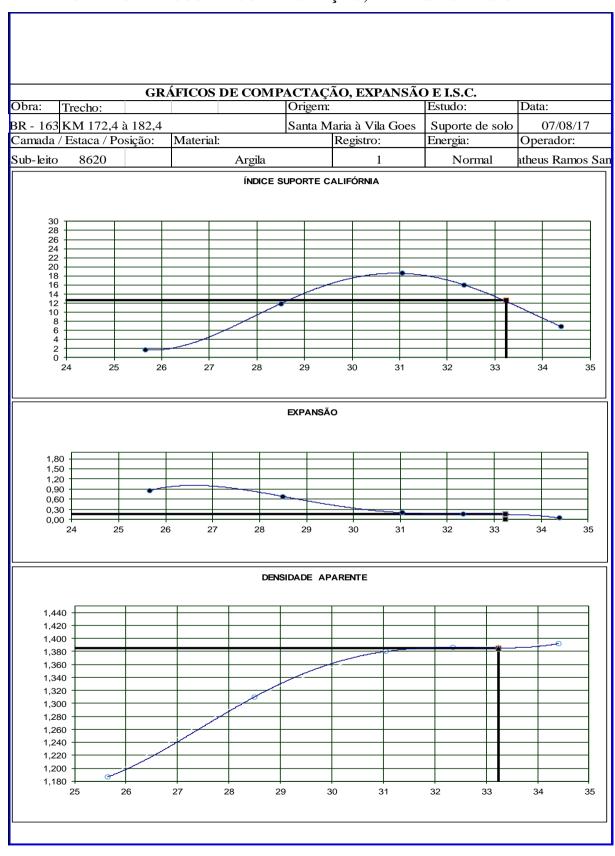

BR - 163 KM 172,4 à 182,4 Santa Maria à Via Goes Suporte de solo 14/081 Camada / Posição Material: Registro: Energia: Operador: Sub-leito 8720 Argia Ze Normal Matheus Rano COMPACTAÇÃO COMPAC	Ohree	T1	ENSAL	O DE IND	ICE SUPUR		FÓRNIA DE	SOLOS (Estudo:	149-94)	Datas	
Camada / Estaca / Posição Material: Registro: Energia: Operador:		Trecho:				Origem:					Data:	
Normal Matheus Ramo: COMPACTAÇÃO			,	N		Santa Mar				e solo		3/17
Compactação S	Camada	/ Estaca / Posição):	Material:			Registro:		Energia:		Operador:	
Clindro n	Sub-leito	8720			Argila				Norm	nal	Matheus Rai	mos Santos
Agua Adicionada(ml)	~*** 1			, ,		COMP						
Sindro-Sob Umido(g))				1	_	
Peso do Cilindro(g)				-								-
Volume do Cilindro(cm²) 2.080 2.070 2.074 2.072 2.078												
Dens. Apar. Umida(g/cm² 1,474												
DETERMINAÇÃO DA UMIDADE												
Capsula n° 38 12 22 39 3 4 30 6 5	Jens. Ap	oar. Umida(g/cm²)	1,4	/4					1,82	9	1,80	52
Cápsula+Solo Umido(g) 98,30 95,30 91,60 90,20 82,50 81,30 94,60 99,30 100,60	Tánculo :	n ^o	38	12					30	6	5 1	50
Capsula+Solo Seco(g)												100.00
Peso da Căpsula(g) 12,90 12,10 11,50 13,80 13,30 12,60 12,20 13,30 12,30 1	Cápsula+	⊦Solo Seco(g)	80,60	78,30	73,80	73,50		- ,	74,30	78,20		77,90
Peso do Solo Seco(g) 67,70 66,20 62,30 59,70 53,00 52,60 62,10 64,90 66,30							- , -				,	22,10
Peor de Umidade (%) 26,1 25,7 28,6 28,0 30,6 30,6 32,7 32,5 33,2 30,6 32,6 33,8 Dens. Apar. Seca(g/cm³) 1,171 1,286 1,373 1,379 1,392 Data			,	,								13,60 64,30
Data Hora Hora Leitura Expansão Leitura L			,		,							34,4
Data	Jmidade	Adotada(%)	- ,				, -	, -	,			
Data Hora Hora Leitura Expansão Leitura			1,1	71	1,28	36	1,373	3	1,37	9	1,39	92
Leitura Expansão Leitura						EXP	ANSÃO					
Centura Expansao Leitura	Data	Hora	Alt. CP (mm		Alt. CP (mm)	114,00	Alt. CP (mm)	114,30	Alt. CP (mm)	,	Alt. CP (mm)	114,30
