CENTRO UNIVERSITÁRIO ASSIS GURGACZ THIAGO AUGUSTO TABORDA FOLADOR

AVALIAÇÃO FINANCEIRA ENTRE FORRO DE GESSO CONVENCIONAL EM PLACAS E FORRO DE GESSO ACARTONADO

CENTRO UNIVERSITÁRIO ASSIS GURGACZ THIAGO AUGUSTO TABORDA FOLADOR

AVALIAÇÃO FINANCEIRA ENTRE FORRO DE GESSO CONVENCIONAL EM PLACAS E FORRO DE GESSO ACARTONADO

Trabalho apresentado na disciplina de Trabalho de Conclusão de Curso II, do Curso de Engenharia Civil, do Centro Universitário FAG, como requisito parcial para obtenção do título de Bacharel em Engenharia Civil.

Orientadora: Prof.^a. Mestre Engenheira Civil Andrea Resende Souza.

CENTRO UNIVERSITÁRIO FAG

THIAGO AUGUSTO TABORDA FOLADOR

AVALIAÇÃO FINANCEIRA ENTRE FORRO DE GESSO CONVENCIONAL EM PLACAS E FORRO DE GESSO ACARTONADO

Trabalho apresentado no Curso de Engenharia Civil, do Centro Universitário Assis Gurgacz, como requisito parcial para obtenção do título de Bacharel em Engenharia Civil, sob orientação da Professora Mestre Engenheira Civil Andrea Resende Souza.

BANCA EXAMINADORA

Orientadora Prof^a. Mestre Andrea Resende Souza Centro Universitário, Assis Gurgacz

Engenheira Civil

Professor Mestre Eduardo Miguel Prata Madureira Centro Universitário Assis Gurgacz

Economista

Professora Mestre Danieli Sanderson Silva Centro Universitário Assis Gurgacz

Economista

Cascavel, 04 de julho de 2018.

AGRADECIMENTOS

Primeiramente, agradeço a Deus, pela força divina em minha vida.

A minha esposa, por entender minha ausência diária durante esta longa caminhada.

A minha professora orientadora, por ter desempenhado papel exemplar no norteamento deste trabalho.

Agradeço a Empresa DGI, por proporcionar a coleta dos dados necessários para o desenvolvimento deste trabalho.

RESUMO

O gesso é um dos materiais de construção mais antigos já fabricados pelo homem e, devido ao seu baixo custo e praticidade, tem sido uma das alternativas mais utilizadas na construção civil. Os avanços tecnológicos no setor fazem com que esse material assuma cada vez mais um papel de destaque. Dessa forma, este estudo tem como objetivo analisar os custos de dois sistemas executivos de forro de gesso para a cidade de Cascavel/PR, possibilitando a visualização das vantagens e desvantagens de cada sistema e, com isso, auxiliando que os empresários consigam escolher o tipo de revestimento que melhor se adequa às suas obras. A metodologia empregada consistiu em avaliar a execução no sistema de forro de gesso convencional em placas de 60x60cm e do forro de gesso em drywall, sendo aplicado em três apartamentos com tipologias distintas, nos quais se obteve uma análise quantitativa real dos materiais aplicados e da mão de obra. Na sequência, foram orçados todos os itens para a avaliação dos custos. Os resultados obtidos evidenciaram que ambos os sistemas oferecem inúmeros benefícios técnicos e construtivos, porém, cada um tem suas particularidades específicas. Tais características tornam um método mais atrativo do que o outro, dependendo, basicamente, se a escolha é o tempo de execução ou o valor incorporado ao empreendimento. Com isso, constatou-se que o método construtivo do forro em drywall obteve maior agilidade para sua execução, sendo 1/3 maior, o que garante menor tempo para a entrega do serviço e gera um volume de resíduo de gesso 54,84% menor. No entanto, o método construtivo do forro de gesso em placas de 60x60cm teve seus custos 14,48% menor. Portanto, quanto à viabilidade financeira, concluiu-se que o sistema do forro de gesso em placas se mostrou mais favorável que o sistema drywall, gerando uma economia significativa no empreendimento.

Palavras-chave: Forros em gesso - Gesso acartonado - Análise econômica.

