Uso de cama de aviário na adubação da cultura do milho

1 2

Pedro Henrique Dariva¹ e Carlos Roberto Moreira²

Resumo: A substituição parcial de fertilizantes minerais por cama de aviário pode ser uma boa alternativa para a redução de custos em culturas comercias como o milho que são muito exigentes em nutriente. Os objetivos deste trabalho foram avaliar os teores de N, P e K e, peso de matéria seca (PMS) da parte aérea da cultura do milho com a aplicação de cama de aviário em diferentes dosagens. O experimento foi realizado no Centro de desenvolvimento tecnológico, do Centro Universitário FAG, no Município de Cascavel – PR. O delineamento experimental foi inteiramente casualizados - DIC, sendo cinco tratamentos e quatro repetições, a saber: T1: 5 t ha⁻¹ de cama de aviário, T2: 10 t ha⁻¹ de cama de aviário, T3: 20 t ha⁻¹ de cama de aviário, T4: 40 t ha⁻¹ de cama de aviário e o T5 ha⁻¹: testemunha - sem cama de aviário, totalizando 20 unidades experimentais. Os dados foram submetidos às análises de variância por intermédio do software ASSISTAT. Os resultados mostram que os teores de N, P e K não tiveram diferenças significativas entre os tratamentos. Em relação ao PMS houve diferença significativa entre os tratamentos com cama de aviário entre si e também em relação à testemunha. O melhor rendimento de PMS foi obtido no tratamento (T4) com 40 t ha⁻¹ e o pior rendimento na testemunha (T5), sendo que T1, T2 e T3 foram estatisticamente iguais.

Palavras-chave: Resíduos de aves, adubação orgânica, saneamento rural.

Use of poultry litter in maize crop fertilization

Abstract: The partial replacement of mineral fertilizers per poultry litter can be a good alternative for reducing costs in commercial crops such as corn that are very nutrient-demanding. The objective of this work was to evaluate the N, P and K contents and dry matter weight (SMP) of the aerial part of the corn crop with the application of aviary bed in different dosages. The experimental design was completely randomized - DIC, with five treatments and four replicates, namely: T1: 5 t ha-1 bed. The experiment was carried out at the Center for Technological Development of the University Center FAG in the Municipality of Cascavel. Of aviary, T2: 10 t ha-1 of aviary bed, T3: 20 t ha-1 of aviary bed, T4: 40 t ha-1 of aviary bed and the T5 ha-1: witness - without aviary bed, totaling 20 experimental units. The data were submitted to analysis of variance through ASSISTAT software. The results show that the N, P and K contents did not have significant differences between the treatments. In relation to PMS, there was a significant difference between treatments with aviary bed between them and also in relation to the control. The best PMS yield was obtained in the treatment (T4) with 40 t ha-1 and the worst yield in the control (T5), with T1, T2 and T3 being statistically the same.

Key words: Bird waste, organic fertilization, rural sanitation.

¹ Formando do curso de agronomia do Centro Universitário Assis Gurgacz – PR. pedrohdariva@gmail.com

² Professor Doutor do curso de Agronomia do Centro Universitário Assis Gurgacz – PR. crmoreira3@fag.edu.br

43 Introdução

A cultura do milho (*Zea mays L.*) é o cereal de maior volume de produção no mundo, com aproximadamente 960 milhões de toneladas. Estados Unidos, China, Brasil e Argentina são os maiores produtores, representando 70% da produção mundial. O Brasil com uma área agrícola de 60 milhões de hectares, ocupando 7% do total de terras, estimado em 851 milhões de hectares, aproximadamente 5,5 milhões de imóveis rurais e uma produção ao redor de 190 milhões de toneladas, o Brasil é um país que vem se destacando, sendo de grande importância dentro do cenário agrícola mundial.

As projeções de carnes para o Brasil mostram que esse setor deve apresentar intenso crescimento nos próximos anos. Entre as carnes, as que projetam maiores taxas de crescimento da produção no período 2013 a 2023 é a carne de frango, que deve crescer anualmente a 3,9%. Essa taxa corresponde a acréscimo na produção entre 2013 e 2023, de 46,4%. As projeções do consumo mostram a preferência dos consumidores brasileiros pela carne bovina com um aumento de 42,8% no consumo nos próximos 10 anos, entretanto, em segundo lugar vêm à carne de frango no crescimento do consumo com uma variação de 26,2% nos próximos anos. Em nível inferior de crescimento situa-se a projeção do consumo de carne suína, com aumento projetado de 18,9% para 2022/23 (BRASIL, 2013).