14/8/17	Data	Hora						1				Expansão
15/8/17	1//0/17	14.00	` /	. ,	. ,	. ,	. ,		(/	. ,	\ /	(%)
16/8/17										- ,	,	0,0
18/8/17			, .				,		,			0,0
PENETRAÇÃO DOS CORPOS DE PROVAS Anel dinamométrico nº: Constantes do Anel 0,1087 a: 0,1087 0,1087								- ,-				0,0
Constantes do Anel 0,1087 a: 0,1087 D,1087	18/8/17	14:00	2,02	0,89			,	,	,	0,27	1,15	0,1
tempo penetração Leitura pressão Leitura <	1 .!		1	C		3			S	0.1007	T	
min (mm) (0,001mm) (kgf/cm²) (0,001mm) (0,001mm) (0,001mm) (0,001mm)			Leitura			-,		- ,	Leitura	-,	Leitura	pressão
0,5 0,64 12 1,3 33 3,6 54 5,9 31 3,4 39 1 1,27 23 2,5 53 5,8 69 7,5 49 5,3 56 1,5 1,91 31 3,4 66 7,2 81 8,8 61 6,6 69 2 2,54 38 4,1 79 8,6 101 11,0 79 8,6 91 3 3,81 48 5,2 92 10,0 120 13,0 100 10,9 121 4 5,08 56 6,1 107 11,6 134 14,6 126 13,7 132 6 7,62 69 7,5 129 14,0 144 15,7 147 16,0 169 8 10,16 73 7,9 134 14,6 148 16,1 156 17,0 178 10 12,70					Leitura							(kgf/cm²)
1,5 1,91 31 3,4 66 7,2 81 8,8 61 6,6 69 2 2,54 38 4,1 79 8,6 101 11,0 79 8,6 91 3 3,81 48 5,2 92 10,0 120 13,0 100 10,9 121 4 5,08 56 6,1 107 11,6 134 14,6 126 13,7 132 6 7,62 69 7,5 129 14,0 144 15,7 147 16,0 169 8 10,16 73 7,9 134 14,6 148 16,1 156 17,0 178 10 12,70 79 8,6 141 15,3 152 16,5 167 18,2 185 INDICE SUPORTE Carga ISC Carga ISC Carga ISC Carga ISC Carga (%) Corrrigida	0,5		12	1,3		3,6			31			4
2 2,54 38 4,1 79 8,6 101 11,0 79 8,6 91 3 3,81 48 5,2 92 10,0 120 13,0 100 10,9 121 4 5,08 56 6,1 107 11,6 134 14,6 126 13,7 132 6 7,62 69 7,5 129 14,0 144 15,7 147 16,0 169 8 10,16 73 7,9 134 14,6 148 16,1 156 17,0 178 10 12,70 79 8,6 141 15,3 152 16,5 167 18,2 185 INDICE SUPORTE Carga ISC Carga ISC Carga ISC Carga ISC Carga ISC Corrrigida (%) Corrrigida (%) Corrrigida (%) Corrrigida (%) Corrrigida (%) Corrrigida		, .								,		6