LISTA DE FIGURAS

Figura 1: Placa de gesso.	17
Figura 2: Gesso cola.	18
Figura 3: Sisal.	19
Figura 4: Arame revestido em PVC e parafuso ilhó ou argola.	19
Figura 5: Montagem e acabamento do forro em placas.	21
Figura 6: Detalhe de instalação do forro.	21
Figura 7: Algumas das chapas apresentadas pela empresa Lafarge Gypsum	23
Figura 8: Tipos de perfis metálicos.	24
Figura 9: Tipos de parafusos.	25
Figura 10: Massas para acabamento.	26
Figura 11: Fita para fechamento das juntas das chapas de gesso acartonado	26
Figura 12: Teto Knauf D112 Unidirecional.	27
Figura 13: Detalhe Teto Knauf D112 Unidirecional.	28
Figura 14: Sequência esquemática da montagem e acabamento do forro de drywall	29
Figura 15: Representação executiva forro de gesso em placas.	32
Figura 16: Perspectiva - Teto D112 unidirecional com perfil F-47 e uma chapa	32
Figura 17: Custo total para execução dos sistemas.	47

LISTA DE TABELAS

Tabela 1: Especificações técnicas da placa 60x60cm.	17
Tabela 2: Planilha de levantamento de dados para o gesso em placas	34
Tabela 3: Planilha de levantamento de dados para o gesso acartonado	35
Tabela 4: Consumo médio de materiais do forro de gesso em placas do apartamen	ito Tipo 1.36
Tabela 5: Consumo médio de materiais de forro drywall do apartamento Tipo 1	37
Tabela 6:Consumo médio de materiais do forro de gesso em placas do apartamen	to Tipo 2.38
Tabela 7: Consumo médio de materiais de forro drywall do apartamento Tipo 2	39
Tabela 8: Consumo médio materiais de forro de gesso em placas do apartamento	Tipo 340
Tabela 9: Consumo médio materiais do forro de gesso drywall do apartamento T	ipo 3 41
Tabela 10: Custo unitário do sistema de forro de gesso em placas	42
Tabela 11: Custo unitário do sistema de forro drywall	42
Tabela 12: Custo de material para cada apartamento.	43
Tabela 13: Média salarial para a função de gesseiro em cada estado brasileiro	43
Tabela 14: Custo da mão de obra para cada apartamento	45
Tabela 15: Avaliação financeira forro de gesso em placas	46
Tabela 16: Avaliação financeira forro em drywall	46
Tabela 17: Comparativo entre o custo total e o tempo de execução	47

LISTA DE SIGLAS

ABNT - Associação Brasileira de Normas Técnicas

FMI – Fundo Monetário Internacional

Sinduscon Oeste - PR – Sindicato da Indústria da Construção Civil do Oeste do Paraná

TCC – Trabalho de Conclusão de Curso

SUMÁRIO

CAPITULO 1	12
1.1 INTRODUÇÃO	12
1.2 OBJETIVOS	13
1.2.1 Objetivo geral	13
1.2.2 Objetivos específicos	13
1.2.3 Justificativa	13
1.2.4 Caracterização do Problema	14
1.2.5 Delimitação da Pesquisa	14
CAPÍTULO 2	15
2.1 REVISÃO BIBLIOGRÁFICA	15
2.1.1 Gesso	15
2.1.2 Painéis de gesso convencionais	16
2.1.2.1 Materiais	16
2.1.2.1.1 Placa de gesso	16
2.1.2.1.2 Gesso cola	17
2.1.2.1.3 Sisal	18
2.1.2.1.4 Fixações	19
2.1.2.2 Execução	20
2.1.3 Painéis de <i>Drywall</i>	22
2.1.3.1 Materiais	22
2.1.3.1.1 Chapas de gesso	22
2.1.3.1.2 Perfis metálicos	24
2.1.3.1.3 Fixações	24
2.1.3.2 Acabamentos.	25
2.1.3.2.1 Massas para juntas e colagens	25
2.1.3.2.2 Acessórios	26
2.1.3.3 Execução	27
2.1.4 Composições de custos unitários	29
CAPÍTULO 3	31
3.1 METODOLOGIA	31
3.1.1 Caracterização da amostra	31
3.1.1.1 Método de execução	31
3.1.1.2 Tipologias dos apartamentos.	32

