

SCREENING FITOQUÍMICO DA EUPHORBIA TIRUCALLI LINEU - AVELOZ

GANDRA, Francielli Fernandes.¹
FONTANA, Gabriela.²
DALLAGNOL, Marieli Jacomel.³
MELO, Michelly Monick.⁴
LUSITANI, Rafaela.⁵
LUCCA, Patricia Stadler Rosa.⁶

RESUMO

A família Euphorbiacea é representada por aproximadamente 300 gêneros e cerca de 7.500 espécies, principalmente do gênero Euphorbia. A planta Euphorbia tirucalli L. é popularmente conhecida como aveloz, labirinto, cassoneira, mata-verruga, cabelo do diabo, cachorro pelado, entre outros. O aveloz possui látex, sendo ácido e cáustico, administrado em excesso pode causar intoxicação, estudos realizados com a planta mostram que esta espécie apresenta substâncias tóxicas bem como enzimas proteolíticas. Ele é composto por vários princípios ativos, e alguns desses apresentam atividades biológicas comprovadas cientificamente. Dentre elas temos, atividade preventiva contra o câncer, antitumoral, antimutagênica, antibacteriana, irritante, laxativas, antisséptica, desinfetante, anti-inflamatória, anti estreptocócicas e anticancerígena para vários tipos de câncer de forma especifica (câncer de mama, pulmão, cervical, de colo, esôfago e de boca). O presente estudo tem por objetivo determinar a presença de compostos fitoquímicos na droga vegetal Euphorbia tirucalli L., assim como sua identificação botânica, determinando presença ou ausência de compostos químicos como antraquinonas, saponinas, flavonoides, taninos e alcaloides.

PALAVRAS-CHAVE: aveloz, análises fitoquímicas, princípios ativos.

1. INTRODUÇÃO

Desde a década de 70, a Organização Mundial da Saúde vem estimulando o desenvolvimento de medicamentos a partir de plantas e a sua inclusão nos serviços de saúde. A partir de 1995, muitos esforços começaram a ser empreendidos no Brasil, visando estimular

¹Acadêmica do curso de Farmácia – Centro Universitário FAG. E-mail: fran_gandra@hotmail.com

²Acadêmica do curso de Farmácia – Centro Universitário FAG. E-mail: gabriela.fontana10@hotmail.com

³Acadêmica do curso de Farmácia – Centro Universitário FAG. E-mail: maridallagnol92@gmail.com

⁴Acadêmica do curso de Farmácia – Centro Universitário FAG. E-mail: melo-michelly@hotmail.com

⁵Acadêmica do curso de Farmácia – Centro Universitário FAG. E-mail: rafaela_lusitani@hotmail.com

os estudos com as plantas medicinais e promover o crescimento deste setor farmacêutico. Infelizmente, apesar de contar com uma vasta biodiversidade, quase a totalidade das plantas medicinais estudadas hoje e usadas na preparação de medicamentos não pertence à flora brasileira, e isto acontece devido à falta de estudos científicos que comprovem suas ações (BRANDÃO, 2001).

A medicina popular brasileira tem como um grande recurso terapêutico o uso de plantas medicinais, o que leva a um consumo significativo de medicamentos fitoterápicos e de plantas medicinais (MACHADO, 2007). Os estudos que transformam as plantas medicinais em produtos fitoterápicos são denominados "estudos de validação". Eles consistem, basicamente, em se buscar a confirmação da eficácia farmacológica e da ausência de toxicidade da planta. Eles envolvem estudos botânicos após a coleta da planta, suas folhas, frutos e flores são prensados para a preparação de uma exsicata. A partir da exsicata é possível identificar a espécie da planta e a família botânica à qual ela pertence, químicos que consiste na extração e identificação das substâncias químicas da planta. Após secagem, a parte da planta usada na preparação dos remédios na medicina popular é moída, até ser transformada em pó. O pó é então submetido a processos de extração de suas substâncias químicas e os produtos obtidos da extração das plantas (extratos, substâncias purificadas) são então submetidos a ensaios farmacológicos para verificar a atividade e ausência de toxicidade.