3 3,81 48 5,2 92 10,0 120 13,0 100 10,9 121 4 5,08 56 6,1 107 11,6 134 14,6 126 13,7 132 6 7,62 69 7,5 129 14,0 144 15,7 147 16,0 169 8 10,16 73 7,9 134 14,6 148 16,1 156 17,0 178 10 12,70 79 8,6 141 15,3 152 16,5 167 18,2 185 INDICE SUPORTE Carga ISC Carga ISC Carga ISC Carga CALIFÓRNIA Corrrigida (%)		,					_	,				7 9
4 5,08 56 6,1 107 11,6 134 14,6 126 13,7 132 6 7,62 69 7,5 129 14,0 144 15,7 147 16,0 169 8 10,16 73 7,9 134 14,6 148 16,1 156 17,0 178 10 12,70 79 8,6 141 15,3 152 16,5 167 18,2 185 INDICE SUPORTE Carga ISC Carga ISC Carga ISC Carga CALIFÓRNIA Corrrigida (%) Corrrigida (%) Corrrigida (%) Corrrigida (%) Corrrigida I.S.C. 0,1" 4,1 6 8,6 12,2 11,0 15,6 8,6 12,2 9,9		7-										13
6 7,62 69 7,5 129 14,0 144 15,7 147 16,0 169 8 10,16 73 7,9 134 14,6 148 16,1 156 17,0 178 10 12,70 79 8,6 141 15,3 152 16,5 167 18,2 185 INDICE SUPORTE Carga ISC Carga ISC Carga ISC Carga CALIFÓRNIA Corrrigida (%) Corrrigida (%) Corrrigida (%) Corrrigida (%) Corrrigida I.S.C. 0,1" 4,1 6 8,6 12,2 11,0 15,6 8,6 12,2 9,9			56	6,1								14
10 12,70 79 8,6 141 15,3 152 16,5 167 18,2 185 INDICE SUPORTE Carga ISC Carga ISC Carga ISC Carga ISC Carga CALIFÓRNIA Corrrigida (%) Pop 9,9		7,62	69	7,5	129	14,0	144	15,7	147	16,0	169	18
INDICE SUPORTECargaISCCargaISCCargaISCCargaISCCargaCALIFÓRNIACorrigida(%)Corrigida(%)Corrigida(%)Corrigida(%)CorrigidaI.S.C. 0,1"4,168,612,211,015,68,612,29,9												19
CALIFÓRNIA Corrrigida (%) Corrrigida (%) Corrrigida (%) Corrrigida I.S.C. 0,1" 4,1 6 8,6 12,2 11,0 15,6 8,6 12,2 9,9		,										20
I.S.C. 0,1" 4,1 6 8,6 12,2 11,0 15,6 8,6 12,2 9,9												ISC
								(%)			Corrrigida	(%) 14
LS.C. 0.2" 0.11 5.8[11.0] 11.0[14.0] 15.8[15.7] 15.0[14.5]		S.C. 0,1 S.C. 0,2"	6,1	5,8	11,6	,	14,6	13,8	13,7	13,0		13
			5,1	2,0	11,0	11,0	1.,0	12,0	10,7	12,0	1.,5	10
DENS. SECA MÁX. $(g/cm^3)=$ 1,379 UMID. ÓTIMA(%)= 32,6 LS.C.(%)= 13,0 EXPANSÃO(%)=			1,379	UMID. Ó	ΓΙΜΑ(%)=	32,6	I.S.C.(%)=		13,0	EXPANS	ÃO(%)=	0,