3.1.1.2.1 Apartamento Tipo 1	33
3.1.1.2.2 Apartamento Tipo 2	33
3.1.1.2.3 Apartamento Tipo 3	33
3.1.2 Coleta de dados	34
3.1.3 Análise de dados	35
CAPÍTULO 4	36
4.1 RESULTADOS E DISCUSSÕES	36
4.1.1 Consumo de Materiais	36
4.1.1.1 Apartamento Tipo 1	36
4.1.1.2 Apartamento Tipo 2	38
4.1.1.3 Apartamento Tipo 3	40
4.1.2 Custos	41
4.1.2.1 Materiais	42
4.1.2.2 Mão de Obra	43
4.1.3 Avaliação dos custos dos sistemas de forro de gesso	45
CAPÍTULO 5	49
5.1 CONSIDERAÇÕES FINAIS	49
CAPÍTULO 6	51
6.1 SUGESTÕES PARA TRABALHOS FUTUROS	
REFERÊNCIAS	52
APÊNDICE A – LAYOUT DA DISPOSIÇÃO DAS PLACAS DO FORRO	O DE GESSO
EM PLACAS	55
APÊNDICE B – LAYOUT DE DISPOSIÇÃO DAS MOLDURAS DE DI	LATAÇÃO E
TABICAS	58
APÊNDICE C – LAYOUT DA DISPOSIÇÃO DOS PERFIS MET	ÁLICOS DO
SISTEMA DE FORRO DE GESSO ACARTONADO UNIDIRECIONAL.	61
ANEXO A – PLANTA BAIXA DO APARTAMENTO TIPO 1	64
ANEXO B – PLANTA BAIXA DO APARTAMENTO TIPO 2	65
ANEXO C – PLANTA BAIXA DO APARTAMENTO TIPO 3	66

CAPÍTULO 1

1.1 INTRODUÇÃO

A Construção Civil passa por um processo de mudança, no qual a competitividade fica mais acentuada. O avanço da tecnologia em todos os seguimentos da construção faz com que a produção fruto da mão de obra assuma cada vez mais um papel de destaque nesse setor, estimulado pela necessidade de racionalização em obra, devido aos custos e à competitividade que se torna cada vez mais acirrada. Sendo assim, o engenheiro deve procurar soluções técnicas com melhores relações de custo e benefício (BARROS, 1998).

Devido ao seu baixo custo e praticidade, o gesso tem sido uma das alternativas mais usadas na construção civil. O seu uso como revestimento interno vem crescendo rapidamente por proporcionar um acabamento fino quando bem aplicado, podendo ser colocado diretamente sobre o substrato no uso de blocos, dispensando o revestimento de argamassa, diminuindo custo e agilizando o processo (HARADA e PIMENTEL, 2009).

Conforme Rocha (2007), no Brasil, quase toda gipsita produzida é voltada para atender o mercado da construção civil, mesmo assim, apesar de ter crescido nos últimos anos, o consumo per capita de gesso no Brasil é bastante baixo, o que corresponde a 1,45% se comparado a outros países como aos Estados Unidos, que é de 15,78%. Mesmo o Brasil tendo a maior reserva de gipsita, que corresponde a 51,75% da reserva mundial, o restante é destinado para a agricultura, saúde e indústria química.

Assim, o processo de construção foi evoluindo de modo a necessitar de diversas variáveis, tais como: diminuição de erros executivos, aumento da agilidade e produtividade executiva, maior organização e higiene no ambiente de trabalho, maior qualificação da mão de obra, industrialização do processo, entre outros. Surge, dessa forma, o processo de construção *drywall*, que, em inglês significa "parede seca", ou seja, que não necessita de argamassa para a sua construção. O forro *drywall* é composto por uma estrutura rígida formada por perfis metálicos, nos quais são parafusadas as chapas de gesso especiais para esse sistema (KNAUF, 2016). Esse sistema, também é utilizado pelo mercado da construção civil, obrigando empresas construtoras a buscarem alternativas para aumentar a eficiência no processo produtivo. Nesse âmbito, destaca-se o emprego dos forros internos em gesso acartonado, agregando, assim, uma melhoria do desempenho, qualidade ou viabilidade técnico-econômica de edificações (TANIGUTI, 1998).

E, para que engenheiros e arquitetos tenham mais uma opção na decisão do método construtivo a ser usado em seus empreendimentos, será desenvolvida uma composição de custo unitário para revestimento de tetos no método convencional e do *drywall* para a região de Cascavel – PR.