A família *Euphorbiacea* é representada por aproximadamente 300 gêneros e cerca de 7.500 espécies, principalmente do gênero *Euphorbia*, tem sido popularmente difundido para o tratamento de uma variedade de doenças de natureza infecciosas, tumoral e inflamatória (AVELAR,2010).

A planta *Euphorbia tirucalli* L. é popularmente conhecida como aveloz, labirinto, cassoneira, mata-verruga, cabelo do diabo, cachorro pelado, entre outros (DANTAS,2017). O aveloz é originário da África, de onde foi levado para outros países tropicais, a planta pode atingir até 7 metros de altura e atingir 15 centímetros de diâmetro, apresenta galhos duros, cilíndricos e verticulares.

O aveloz possui látex, sendo ácido e cáustico, administrado em excesso pode causar intoxicação, estudos realizados com a planta mostram que esta espécie apresenta substâncias tóxicas bem como enzimas proteolíticas. (SILVA et al, 2007; BALOCH,2010).

Ele é composto por vários princípios ativos, e alguns desses apresentam atividades biológicas comprovadas cientificamente (DUKE, 2011). Dentre elas temos, atividade preventiva contra o câncer, antitumoral, antimutagênica, antibacteriana, irritante, laxativas, antisséptica, desinfetante, anti-inflamatória, anti estreptococicas e anticancerígena para vários tipos de câncer de forma especifica (câncer de mama, pulmão, cervical, de colo, esôfago e de boca). (DUKE, 2011).

Apesar de haver carência de estudo sobre essa planta, a população faz uso da mesma no tratamento de doenças, pois há uma multiplicidade de informações por parte de pessoas que fizeram o uso dela e que posteriormente tiveram comprovações da sua eficácia.

O presente estudo tem por objetivo determinar a presença de compostos fitoquímicos na droga vegetal *Euphorbia tirucalli* L., assim como sua identificação botânica, determinando presença ou ausência de compostos químicos como antraquinonas, saponinas, flavonoides, taninos e alcaloides.

2. METODOLOGIA

Para a realização das análises da droga vegetal, *Euphorbia tirucalli L.*, realizou-se coleta da mesma em propriedade particular da cidade de Corbélia – PR. As análises foram realizadas através de ensaios de screening fitoquímico em laboratório de Química do Centro Universitário da Fundação Assis Gurgacz.

2.1- Análise macroscópica

Para a identificação morfoanatômica, foram observadas a olho nu e com auxílio de lupa e comparados com informações contidas em artigos científicos, caracteres importantes como tamanho, cor, odor e formato da droga vegetal.

2.2- Análise microscópica

Foram realizados cortes transversais do caule da droga vegetal, diafanizados em lâmina e observadas suas estruturas em microscópico com lente de aumento em 4, 10 e 40 x, respectivamente, e comparados com artigos científicos.

2.3- Pesquisa de Antraquinonas

Realizou-se uma pesquisa direta em que verificou-se a ocorrência da genina livre na droga analisada por meio de reação de Borntrager, onde consistiu-se em adicionar pequenos fragmentos da droga vegetal em tubo de ensaio, com clorofórmio e agitado por dois minutos, em seguida filtrado para outro ensaio. Adicionou-se ao filtrado 5 ml de solução de NH4OH diluída.

Para a verificação de O-heterosídeos na droga foi adicionado 1,0 g da droga vegetal e adicionado 40 ml de água destilada a um becker, sendo mantido a fervura por 10 minutos, afim de realizar a extração. Em seguida foi resfriado, filtrado e transferido para um Erlenmeyer, adicionou-se 5 ml de ácido clorídrico e novamente levado para ebulição. Logo após resfriado e filtrado para um funil de separação. A extração da solução se deu com 10 ml de éter etílico, e em seguida agitou-se uma alíquota da solução com 2 ml de hidróxido de amônio 10%.

2.4- Pesquisa de Saponinas

A pesquisa de saponinas se deu por meio de agitação. Onde consistiu-se em adicionar 1,0 g da droga vegetal em um tubo de ensaio e adicionado 10 ml de água destilada, permanecendo o mesmo à fervura por 2 minutos, resfriou-se e manteve agitação enérgica de 9 a 15 segundos.