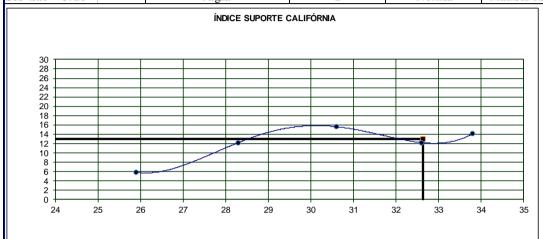

		ENSAI	O DE ÍND	ICE SUPOR	TE CALI	FÓRNIA DE	SOLOS (DNER-ME (149-94)		
Obra:	Trecho:				Origem:			Estudo:		Data:	
BR - 163	KM 172,4 à 18	2,4			Santa Mar	ia à Vila Goes		Suporte d	le solo	21/08	3/17
Camada .	/ Estaca / Posição):	Material:			Registro:		Energia:		Operador:	
Sub-leito	8820			Argila		3		Norm	nal	Matheus Rai	nos Santos
Sub-ICIO	8820			Aigia	СОМР	ACTAÇÃO		Nom	iai	Maticus Rai	nos samos
Cilindro 1	nº	1:	2	17	COMI	5 5		9		1 2	
	icionada(ml)	10		200)	300		400)	50	0
	-Solo Umido(g)	7.0		7.23		8.462		8.53		9.49	
eso do	Cilindro(g)	4.0		3.91		4.640		4.65		5.62	
eso do	Solo Umido(g)	2.9		3.32		3.822		3.87		3.8	
	do Cilindro(cm³) par. Umida(g/cm³)	2.0		2.07 1.60		2.080 1,833	-	2.07 1,86		2.0'	
ль. л р	a. Omaa(g/clir)	1,4	20	,		ÃO DA UMI		1,00	U	1,0	1 1
Cápsula i	n°	5	11	4	TWIINAÇ 12	30 30	50	6	23	28	39
	-Solo Umido(g)	96,30	94,20	99,50	102,30	80,10	86,30	91,70	90,60	88,20	93,60
Cápsula+	-Solo Seco(g)	78,60	77,60	80,30	82,60	64,20	69,20	72,60	71,00	68,20	72,90
Peso da A		17,70	16,60	19,20	19,70	15,90	17,10	19,10	19,60	20,00	20,70
	Cápsula(g)	12,30	11,90	12,60	12,10	12,20	13,60	13,30	12,50	11,70	13,80
	Solo Seco(g) Umidade(%)	66,30	65,70 25,3	67,70 28,4	70,50 27,9	52,00 30,6	55,60 30,8	59,30 32,2	58,50 33,5	56,50	59,10 35,0
	· Adotada(%)	26,7	,	28,4	_	30,6		32,2	_	35,4	
	par. Seca(g/cm³)	1.1		1,25		1,400		1.40		1,3	
201231 1 1	our geen(gem)	1,1		1,20		ANSÃO		1,.0	•	1,5	· · · · · · · · · · · · · · · · · · ·
		Alt. CP (mm	114,30	Alt. CP (mm)		Alt. CP (mm)	114,30	Alt. CP (mm)	114,20	Alt. CP (mm)	114,30
Data	Hora	Leitura	Expansão	Leitura	Expansão	Leitura	Expansão	Leitura	Expansão	Leitura	Expansão
		(mm)	(%)	(mm)	(%)	(mm)	(%)	(mm)	(%)	(mm)	(%)
21/8/17	13:30	1,00	,	1,00	0,00	1,00	0,00	1,00	0,00	,	0,0
22/8/17	13:30	1,01	0,01	1,05	0,04	1,02	0,02	1,10	0,09		0,1
23/8/17	13:30 13:30	1,09	0,08 0.12	1,11 1,19	0,10 0,17	1,09 1,12	0,08	1,14 1,19	0,12 0,17	1,19 1,23	0,1
25/8/17	13:30	1,14 1,22	0,12	1,19	0,17	1,12	0,10	1,19	0,17		0,2
23/0/17	15.50	1,22	0,17		-,-	CORPOS D	-,-		0,23	1,31	0,.
Anel dina	amométrico nº:		Constantes		0.1087		0.1087		0.1087		
tempo	penetração	Leitura	pressão	Leitura	pressão	Leitura	pressão	Leitura	pressão	Leitura	pressão
min	(mm)	(0,001 mm)	(kgf/cm²)		(kgf/cm²)	(0,001mm)	(kgf/cm²)	(0,001 mm)	(kgf/cm²)	(0,001mm)	(kgf/cm²)
0,5	0,64	36	3,9	26	2,8	42	4,6	21	2,3	28	3
1	1,27	49	5,3	34	3,7	63	6,8	36	3,9		4
1,5	1,91 2,54	68 79	7,4 8,6	53 64	5,8 7,0	81 97	8,8 10,5	48 63	5,2 6,8	52 69	5 7
3	3,81	89	9,7	87	9,5	114	10,5	81	8,8		9
4	5,08	103	11,2	96	10,4	126	13,7	95	10,3	100	10
6	7,62	119	12,9	109	11,8	141	15,3	106	11,5	116	12
8	10,16	126		114			16,8	118			14
10	12,70	132	14,3	129	14,0		18,3	128	13,9		14
	CE SUPORTE	Carga	ISC	Carga	ISC	Carga	ISC	Carga	ISC	Carga	ISC
	LIFÓRNIA	Corrrigida	(%)	Corrrigida	(%)	Corrrigida	(%)	Corrrigida	(%)	Corrrigida	(%)
	S.C. 0,1"	8,6		7,2	10,3	10,5	15,0	6,8	9,7	7,5	10
I.	S.C. 0,2"	11,2	10,6	10,5	10,0	13,7	13,0	10,3	9,8	10,9	10
	. SECA MÁX. (g/cm³)=	1,419	UMID. Ó	TIMA(%)=	31,7	I.S.C.(%)=		13,5	EXPANS	ÃO(%)=	0,