1.2 OBJETIVOS

1.2.1 Objetivo geral

Analisar os custos dos sistemas executivos de forro de gesso convencional (em placas) e de forro de gesso acartonado.

1.2.2 Objetivos específicos

- a) Estimar os custos de material e mão de obra para execução do sistema de forro de gesso convencional (em placas de 60x60cm);
- Estimar os custos de material e mão de obra para execução do sistema de forro de gesso acartonado;
- c) Avaliar os desperdícios de cada sistema construtivo;
- d) Verificar qual sistema apresenta o melhor custo beneficio.

1.2.3 Justificativa

O gesso tem assumido maior importância no universo da construção civil, com o desenvolvimento de novas técnicas para sua aplicação e a apresentação de novos produtos manufaturados que vêm em auxílio da agilidade, da leveza, da limpeza e do combate ao desperdício nos canteiros de obra (LEITÃO, 2005).

Apesar do conhecimento das vantagens proporcionadas pelo sistema de forro de gesso, verifica-se que os usuários das edificações têm desenvolvido um nível de exigência cada vez maior.

Acompanhando o processo em curso, um material que está ganhando mercado na construção civil nacional – o gesso acartonado, forma um sistema construtivo de vedações internas, também chamado de "sistema construtivo a seco", no qual é possível produzir uma vedação com materiais industrializados e pré-fabricados, com mínima geração de resíduos.

São diversas as vantagens apresentadas pela utilização do gesso, principalmente pelas empresas produtoras e pelos entusiastas do sistema, mas, assim como todos os métodos construtivos, este, também, possui aspectos positivos e negativos quanto ao seu desempenho.

Considerando isso e a necessidade de reduzir custos existentes na indústria da construção civil, leva-se em conta a falta de ferramentas para o projetista tomar decisões e a existência de novas tecnologias de manufatura. Pretende-se obter uma análise comparativa de custos entre dois sistemas executivos em forro de gesso, o convencional (placas de 60x60cm) e o de forro de gesso acartonado, ambos na região oeste do Paraná, relacionando material e mão de obra para sua execução, observando os desperdícios na geração de resíduos.

1.2.4 Caracterização do Problema

A escolha do tipo de revestimento de forros em gesso traz influência significativa no custo final de edifícios residenciais?

1.2.5 Delimitação da Pesquisa

Este estudo foi realizado na forma de pesquisador-autor, através de duas obras de uma construtora, sendo que o primeiro experimento se localiza na Rua Flamboyant e o segundo na Rua Marechal Cândido Rondon, ambos na cidade de Cascavel/Paraná. Utilizouse, para o experimento, vinte e quatro apartamentos com as seguintes tipologias, para fins de coleta quantitativa e definição dos desperdícios: 1) com área privativa de 63,14 m²; 2) com 64,61 m²; 3) com 74,31 m².

CAPÍTULO 2

2.1 REVISÃO BIBLIOGRÁFICA

2.1.1 Gesso

O gesso é um dos mais antigos materiais de construção fabricados pelo homem, como a cal e a terracota. Sua obtenção consiste simplesmente no aquecimento a uma temperatura não muito elevada, cerca de 160°C, e posterior redução a pó de um mineral relativamente abundante na natureza: a pedra de gesso ou a gipsita (ROCHA, 2007).

Segundo o mesmo autor, em descobertas arqueológicas, tornou-se evidente que o emprego do gesso remonta ao oitavo milênio a.C. (ruínas na Síria e na Turquia). As argamassas em gesso e cal serviram de suporte em afrescos decorativos, na produção de pisos e, até mesmo, na fabricação de recipientes.

Segundo Leitão (2005), a partir da gipsita é produzido o gesso alfa e o gesso beta, com grandes diferenças no processo de fabricação e aplicação. No momento em que é feita a desmontagem da bancada, já se é possível fazer a classificação da gipsita segundo sua destinação, conforme se verifica abaixo:

- a) Tipo A → para fabricação do gesso alfa (α), odontológico, ortopédico ou cerâmico;
- b) Tipo B \rightarrow para fabricação do gesso beta (β), para revestimento ou fundição;
- c) Tipo C → para refugo, ou para uso como corretivo de solo, na forma de gipsita, com partículas de 0 a 5 mm.