2.5- Pesquisa de Flavonoides

A realização da pesquisa de flavonoides se deu por meio de extração do material com solução de etanol a 70% à fervura por 2 minutos, após filtrou-se e prosseguiu-se realizando reações de caracterização da droga, sendo elas reação com tricloreto de alumínio, reação de shinoda, reação de pew e reação com cloreto férrico.

2.6- Pesquisa de Taninos

A realização da pesquisa de taninos, ocorreu-se por meio de extração do material com 20 ml de água destilada à fervura por 5 minutos, após filtrou-se e completou-se o volume do filtrado para 35 ml de água destilada. Em seguida distribui-se 20 ml do filtrado em cinco tubos de ensaio e prosseguiu-se realizando reações de identificação da droga, sendo elas reação com sais de chumbo, reação com sais de cobre, reação com proteínas e reação com sais de ferro.

INNO DIPOSISTANO MG

2.7- Pesquisa de Alcaloides

A realização da pesquisa de alcaloides ocorreu-se por meio de extração da droga com 20 ml de H2SO4 a 1%, mantido à fervura por 2 minutos, após filtrou-se, resfriou-se e dividiu-se em duas porções. Posteriormente prosseguiu-se com pesquisa direta e pesquisa confirmatória respectivamente.

3. ANÁLISES E DISCUSSÕES DOS RESULTADOS

Com objetivo de realizar a identificação de compostos químicos da droga vegetal *Euphorbia tirucalli L.* O Screening Fitoquimico nos permite ter uma visão que englobe todos os grupos químicos da planta, com a realização das análises permitiram-se ver a presença de alcaloides e taninos, tendo ausência de antraquinonas, saponinas e flavonoides na droga analisada, como mostra a tabela 1.

Tabela 1. Compostos químicos pesquisados na droga vegetal Euphorbia tirucalli L.

TESTES	RESULTADOS*
Antraquinonas Livres	_
Ocorrência de O-heterosídeo	_
Saponinas	_
Índice de espuma	_
Flavonoides	
Reação de Shinoda	_
Reação de Pew	_
Reação com Cloreto Férrico	+
Taninos	
Reação com Sais de Chumbo	+
Reação com Sais de Cobre	_
Reação com Proteínas	_
Reação com Sais de Ferro	+
Alcaloides – Pesquisa Direta	
Dragendorff	-
Mayer	+

Bertrand	+	
Bouchardat/ Wagner	+	
Sonnenschein	+	
Hager	+	
Alcaloides – Pesquisa Confirmatória		
Dragendorff	_	
Mayer	+	
Bertrand	+	

Bouchardat/ Wagner

Sonnenschein

Hager

Em relação a característica macroscópica observou-se que a planta *E. tirucalli L.* apresenta caule cilíndrico, arbóreo e aéreo ereto. Já as folhas são incompletas, simples, membranáceas, simétricas, com lâmina foliar de contorno linear, ápice agudo-obtuso, base acunheada-atenuada, margem inteira, peninérvea, concolor, superfície lisa e glabra, filotaxia alternadas, limbo inteiro com tamanho médio de 1,26 cm x 1,9 mm.

Microscopicamente observou-se estrutura primária, com epiderme uniestratificada, ondulada. Apresentando-se parênquimas, xilema e floema, porém não foi possível a identificação dos mesmos.

Antraquinonas são quimicamente definidas como substâncias fenólicas derivadas da dicetona do antraceno, são empregadas comumente como laxativos e cartárticos, por agirem irritando o intestino grosso, aumentando a motilidade intestinal e diminuindo a absorção de água. A partir do teste observou-se duas fases, sendo uma a presença de amônia dissolvida em água (fase límpida), e a outra presença de clorofórmio (fase verde).

As saponinas são compostos heterosídicos, cuja a característica mais importante é a produção de espuma abundante e persistente, quando agitada em soluções aquosas, por diminuição da tensão superficial do liquido. Suas atividades terapêuticas estão relacionadas a propriedades diuréticas, digestivas, antiespasmódicas e como fonte de vitamina P. No teste realizado com a agitação dos tubos não se notou formação de espuma, apresentando-se assim, resultado negativo para saponinas.