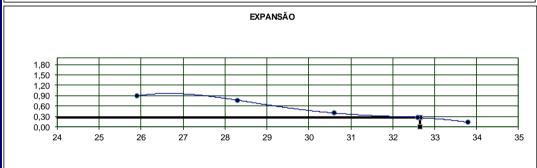

		ENSAI	O DE ÍND	ICE SUPOR	TE CALI	FÓRNIA DE	SOLOS (DNER-ME 0	49-94)			
Obra:	Trecho:				Origem:		20-02 (Estudo:		Data:		
BR - 163	KM 172,4 à 18	2.4			Santa Mar	ia à Vila Goes		Suporte d	e solo	28/08	2/17	
	Estaca / Posição	,	Material:			Operador:	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					
Sub-leito	8920			Argila		4		Norm	na1	Matheus Rai	noc Santos	
Juo-Kito	6720			Aigia	COMP	ACTAÇÃO		Non	KII	Waticus Kai	nos pantos	
Cilindro r	ľ	5	5	12		9		17		2		
	icionada(ml)	10		200	-	300		400		50		
	Solo Umido(g)	7.9		7.61		8.46		7.77	-	9.5		
	Cilindro(g) Solo Umido(g)	4.6		4.07 3.54		4.650 3.809	-	3.91		5.62 3.88	- , -	
	lo Cilindro(cm³)	2.0		2.07		2.073		2.07		2.0		
	ar. Umida(g/cm³)	1,6		1,71		1,833		1,86		1,87		
			LI CONTRACTOR OF THE CONTRACTO	DETE	RMINAÇ	ÃO DA UMI	DADE					
Cápsula r		11	9	6	35	4	23	3	30	12	38	
	Solo Umido(g)	101,50	112,80	80,30	86,00	71,40	74,50	79,80	71,90	87,20	97,70	
Cápsula+ Peso da A	Solo Seco(g)	83,20 18,30	92,40 20,40	65,30 15,00	69,40 16,60	57,30 14,10	59,70 14,80	63,30 16,50	57,70 14,20	68,10 19,10	76,10 21,60	
	Cápsula(g)	11,90	12.90	11.30	11,90	12.60	12.50	13.30	12.20	12.10	12,90	
Peso do S	Solo Seco(g)	71,30	79,50	54,00	57,50	44,70	47,20	50,00	45,50	56,00	63,20	
	Jmidade(%)	25,7	25,7	27,8	28,9	31,5	31,4	33,0	31,2	34,1	34,2	
	Adotada(%)	25		28,		31,5		32,1		34,		
Jens. Ap	ar. Seca(g/cm³)	1,2	.19	1,33		1,394 ANSÃO	+	1,41	1	1,39	99	
	I	Ak CD (mana	114,30	Alt. CP (mm)	114,00	Alt. CP (mm)	114,30	Alt. CP (mm)	114,20	Alt CD (mans)	114.20	
Data	Hora	Alt. CP (mm Leitura	Expansão	Leitura	Expansão	Leitura	Expansão	\ /	Expansão	Alt. CP (mm) Leitura	114,30 Expansão	
		(mm)	(%)	(mm)	(%)	(mm)	(%)	(mm)	(%)	(mm)	(%)	
28/8/17	14:00	1,00		1,00		1,00		,	0,00	1,00	0,0	
29/8/17	14:00	1,10		1,08	0,07	1,12	0,10	,	0,05	1,08	0,0	
30/8/17	14:00 14:00	1,16 1,22	0,14 0,19	1,14 1,20	0,12 0,18	1,21 1,26	0,18	1,14 1,21	0,12 0,18	1,14 1,19	0,1	
1/9/17	14:00	1,22	0,19	1,20	0,18	1,34	0,23		0,18	1,19	0,1	
1,7,1,	1.100	1,01	0,27		- , -	CORPOS D	,	,	0,20	1,20	0,2	
Anel dina	mométrico nº:		Constantes		0,1087	a:			0,1087			
tempo	penetração	Leitura	pressão	Leitura	pressão	Leitura	pressão	Leitura	pressão	Leitura	pressão	
min	(mm)	(0,001mm)		22	(kgf/cm²)	(0,001mm)	(kgf/cm²)	(0,001mm)	(kgf/cm²)	(0,001mm)	(kgf/cm²)	
0,5	0,64 1,27	26 41	2,8 4,5	33 51	3,6 5,5	42 64	4,6 7,0	39 56	4,2 6,1	36 45	3	
1,5	1,91	56	,	69	7,5	82	8,9	79	8,6	64	7	
2	2,54	70		86	9,3	106	11,5	92	10,0	79	8	
3	3,81	91	9,9	101	11,0	127	13,8	106	11,5	94	10	
<u>4</u> 6	5,08 7,62	104 116	,-	117 126	12,7 13,7	145 168	15,8 18,3	118 129	12,8 14,0	110 121	12 13	
8	10,16	128		136	14,8	176		136	14,0	136	13	
10	12,70	136		158	17,2	182	19,8		16,2	144	15	
INDIC	E SUPORTE	Carga	ISC	Carga	ISC	Carga	ISC	Carga	ISC	Carga	ISC	
	LIFÓRNIA	Corrrigida	(%)	Corrrigida	(%)	Corrrigida	(%)	Corrrigida	(%)	Corrrigida	(%)	
	S.C. 0,1"	7,6		9,3	13,3	11,5	16,4		14,2		12	
	S.C. 0,2"	11,3	10,7	12,7	12,1	15,8	15,0	12,8	12,2	12,0	11	
	SECA MÁX. g/cm³)=	1,424	UMID. Ó	TIMA(%)=	33,1	I.S.C.(%)=		11,2	EXPANS	ÃO(%)=	0,	