Conforme apresentado no XXX III COBENGE – Congresso Brasileiro de Ensino de Engenharia, há algumas considerações sobre os tipos de gesso e suas aplicações, sendo que a obtenção do gesso alfa se diferencia da do gesso beta pelo grau de pureza do minério usado. Enquanto o gesso beta é obtido por calcinação simples, o gesso alfa exige a utilização do sistema de autoclave, ou seja, usa desidratação em meio aquoso, seguida de centrifugação e moagem, fazendo o cozimento da gipsita pelo vapor d'água sob pressão, seguido de moagem. Uma observação ao microscópio mostra a diferenciação entre os dois a nível de cristais, enquanto o gesso beta tem cristalização completamente irregular (amorfa), o gesso alfa apresenta cristais uniformes (LEITÃO, 2005).

Essa cristalinidade se expressa na difratometria, através da melhor definição da intensidade dos picos e respectivo posicionamento, como consequência oferece ao gesso alfa alta trabalhabilidade, produzindo superfícies com acabamento superior e alcançando resistência de compressão entre 15 e 24 Mpa. Quanto ao gesso beta, este fica no intervalo de 1,5 a 2,0 Mpa. No preparo da pasta, o gesso alfa usa 30% de água e o gesso beta 70% (OLIVEIRA et al., 2012).

Para LEITÃO (2005), as aplicações para o gesso beta estão no campo da construção civil, sendo:

- Fundição: fabricação de elementos pré-moldados placas para forro, elementos decorativos, como sancas e pedestais, blocos divisórios e placas acartonadas ("acartonados");
- Gesso para revestimento manual, com um tempo de pega maior;
- Gesso para revestimento projetado, com pega rápida;
- Argamassas para assentamento;
- Cola de gesso, tanto para alvenaria de blocos, como para fixação de elementos decorativos e acartonados, quando usados em revestimento.

Para o gesso alfa, as principais aplicações são:

- Ortopédicas, nas imobilizações em geral;
- Odontológicas, em restaurações e na moldagem de blocos e elementos ortodônticos;
- Em moldes para peças cerâmicas;
- Em moldes para joias;
- Na fabricação de argamassas para contrapisos autonivelantes.

2.1.2 Painéis de gesso convencionais

2.1.2.1 Materiais

2.1.2.1.1 Placa de gesso

Segundo Modesto (2016), as placas de gesso são fabricadas à base de gesso e água, no traço de 1:0,75 em massa, podendo ser produzidas com ou sem fibra e são utilizadas para todos os tipos de forros para teto, decorações, levantamento e rebaixamento de forros, conforme Figura 1.

Figura 1: Placa de gesso.

Fonte: Modesto, 2016.

A NBR 16382/2015, que versa sobre placas de gesso para forro – requisitos – apresenta as especificações técnicas para placas de 60x60cm, conforme a Tabela 1.

Tabela 1: Especificações técnicas da placa 60x60cm.

Determine 2 2	Tipos - Especificação			
Determinações	60	65	70	Classificação
Manage (Inc.)	≤ 4,70	≤ 5,50	≤ 6,35	Leve
Massa (kg)	> 4,70	> 5,50	> 6,35	Pesada
Dimensões (mm)	600,0 ± 3,0	650,0 ± 3,0	700,0 ± 3,0	-
Largura reforço lateral (mm)	≥ 20,0			-
Espessura reforço lateral (mm)	25,0 ± 5,0			-
Espessura na região central (mm)	≥ 10,0			-
Folga nos encaixes (mm)	≤ 0,8 ¹			-
Deflexão na diagonal (mm)	≤ 1,0			-
Diferença na diagonal (mm)	≤ 1,0			-
Flexão (N.m)	> 9,0			-
Arrancamento (N)	≥ duas vezes o peso da placa mais 6 kg			-

Fonte: ABNT, 2015.

2.1.2.1.2 Gesso cola

Conforme Trevo (2016), o gesso cola é um produto em pó, desenvolvido para ser utilizado na montagem de paredes, forros e tetos, construídos com pré-moldados de gesso, na

colagem de elementos construídos de gesso, como: sancas, molduras, placas, painéis de gesso acartonado, na colagem de azulejo, cerâmica e ladrilho.

Segundo a NBR 16574 (2017), Gesso-cola — União de elementos pré-fabricados de gesso — Método de ensaio, são apresentadas as características necessárias para utilizar o pó de gesso como material colante de elementos pré-fabricados de gesso na execução de fechamentos (paredes e tetos) e pisos, o pó é constituído por 75% de gesso e pequenas quantidades de aditivos (retentores de água, reguladores de pega, agentes de consistência, entre outros), podendo conter também cargas inativas.