Entre os fatores responsáveis pela alta produtividade da cultura do milho está o aumento expressivo do uso dos fertilizantes químicos. Principalmente, o nitrogênio que é o nutriente mais exigido pela cultura, sendo o que mais frequentemente limita a produtividade de grãos, pois exerce importante função nos processos bioquímicos da planta, como constituinte de proteínas, enzimas, coenzimas, ácidos nucleicos, fito cromos e clorofila (FORNASIERI FILHO, 2007; RODRIGUES *et al.*, 2011).

O aumento do custo dos adubos químicos e o aumento da poluição ambiental tornam o uso de resíduos orgânicos na agricultura uma opção atrativa do ponto de vista econômico, em razão da ciclagem de carbono e nutrientes (SILVA *et al.*, 2010). Este fato tem aumentado a demanda por pesquisas para avaliar a viabilidade técnica e econômica dessa utilização (MELO *et al.*, 2008).

A substituição parcial de fertilizantes minerais por adubos orgânicos pode ser uma excelente alternativa para a uma produção sustentável. Para Graciano *et al.* (2006) são várias as fontes de adubo orgânico, as mais comuns são adubos verdes, resíduos de culturas, estercos, compostos, entre outros. Porém, a escolha do resíduo a ser usado está em função de sua disponibilidade, variando entre as regiões e a cultura nas quais se fará seu emprego.

Principalmente os resíduos orgânicos da criação de aves, que região oeste do Paraná a atividade da avicultura de corte é uma das principais atividades econômicas. Este sistema de produção gera uma significativa quantidade de resíduos, onde se destaca a cama de aviário. A cama de aviário é o produto da mistura de excrementos de aves, penas, fragmentos de material sólido e orgânico utilizados sobre os pisos dos aviários, acrescidos da ração desperdiçada dos comedouros. É produzida por vários ciclos, sendo geralmente reutilizada de 4 a 6 vezes (ALVES, 1991; HAHN, 2004, *apud* SILVA et al., 2011).

O uso da cama de frango tem inúmeras vantagens, por estar disponível nas propriedades a um baixo custo, sendo encontradas próximas às áreas de plantio, viabilizando a adubação em culturas comerciais (COSTA *et al.*, 2009). E quando utilizada adequadamente pode aumentar a produtividade de grãos, melhorar a fertilidade do solo, diminuir o potencial poluidor no descarte do resíduo, tornando-se um importante fator agregador de valor.

A cama de aviário se bem manejada poderá ser uma importante fonte de renda para agregar valor à atividade, sendo um bom exemplo de produção sustentável exigido pelo mercado consumidor. Para Konzen & Alvarenga (2010), os aviários produzem uma quantidade elevada de resíduos orgânicos diariamente, se manejados de forma correta, transformam-se em adubo rico em nutrientes importantes no cultivo de vegetais.

Novakowiski *et al.* (2013), avaliando a cama de aviário na produção de milho orgânico, observaram uma resposta quadrática na produtividade de grãos de milho em função do aumento das dosagens, este resultado pode estar relacionado ao aumento de suprimentos de nutrientes, fornecidos via adubação com cama de aviário.

A adição ao solo de cama aviária aumenta o pH, devido ao aumento da matéria orgânica e diminui o teor de alumínio trocável, e, portanto, diminui os efeitos tóxicos deste íon para as plantas (GIANELLO & ERNANI, 1983). Além de melhorar as condições físicas, químicas e biológicas do solo (KONZEN e ALVARENGA, 2010). Constitui-se em um sistema de produção de alimentos em harmonia com o ambiente (SENAR, 2004).

Destaca-se a importância do manejo correto do resíduo orgânico, afim de não ocorrer contaminação e agressão ao ambiente. Assim, é preciso utilizar os resíduos orgânicos de forma que possibilitem uma produção em harmonia com a natureza (KONZEN e ALVARENGA, 2010), trazendo a responsabilidade de achar soluções para mitigar as situações desfavoráveis, principalmente, quanto o uso inadequado deste resíduo agrícola.

O objetivo deste trabalho foi avaliar os teores de N, P e K e, matéria seca da parte aérea da cultura do milho com a aplicação de cama de aviário nas dosagens de 5 t ha-1, 10 t ha-1, 20 t ha-1 e 40 t ha-1.

110 Material e Métodos

O experimento foi realizado na Fazenda Escola do Centro Universitário FAG, localizada no Centro de desenvolvimento tecnológico (CEDETEC), no Município de Cascavel – PR, com latitude 24°56'31,6" Sul, longitude 53°30'37,9" oeste e uma altitude de 699 metros.