^{*} ausência (-) ou presença (+)

Os flavonoides são compostos vegetais de núcleo aromático, cujo esqueleto básico é formado por unidades C6-C3-C6, podem ser encontrados na forma livre ou na forma de heterosídeos, terapeuticamente sua função não está ainda claramente estabelecida, o grupo é conhecido pelos seus efeitos anti-inflamatórios, antialérgicos e vasoprotetores, certos flavonoides possuem atividades particulares como ação diurética, antiespasmódica, antiulcera gástrica, anti-inflamatória e antioxidante. Na realização da reação de Shinoda após desprendimento do gás hidrogênio não se apresentou aparecimento de coloração com tonalidade avermelhada. Na reação de Pew, também não houve o aparecimento da coloração com tonalidade avermelhada. Já na reação com cloreto férrico obteve-se o aparecimento da coloração verde castanho, apresentando-se resultado levemente positivo.

Após serem hidroxilados, os flavonoides, dão origem a um grupo de novos compostos com características oxidantes. Além deles outros compostos fitoquímicos colaboram aprimorando a atividade antioxidante como vitaminas, aminoácidos e pigmentos (CHOI et al., 2002).

Os taninos são substâncias complexas presentes em inúmeros vegetais, as quais a propriedade de se combinar e precipitar proteína da pele animal, normalmente são encontrados nas folhas, frutos e sementes, classificados como taninos hidrolisados e condensados. Sendo esta, substâncias adstringentes e hemostáticas suas aplicações terapêuticas estão relacionadas com estas propriedades. Em uma pesquisa mais recente tem destacado o seu uso como antioxidantes.

A partir da extração do material, realizou-se as reações de identificação, para utilizar-se como padrão. Na reação com sais de chumbo obteve-se turvação a precipitação, demonstrando-se resultado positivo. Na reação com sais de cobre e reação com proteínas não se obteve turvação a precipitação, tendo assim um resultado negativo. Na reação com sais de ferro obteve-se coloração esverdeada, sendo assim houve resultado levemente positivo para taninos condensados.

A presença de taninos caracteriza uma diversidade de efeitos no organismo como hipotençao sanguínea, aceleram a cascsata de coagulação do sangue, diminuem os níveis de gorduras no soro, modificam as respostas imunes e podem levar a necrose hepática (MUCHUWETI, NDHLALA e KASIAMHURU, 2006)

Os alcaloides formam um grupo heterogênico, e muitas vezes apresentam uma elevada toxicidade. É a mais importante fonte de fitofármacos por possuírem forte atividade biológica, possuem características comuns, como por exemplo, a presença de um ou mais nitrogênio heterocíclico, derivados, na sua biossíntese, de aminoácidos, solúveis em solvente orgânicos e insolúveis em água na forma livre, sendo precipitados por um certo número de reagentes formando complexos coloridos.

Em uma análise realizada por ORLANDA & VALE (2014), foram feitos extratos etanólicos da *E. Tirucalli*, onde constatou-se as análises positivas para açúcares redutores, alcaloides, compostos fenólicos, flavonoides, taninos, saponinas, esteroides e triterpenoides. De modo a confirmar a ação destes ativos presentes, como exemplo os flavonoides por apresentarem ação antioxidante, sendo citado em outras literaturas (SILVA, et al., 2010).

4. CONSIDERAÇÕES FINAIS

Diante dos resultados obtidos, verificamos que as análises macroscópicas e microscópicas realizadas neste estudo, estavam de acordo com os artigos analisados. Análises fitoquímicas revelaram presença de importantes metabólitos secundários presentes na droga vegetal em estudo, sendo estes, os alcaloides e taninos. Já a pesquisa de antraquinonas, flavonoides e saponinas, estes obtiveram resultados negativos. O resultado pode não ter ocorrido como o esperado, devido talvez a forma de colheita, secagem e armazenamento inadequado da droga vegetal, visto que para obter o máximo de aproveitamento da droga bem como o teor de princípio ativo deve-se atender cuidados tais como os citados acima para garantir a qualidade da mesma.