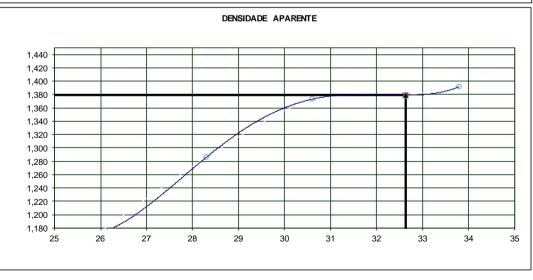

		ENSAI	O DE ÍND	ICE SUPOR	TE CALI	FÓRNIA DE	SOLOS (DNER-ME (149-94)		
Obra:	Trecho:				Origem:			Estudo:		Data:	
BR - 163	KM 172,4 à 182	2,4			Santa Mar	ia à Vila Goes		Suporte d	le solo	04/09	/17
Camada /	amada / Estaca / Posição: Material: Registro: Energia: Operador:										
Sub-leito							nos Santos				
740 10110	0,20			1 II guiii	COMP	ACTAÇÃO		11011		Traditions Turi	nos sumo.
Cilindro r	1º	2	,	9	001.111	17		12		5	
	icionada(ml)	10		200		300		400		50	
	Solo Umido(g)	8.7		8.12		7.69		7.94		8.54	
	Cilindro(g) Solo Umido(g)	5.62 3.0	,	4.65 3.46		3.91 3.78		4.07 3.87	-	4.64 3.90	
	lo Cilindro(cm³)	2.0	-	2.07		2.07		2.07		2.08	
	oar. Umida(g/cm³)	1,4		1,66		1,82		1,86		1,8	
	<u> </u>	,				ÃO DA UMI		, , , , , , , , , , , , , , , , , , , ,		. , , , , , , , , , , , , , , , , , , ,	
Cápsula 1		9	23	3	39	30	4	12	6	5	28
	Solo Úmido(g)	88,20	92,00	105,00	97,30	94,20	99,90	84,60	96,70	105,40	100,60
Cápsula+ Peso da <i>a</i>	-Solo Seco(g)	72,10	75,20	84,60 20,40	78,60 18,70	75,00 19.20	79,70 20,20	67,00 17.60	75,90 20.80	81,40 24.00	78,20 22,40
	Agua(g) Cápsula(g)	16,10 12,30	16,80 12,50	13,30	13,80	19,20	12,60	17,60	13,30	12,30	11,70
eso do S	Solo Seco(g)	59.80	62,70	71.30	64.80	62,80	67.10	54.90	62.60	69.10	66,50
	Umidade(%)	26,9	26,8	28,6	28,9	30,6	30,1	32,1	33,2	34,7	33,7
Umidade Adotada(%) 26,9				28,8 30,4			32,7 34,2				
Dens. Ap	oar. Seca(g/cm³)	1,1	75	1,29		1,40	2	1,40	7	1,40	00
	,					ANSÃO	1			1	
Data	Hora	Alt. CP (mm		Alt. CP (mm)	,	Alt. CP (mm)		Alt. CP (mm)	114,20	Alt. CP (mm)	114,30
		Leitura (mm)	Expansão (%)	Leitura (mm)	Expansão (%)	Leitura (mm)	Expansão (%)	Leitura (mm)	Expansão (%)	Leitura (mm)	Expansão (%)
4/9/17	16:30	1.00		1,00	0.00	1,00		. ,	0.00	` ′	(%)
5/9/17	16:30	1,22	0,19	1,12	0,11	1,09			0,04	,	0,
6/9/17	16:30	1,54	0,47	1,44	0,39	1,14	0,12	1,12	0,11	,	0,0
7/9/17	16:30	1,69	0,60	1,51	0,45	1,20	,	1,14	0,12		0,0
8/9/17	16:30	1,98	0,86	1,78	0,68	1,23	0,20	1,18	0,16	1,05	0,0
nol dino	mométrico nº:		Constantes		ÇAO DOS 0.1087	CORPOS D	E PROVA 0.1087	AS .	0.1087	I	
tempo	penetração	Leitura	pressão	Leitura	pressão	Leitura	pressão	Leitura	pressão	Leitura	pressão
min	(mm)	(0,001mm)		Leitara	(kgf/cm²)	(0,001mm)	(kgf/cm²)	(0,001mm)	(kgf/cm²)	(0,001mm)	(kgf/cm ²
0,5	0,64	25	2,7	41	4,5	39	4,2	8	0,9		3
1	1,27	39	4,2	62	6,7	55			2,2	47	5
1,5	1,91	52	5,7	78	8,5	80	- 7 -	31	3,4		
3	2,54 3.81	66 82	7,2 8,9	91 102	9,9 11.1	96 108	10,4 11.7	47 63	5,1	82 99	10
4	5,08			116			, , , ,		2 2	100	
6	7,62	96 108	11,7	123	12,6 13,4	123	12,4 13,4	98	8,8 10,7	116	11
8	10,16	119	12,9	134	14,6	131	14,2	107	11,6	125	13
10	12,70	128	13,9	141	15,3	138		119	12,9	137	14
	CE SUPORTE	Carga	ISC	Carga	ISC	Carga	ISC	Carga	ISC	Carga	ISC
	LIFÓRNIA	Corrrigida	(%)	Corrrigida	(%)	Corrrigida	(%)	Corrrigida	(%)	Corrrigida	(%)
	S.C. 0,1"	7,2	10	9,9	14,1	10,4	14,8	6,0	8,6		12
I.	S.C. 0,2"	10,4	9,9	12,6	12,0	12,4	11,8	9,3	8,8	11,8	11
DENS. SECA MÁX. (g/cm³)=		1,424	1,424 UMID. ÓTIMA(%)=		31,5	I.S.C.(%)=		12,2 EXPANSÃ		ÃO(%)=	0,