O cultivo foi conduzido em casa de vegetação, onde as unidades experimentais foram compostas por vasos plásticos de 20 litros, com área superficial de 0,07 m². O solo utilizado é classificado como Latossolo Vermelho Distroférrico típico, coletado de 0 a 20 cm de profundidade, o clima da região é subtropical mesotérmico, com temperatura média em torno de 20°C (EMBRAPA, 2006).

O delineamento experimental foi realizado em blocos casualizados sendo cinco tratamentos e quatro repetições, a saber: tratamento 01: 5 t ha⁻¹ de cama de aviário, tratamento 02: 10 t ha⁻¹ de cama de aviário, tratamento 03: 20 t ha⁻¹ de cama de aviário, tratamento 04: 40 ha⁻¹ de cama de aviário e o tratamento 05 t ha⁻¹: testemunha (sem cama de aviário), totalizando 20 unidades experimentais. Foram coletadas 20 amostras, com 5 plantas por vaso, coletadas em papel Kraft.

Ao solo foram misturadas a cama de aviário nos tratamentos T1, T2, T3, e T4, conforme as dosagens citadas anteriormente, sendo que o T5, testemunha foi deixada sem cama de aviário.

A semeadura foi realizada no mês de setembro de 2017, respeitando o zoneamento agrícola para a cultura do milho. Foram utilizadas sementes de milho RR®, cultivar 2B610PW, lote C128F3AA40, com tecnologia PowerCoreTM.

Foram semeadas oito sementes por vaso e sete dias após a emergência foi realizado o desbaste, deixando-se cinco plantas por vaso. As plantas foram irrigadas conforme a necessidade hídrica, sempre na mesma quantidade de água por vaso. Não se utilizou inseticidas e nem fungicidas, pois as folhas foram retiradas no florescimento pleno da cultura, não necessitando aplicação de fungicida até este período.

Os parâmetros avaliados foram os teores de N, P e K e, peso de matéria seca (PMS) da parte aérea da cultura do milho nos tratamentos analisados.

Após o período de cultivo de 35 dias, as plantas de milho foram cortadas rente ao chão e determinadas o peso de matéria seca da parte aérea, resultados em gramas, de cada um dos vasos. As plantas cortadas foram colocadas em saco de papel Kraft, em seguida foram secas em estufa a 65°C até peso constante, pesadas, moídas e analisadas quanto aos teores de

N, P e K, de acordo com a metodologia descrita por Malavolta et al (1997), no laboratório de análises químicas da UNIOESTE de Marechal Candido Rondon.

Os dados foram submetidos à análise de variância e suas médias foram comparadas através do teste de Tukey a 5% de significância, com a utilização do software estatístico ASSISTAT® (SILVA & AZEVEDO, 2016).

Resultados e discussão

Avaliando os resultados da análise química dos teores de nitrogênio (N), fósforo (P) e potássio (K) e, do peso de matéria seca (PMS) das plantas de milho adubadas com cama de aviário, após 35 dias após o plantio, observa-se que para os teores de N, P e K da parte área das plantas do milho não ocorreram diferenças significativas entre os tratamentos. Já para a produção de PMS observa-se que houve diferença significativa entre os tratamentos em relação às dosagens e também em relação à testemunha, sem cama de aviário (TABELA 1).

Tabela 1 – Peso de matéria seca (PMS) e teores de N, P e K da parte área das plantas de milho em função das dosagens de cama de aviário.

Tratamentos	PMS (g)	N	P	K
T1	15,55 ab	21,22 a	2,44 a	21.77 a
T2	16,53 ab	29,32 a	2,72 a	20.73 a
T3	14,98 ab	29,54 a	2,43 a	21.75 a
T4	20,15 a	27,35 a	2,33 a	21.58 a
T5	9,28 b	28,44 a	2,45 a	21.47 a
CV%	25,63	20,91	21,81	4,18

Médias seguidas de mesma letra não diferem estatisticamente entre si, pelo teste de Tukey a 5% de significância.

Em relação ao PMS de plantas de milho cultivadas até os 35 dias, os tratamentos T1, T2 e T3 não diferiram estatisticamente entre si, porém foram diferentes em relação ao T4 e T5. O melhor rendimento de PMS foi obtido no tratamento (T4) com 40 t ha⁻¹ e o pior rendimento em T5, testemunha (Tabela 1). Silva *et al.* (2011), com dosagens de 21 t ha⁻¹ de cama-de-frango e 30 dias de incubação no solo alcançaram as maiores produções de biomassa seca de folhas e colmos do milho, maiores alturas de plantas, após 45 dias do plantio.