O gesso cola pode ser encontrado em lojas de materiais de construção ou lojas especializadas em *drywall*, em sacos de 20 quilos, conforme Figura 2.

Fonte: Trevo, 2016.

2.1.2.1.3 Sisal

Segundo SISALL (2018), o sisal (Agave sp) é uma planta originária do México e possui suas folhas estreitas e compridas, medindo de 10cm a 15cm de largura e 120cm a 160cm de comprimento, utilizada para a colocação do forro de gesso, passando por um processo produtivo de seleção, limpeza e corte da bucha. Esta bucha é considerada um produto especial para instalação do forro de gesso em todo país (Figura 3), sendo usada especialmente para dar durabilidade, aderência e resistência às placas de gesso.

Figura 3: Sisal.

Fonte: Trevo, 2016.

2.1.2.1.4 Fixações

A fixação de um forro de placas de gesso convencional começa com a inserção, no teto, de pinos de aço (Figura 4), colocados a cada 60cm (tamanho normal da placa), no máximo, no qual um arame de aço revestido em PVC passa por um furo existente no pino e é preso na placa em um furo feito na própria obra, torcendo-o bem para amarrar a peça. Uma massa feita de pó de gesso, água e estopa é colocada junto à parede para reforçar a fixação. A moldura é fixada da mesma forma.

Figura 4: Arame revestido em PVC e parafuso ilhó ou argola.

Fonte: O autor, 2016.

2.1.2.2 Execução

Segundo Heck (2010), a execução de forro com placas de gesso, na medida convencional de 60x60cm, apresenta encaixes para montagem intertravada. O forro de gesso é utilizado atualmente em edifícios residenciais e comerciais para ocultar instalações presas ao teto dos compartimentos ou para criar detalhes de iluminação diferenciada.

Na NBR 16591 (2017), a fixação de um forro autoportante, com placas de gesso convencional, começa com a inserção, no teto, de pinos de aço, colocados a cada 60cm, no máximo, no qual seriam feitos os furos para pendurar as placas, os tirantes devem ser fixados preferencialmente no prumo com um arame de aço ou cobre, então, passa por um furo existente no pino e é preso na placa em um furo feito na própria obra, torcendo-o bem para amarrar a peça. Quando não for possível, é necessário utilizar mais um tirante na diagonal oposta, de modo a não criar esforços horizontais nas placas de gesso. Na colocação da primeira placa, deve-se fixar os tirantes no elemento de fixação inserido na placa. É necessária a colocação de mais dois pontos de fixação em duas outras extremidades, perfurando a placa.

Segundo Benigno (2009), para as placas consecutivas da primeira fiada, em ambas as direções, recomenda-se a colocação de mais um ponto de fixação para cada placa, a partir do encaixe tipo macho e fêmea unidos com a cola de gesso distribuída nas partes ou com o compósito fibroso na parte superior das placas. Para a colocação das placas de gesso, prendese um arame galvanizado no gancho preso à laje, passando-o pelos furos da placa de gesso e enrolando-o sobre si mesmo até obter o nível desejado para a placa. Os furos de fixação do tirante na placa devem ser tampados e reforçados com compósito fibroso (NBR 16591, 2017).

Após a fixação das placas à estrutura, é feita a manutenção dos bisotês nas emendas entre placas, retirando o excesso de gesso proveniente do compósito fibroso. O rejunte dos bisotês entre as placas é feito com pasta de gesso (Figura 5), cobrindo as juntas, sulcos e lixando-o em seguida para reparar possíveis imperfeições (BENIGNO, 2009).


Na Figura 6, são apresentados os detalhes de instalação do forro em placas.

Figura 5: Montagem e acabamento do forro em placas.

Fonte: O autor, 2016.

Figura 6: Detalhe de instalação do forro.

Fonte: Benigno, 2009.

2.1.3 Painéis de *Drywall*

O *drywall* é uma expressão em inglês que significa "parede seca", ou seja, é uma tecnologia usada para se referir às divisórias de gesso acartonado com estrutura em perfil galvanizado. Porém, o termo refere-se aos componentes de fechamento utilizados na construção a seco, sendo as chapas de gesso acartonado apenas um dos inúmeros tipos de *drywall*, podendo ser usadas para revestimentos de tetos e paredes (FREITAS; e CRASTO, 2006).