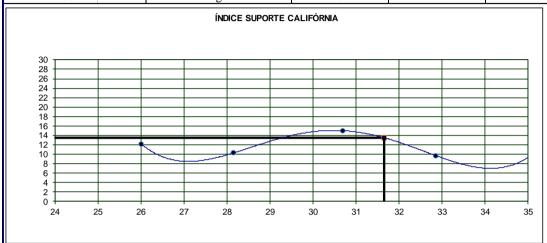
APÊNDICE C – GRÁFICOS DE PENETRAÇÃO

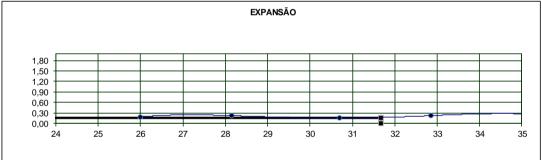


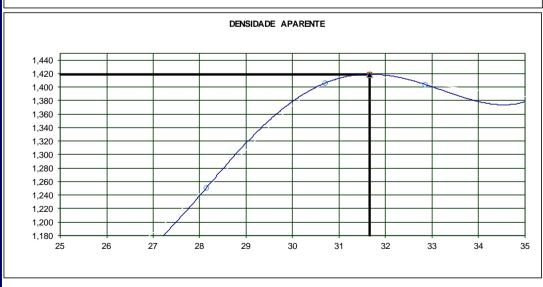


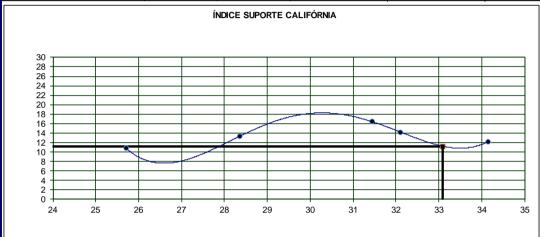

GRÁFICOS DE PENETRAÇÃO Obra: Trecho: Origem: Estudo: Data: BR - 163 KM 172,4 à 182,4 Santa Maria à Vila Goes Suporte de solo 04/09/17 Camada / Estaca / Posição: Material: Registro: Energia: Operador: Sub-leito 9020 Argila 5 Normal Matheus Ramos Santos								
10 PONTO 16,0 14,0 12,0 10	12,7	18.0 16.0 14.0 12.0 10.0 8.0 6.0 4.0 2.0 0.0 0 2.6	+ + + + + + + + + + + + + + + + + + + +	7,62 10,16 12,7				
3º PONTO 14.0 12.0 10.0 8.0 4.0 2.0 0.0 2.54 5.08 7.62 10.16	12,7	14,0	4º PONTO	7,62 10,16 12,7				