Sbardelotto *et al.* (2009) realizando uma análise do desempenho da cultura do milho com uso da cama de aviário como adubo, conclui que as plantas ficam mais altas e pesam mais, principalmente aplicando doses de 5 a 7 t ha⁻¹, que é possível reduzir a utilização de outros tipos de adubos químicos.

O aumento de matéria seca nas plantas de milho nos tratamentos com adição de cama de aviário pode ter ocorrido, devido aumento de matéria orgânica no solo que contribuiu de

modo decisivo para melhoria de suas propriedades físicas, químicas e biológicas, que assim, segundo Calegari (1998), a matéria orgânica aumenta a capacidade de troca de catiônica (CTC) do solo, devido à formação de complexos e quelatos com numerosos íons, aumentando também a retenção de umidade. Para Primavesi (1980), a matéria orgânica de origem animal ou vegetal exerce, quando fornecida em dosagem adequada, efeitos positivos sobre o rendimento das culturas.

Os teores acumulados de nitrogênio (N), fósforo (P) e potássio (K), nas folhas de milho cultivado até os 35 dias após a emergência das plantas, não foram influenciados pelos tratamentos com cama de aviário nas doses testadas.

Conforme a Tabela 3 mostra que os tratamentos e a testemunha foram estatisticamente iguais, isso pode ter ocorrido, segundo Correia & Andrade (1999), porque o material orgânico adicionado ao solo para fornecer nutrientes às plantas é preciso que seja decomposto pelos microrganismos presentes no solo, e que os nutrientes retidos em suas estruturas orgânicas sejam mineralizados, portanto, neste caso não houve efeito da cama de aviário para aumento dos teores de N, P e K na parte aérea das plantas de milho com 35 dias.

SANTOS (1997) ao avaliar diferentes camas de frango (napier, maravalha e a mistura de napier com maravalha) sobre dois lotes de criação, observou aumento na concentração dos minerais (N, P, K) na cama de frangos de acordo com a reutilização.

191 Conclusões

A partir dos resultados obtidos neste trabalho pode-se concluir que houve efeito da cama de aviário sobre o peso de matéria seca na parte aérea do milho cortada aos 35 dias após a emergência. O melhor parâmetro foi o T4 no PMS.

A cama de frango não aumentou disponibilidade de N, P e K na parte aérea das plantas, assim conclui-se que não houve uma relação direta entre o aumento da dosagem de cama de aviário e o desenvolvimento das plantas de milho avaliado aos 35 dias, não evidenciando acúmulo de nutrientes nas folhas.

Referências Bibliográficas

- 201 ALVES, A. A. Fontes alternativas de cama de frangos para alimentação de ruminantes.
- 202 1991. Dissertação de Mestrado em Zootecnia, Universidade Federal do Ceará UFC.
- 203 Fortaleza, 1991.
- 204 CALEGARI, A. Espécies para cobertura do solo. In INSTITUTO AGRONÔMICO DO
- 205 PARANÁ. Plantio direto: pequena propriedade sustentável. p.65- 94, 1998.