Tendo em vista a grande diversidade de espécies vegetais presentes no Brasil, temos um grande potencial fitoquímico armazenado à espera de novas pesquisas que comprovem o verdadeiro valor biológico das plantas medicinais, de baixo custo e de fácil acesso a população.

Desta maneira, vale ressaltar a importância em estudar esta planta pela presença destes biocompostos de grande importância para a população.

REFERÊNCIAS

AVELAR, B. A. Detecção *in vitro* de citocinas intracitoplasmáticas (interferon gama, fator de necrose tumoral, interleucina 4 e interleucina 10) em leucócitos humanos tratados com extrato bruto diluído de *Euphorbia tirucalli*. Dissertação (Mestrado). Programa Multicêntrico com Ciências Fisiológicas da Universidade Federal dos Vales do Jequitinhonha e Mucuri. Diamantina, 2010.

BALOCH, I. B.; BALOCH, M. K. Irritand and co-carcinogenic diterpene esters from tha látex os Euphobia cauducifloia L. J Asian Nat Prod Res. 12(7), 600-13. 2010.

BRANDÃO, M.G.L., MOREIRA, R.A., ACÚRCIO, F.A. Nossos fitoterápicos de cada dia. Ciência Hoje 30 (175), 75-79, 2001.

BRANDÃO, M.G.L., DINIZ, B.C., MONTEMOR, R.L.M. **Plantas medicinais: um saber ameaçado**. Ciência Hoje 35, 64-66, 2004.

BRANDÃO, M.G.L., MONTEMOR, R.L.M. **Sabedoria antiga em risco**. Ciência Hoje 42, 77-79, 2008.

CALIXTO, J.B. **Biodiversidade como fonte de medicamentos**. Revista da Sociedade Brasileira para o Progresso da Ciência, n.3, p. 37-9, 2003.

CHOI C.W., et al Antioxidat activity and free radical scavenging capacity between Korean medicinal plants and flavonoids by assay-guided comparison. Plant Science, n 163, 2002.

DANTAS, I. C. Avelós. In: O Raizeiro. Campina Grande: EDUEP, 2007. 1. ed. p. 107-109.

DUKE, James A.. **Dr. Duke's Phytochemical and Ethnobotanical Databases**. Disponível em: http://www.ars-grin.gov/cgi-bin/duke/farmacy2.pl.

MACHADO, M. M. Perfil fitoquímico e avaliação dos principais efeitos biológicos e imunológicos in vitro da Euphorbia tirucalli L. 2007. 105 f. Dissertação (Mestrado em Ciências Farmacêuticas) — Universidade Federal de Santa Maria, Santa Maria, 2007. Disponível

FARMÁCIA CENTRO UN OPRIBEITADO FAG

http://dspace.bc.uepb.edu.br:8080/jspui/bitstream/123456789/194/1/PDF%20-%20Luciana%20Sobrinha%20Costa.pdf. Acesso em: 3 out. 2017.

MUCHUWETI M, NDHLALA, A. R., KASIAMHURU, A. **A analysis of phenolic compounds including tannins, gallotannis and flavonols of Uapaca kirkiana fruit.** Food Chemistry, v94 – 2006.

ORLANDA, J.F.F., VALE, V.V. Análise fitoquímica e atividade fotoprotetora de extrato etanólico de Euphorbia tirucalli Linneau (Euphorbiaceae). Universidade Estadual do Maranhao, Campus de Imperatris - 2014.

SILVA AC, FARIA DE, BORGES NB, SOUZA IA, PETERS VM, GUERRA M. O. **Toxicological screening of** *Euphorbia tirucalli L*.: developmental toxicity studies in rats. J Ethnopharmacol 110(1): 154-159. 2007.

SILVA, M.L.C. et al. **Compostos fenólicos, carotenoides e atividade antioxidante em produtos vegetais.** Semina: Ciências Agrárias, v.31, n.3, p.669-682, 2010.