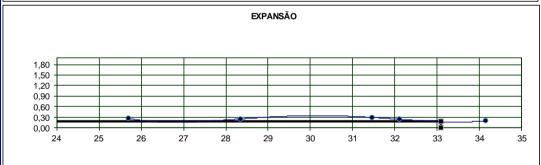

APÊNDICE D -GRÁFICOS DE COMPACTAÇÃO, EXPANSÃO E I.S.C

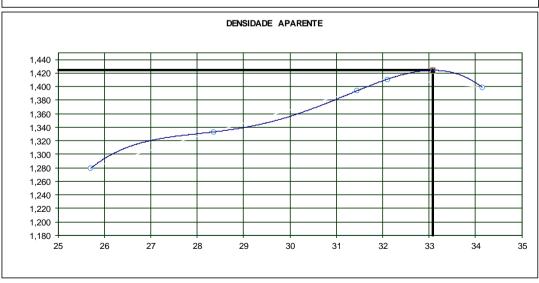

	GRÁFICOS DE COMPACTAÇÃO, EXPANSÃO E I.S.C.									
Obra:	Trecho:			Origem:		Estudo:	Data:			
BR - 163	KM 172,	4 à 182,4		Santa Ma	aria à Vila Goes	Suporte de solo	14/08/17			
Camada / Estaca / Posição: Material:				Registro:	Energia:	Operador:				
Sub-leito	8720		Argil	a	2	Normal	Matheus Ramos Santos			

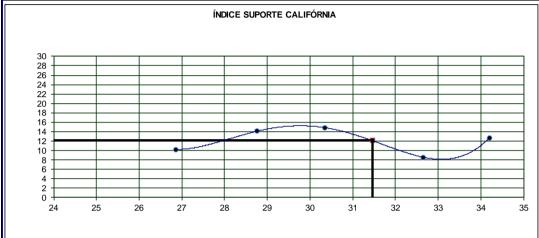


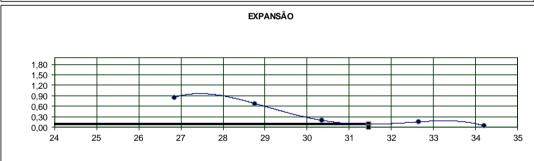


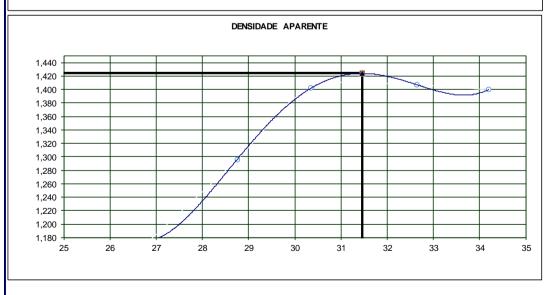

	GRÁFICOS DE COMPACTAÇÃO, EXPANSÃO E I.S.C.									
Obra:	Trecho:				Origem:		Estudo:	Data:		
BR - 163 KM 172,4 à 182,4					Santa Maria à Vila Goes		Suporte de solo	21/08/17		
Camada	/Estaca /	Posição:	Material:			Registro:	Energia:	Operador:		
Sub-leito	8820			Argila		3	Normal	Matheus Ramos Santos		






GRÁFICOS DE COMPACTAÇÃO, EXPANSÃO E I.S.C.										
	Origem:	Estudo:	Data:							
	Santa Maria à Vila Goes	Suporte de solo	28/08/17							
Material:	Registro:	Energia:	Operador:							
Argila	4	Normal	Matheus Ramos Santos							
	Material:	Origem: Santa Maria à Vila Goes Material: Registro:	Origem: Estudo: Santa Maria à Vila Goes Suporte de solo Material: Registro: Energia:							





	GRÁFICOS DE COMPACTAÇÃO, EXPANSÃO E I.S.C.										
Obra:	Trecho:		Origem:		Estudo:	Data:					
BR - 163	KM 172,4 à 1	82,4	Santa Mar	ria à Vila Goes	Suporte de solo	04/09/17					
Camada	/ Estaca / Posiç	ão: Material:	•	Registro:	Energia:	Operador:					
Sub-leito	9020	A	Argila	5	Normal	Matheus Ramos Santos					