- 206 CORREIA, M. E. F.; ANDRADE, A. G. Formação de serapilheira e ciclagem de
- 207 **nutrientes.** Fundamentos da matéria orgânica do solo: ecossistemas tropicais e subtropicais.
- 208 Porto Alegre: Gênesis, p.197-225, 1999.
- 209 COSTA, R. G.; QUEIROGA, R. C. R. E.; PEREIRA, R. A. G. Influência do alimento na
- produção e qualidade do leite de cabra. Revista Brasileira de Zootecnia, Viçosa, v. 38, p.
- 211 307-321, 2009. Disponível em: http://www.scielo.br/pdf/rbz/v38nspe/v38nspea31.pdf.
- 212 Acesso em: 05 mar. 2017.
- 213 EMBRAPA, Empresa Brasileira de Pesquisa Agropecuária, Sistema brasileiro de
- classificação de solos, Rio de Janeiro: Cnpso, 2006.
- FORNASIERI FILHO, D. **Manual da cultura do milho**. Jaboticabal: Funep, 2007.
- 216 GIANELLO, C.; ERNANI, P.R. Rendimento de matéria seca de milho e alterações na
- 217 composição química do solo pela incorporação de quantidades crescentes de cama de frangos,
- em casa de vegetação. Revista Brasileira de Ciência do Solo, Campinas, v.7, n.3, p.285-290,
- 219 1983.
- 220 GRACIANO, J. D.; HEREDIA ZÁRATE, N. A.; VIEIRA, M. C.; ROSA, Y. B. C. J.;
- 221 SEDIYAMA, M. A. N.; RODRIGUES, E. T. Efeito da cobertura do solo com cama-de-
- 222 frango semidecomposta sobre dois clones de mandioquinha-salsa. Acta Scientiarum.
- 223 Agronomy, v. 28, n. 3, p. 367-376, 2006.
- 224 KONZEN, E. A.; ALVARENGA, R. C. Cultivo do Milho: Fertilidade de solos, Adubação
- 225 **Orgânica.** Embrapa Milho e Sorgo, Versão eletrônica, 6 a edição, 2010. Disponível em
- 226 http://www.cnpms.embrapa.br/publicacoes/milho_6_ed/ferorganica.htm. Acesso em 19 de
- 227 mar. 2017.
- 228 MALAVOLTA, E.; VITTI, G. C.; OLIVEIRA, S. A. Avaliação do estado nutricional das
- plantas: princípios e aplicações. 2.ed. Piracicaba: POTAFOS, 1997. 319p.
- 230 MELO, L. C. A.; SILVA, C. A.; DIAS, B. O. Caracterização da matriz orgânica de resíduos
- de origens diversificadas. **Revista Brasileira de Ciência do Solo**, v.32, p.101-110, 2008.
- NOVAKOWISKI, J. H.; SANDINI, I. E.; FALBO, M. K.; MORAES, A.; NOVAKOWISKI,
- J. H. Adubação com cama de aviário na produção de milho orgânico em sistema de
- integração lavoura-pecuária. Semina: Ciências Agrárias. 2013.
- 235 PRIMAVESI, A. O manejo ecológico do solo: Agricultura em regiões tropicais. São
- 236 Paulo: Nobel, 1980, 549p.
- 237 RODRIGUES, T. R. D.; MAI NETO, C.; JANDREY, P. E.; BERTÉ, L. N.; ANDRADE, M.
- 238 G. de; OLIVEIRA, P. S. R. de. Adubação orgânica no milho como forma de melhorar a
- 239 **sustentabilidade do sistema de produção agrícola.** Resumos do VII Congresso Brasileiro
- 240 de Agroecologia Fortaleza/CE 12 a 16/12/2011. Cadernos de Agroecologia ISSN 2236-
- 241 7934 Vol 6, No. 2, Dez 2011. Disponível em http://www.aba-
- 242 agroecologia.org.br/revistas/index.php/cad/article/viewFile/12439/7088. Acesso em 19 de
- 243 mar. 2017.
- 244 SANTOS, H. P. Efeitos de sistemas de cultivo sobre rendimentos de grãos e outras
- 245 características agronômicas da aveia preta e da branca em rotação com trigo. Pesquisa
- 246 **Agropecuária Brasileira**, Brasília, v.26, n.5 p.709-14, 1991.
- 247 SBARDELOTTO, G.A & CASSOL, L.C. Desempenho da cultura do milho submetida a
- 248 níveis crescentes de cama de aviário. Synergismus scyentifica, v.4, n.1. 2009 26 SCHERER,
- 249 E.E. Avaliação do esterco de aves e da uréia como fontes de nitrogênio para a cultura do
- 250 milho. Revista Agropecuária Catarinense, Florianópolis, v. 8, n. 4, p. 15-18, 1995.

- 251 SENAR, Serviço Nacional de Aprendizagem Rural. **Trabalhador na agricultura orgânica:**
- 252 **informações básicas**. Curitiba PR. 2004.
- 253 SILVA, F. A. S.; AZEVEDO, C. A. V. The Assistat Software Version 7.7 and its use in the
- analysis of experimental data. Afr. J. Agric. Res, v.11, n.39, p.3733-3740, 2016. DOI:
- 255 10.5897/AJAR2016.11522.
- 256 SILVA, F. A. M.; VILAS-BOAS, R. L.; SILVA, R. B. Resposta da alface à adubação
- 257 nitrogenada com diferentes compostos orgânicos em dois ciclos sucessivos. Acta
- 258 **Scientiarum Agronomy**, v.32, p.131-137, 2010.
- 259 SILVA, T. R.; MENEZES, J. F. S.; SIMON, G. A.; ASSIS, R. L. Cultivo do milho e
- 260 disponibilidade de P sob adubação com cama de frango. Revista Brasileira de Engenharia
- 261 Agrícola e Ambiental. Campina Grande, PB, UAEA/UFCG. v.15, n.9, p.903-910, 2011.