Apesar de estar presente na construção civil desde 1974, o *drywall* começou a ganhar expressiva importância, no Brasil, na segunda metade da década de 90. Até então, o sistema era praticamente uma novidade para projetistas, construtoras e para o público em geral. Entretanto, o uso de tal sistema já estava difundido e consolidado há muito tempo no exterior.

Diversos países já estão em um estágio adiantado de desenvolvimento do produto, com uso expressivo em relação a outros sistemas de vedação interna. Nos Estados Unidos, por exemplo, aproximadamente 90% dos fechamentos internos são realizados com gesso acartonado (CORBIOLLI, 1995).

2.1.3.1 Materiais

2.1.3.1.1 Chapas de gesso

As chapas de gesso são fabricadas industrialmente mediante um processo de laminação contínua de uma mistura de gesso, água e aditivos entre duas lâminas de cartão, na qual uma é virada sobre as bordas longitudinais e colada sobre a outra (NBR 14715-1, 2010).

As chapas de gesso devem ser produzidas de acordo com as normas ABNT NBR 14715-1 /2010 - Chapas de gesso para *drywall* – Parte 1: Requisitos e ABNT NBR 14715-2 /2010 - Chapas de gesso para *drywall* – Parte 2: Métodos de ensaio.

Segundo a NBR 14715-1 (2010), as chapas podem possuir a espessura de 9,5mm, 12,5mm ou 15mm; a largura de, no máximo, 1,2m; o comprimento máximo de 3,6m; e a densidade superficial da massa pode variar de 6,5 a 14 kg/m². As chapas são classificadas segundo suas características em três tipos:

- a) ST (standard): para aplicação em áreas secas;
- b) RU (resistente à umidade): para aplicação em áreas sujeitas à umidade, por tempo limitado e de forma intermitente;

c) RF (resistente ao fogo): para aplicações em áreas secas, necessitando de maior desempenho em relação ao fogo.

A Figura 7 apresenta os tipos de chapas existentes no mercado.

Figura 7: Algumas das chapas apresentadas pela empresa Lafarge Gypsum.

CHAPA GYPSUM ST

CHAPA STANDARD PARA ÁREAS SECAS

ESPESSURA (mm): 6,4 - 9,5 - 12,5 - 15 LARGURA (m): 0,60 (FGA) - 1,20 COMPRIMENTO (m): DE 1,80 A 3,00

CHAPA GYPSUM RF

CHAPA RESISTENTE AO FOGO PARA ÁREAS SECAS QUE NECESSITAM DE MAIOR RESISTÊNCIA AO FOGO

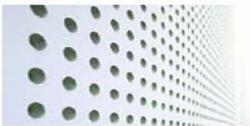
ESPESSURA (mm): 12,5 LARGURA (m): 1,20 COMPRIMENTO (m): 2,40

CHAPA FGR LISO

CHAPA PARA FORRO REMOVÍVEL REVESTIDA COM VINIL

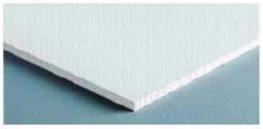
ESPESSURA (mm): 9,5 LARGURA (m): 0,418 COMPRIMENTO (m): 0,618 E 1,243

Fonte: Gypsum, 2007.


CHAPA GYPSUM RU

CHAPA RESISTENTE A UMIDADE PARA ÁREAS ÚMIDAS

ESPESSURA (mm): 12,5 LARGURA (m): 1,20 COMPRIMENTO (m): DE 1,80 A 2,80


CHAPA GYPSOM

CHAPA PERFURADA PARA ABSORÇÃO ACÚSTICA

ESPESSURA (mm): 12,5 LARGURA (m): 1,20 COMPRIMENTO (m): 2,40

CHAPA FGR LINHO

CHAPA PARA FORRO REMOVÍVEL REVESTIDA COM VINIL

ESPESSURA (mm): 9,5 LARGURA (m): 0,418 COMPRIMENTO (m): 0,618 E 1,243

2.1.3.1.2 Perfis metálicos

Segundo a empresa Knauf (2016), os perfis metálicos são fabricados industrialmente, mediante um processo de conformação contínua a frio, por sequência de rolos, a partir de chapas de aço galvanizadas pelo processo de imersão a quente. Esses perfis devem ser fabricados de acordo com a ANBT NBR 15217/2009 - Perfis de aço para sistemas construtivos em chapas de gesso para *drywall* - Requisitos e métodos de ensaio, destacando-se os seguintes aspectos:

- Espessura mínima da chapa: 0,5mm;
- Revestimento galvanizado mínimo: Classe Z 257 (massa de 275g/m² dupla face).

Os perfis metálicos são classificados segundo sua morfologia e são apresentados na Figura 08.

Elementos estruturais Comprimento Nome Descrição Acondicionamento (mm) Guia R48 Assegura a união Guia R70 com os montantes. 3000 Amarrado de 10 unidades Guia R90 Montante M48 2790 Amarrado de 10 unidades Para a formação de Montante M70 Amarrado de 10 unidades estrutura das paredes, 2990 forros e revestimentos. Montante M90 Amarrado de 10 unidades 2990 Para forros e revestimentos. 3000 Amarrado de 10 unidades Perfil F530

Figura 8: Tipos de perfis metálicos.

Fonte: Placo do Brasil, 2016.

2.1.3.1.3 Fixações

As chapas são fixadas na estrutura por meio de parafusos autoperfurantes e autoatarraxantes, também produzidos com diferentes dimensões e materiais para diferentes espessuras de chapeamento e de perfil, possuem proteção contra corrosão (KNAUF, 2016).

Segundo a Gypsum (2007), no Manual de Fixação, Manutenção e Acabamento da Associação Brasileira de Chapas para *Drywall*, "as chapas são feitas basicamente com

parafusos autoperfurantes e autoatarraxantes e quanto a sua fixação dividem-se entre si em dois tipos". Os dois tipos são aqueles com fixação dos perfis metálicos entre si (metal/metal) e os com fixação das chapas de gesso sobre os perfis metálicos (chapa/metal), podendo ser observados na Figura 09.

Figura 9: Tipos de parafusos.

Fonte: Knauf, 2016.

2.1.3.2 Acabamentos

2.1.3.2.1 Massas para juntas e colagens

De acordo com a Associação Brasileira de Produtores de Chapas para *Drywall*, "as massas para juntas são produtos especificados para o tratamento das juntas entre chapas de gesso, tratamento dos encontros entre as chapas e o suporte (alvenarias ou estruturas de concreto), além do tratamento das cabeças dos parafusos". Essas massas devem ser utilizadas juntamente com fitas apropriadas.

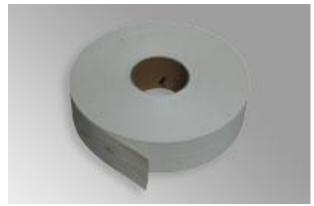
As massas para colagem são produtos específicos para a fixação das chapas de gesso diretamente sobre os suportes verticais (alvenarias ou estruturas de concreto) e para pequenos reparos nas chapas. Os modelos disponíveis comercialmente de argamassas são demonstrados na Figura 10.

Figura 10: Massas para acabamento.

MASSA DE REJUNTE PARA DRYWALL GYPSUM 90 MASSA DE REJUNTE PARA DRYWALL GYPSUM PRONTA PARA USO COLA PARA CHAPAS GYPSUM

Drywn Drywn Drywn Digwel Digwe

EM BALDES DE 15KG OU 30KG


EXCELENTE PARA A COLAGEM DE CHAPAS SOBRE ALVENARIA SACOS DE 20KG

Fonte: Placo do Brasil, 2016.

2.1.3.2.2 Acessórios

As fitas são elementos essenciais no tratamento de juntas (Figura 11), proporcionando, em conjunto com a massa indicada para esse fim, a resistência e a elasticidade necessárias para que o acabamento se mantenha estável, sem fissuras ou trincas (KNAUF, 2016). Essas fitas são feitas à base de papel especial microperfurado para tratamento de juntas em paredes, tetos e revestimentos.

Figura 11: Fita para fechamento das juntas das chapas de gesso acartonado.

Fonte: Knauf, 2016.

2.1.3.3 Execução

De acordo com as determinações da Associação Brasileira dos Fabricantes de Chapas para *Drywall* (2007), "os forros de *drywall* são constituídos por chapas de gesso aparafusadas em uma estrutura de aço galvanizado, onde a fixação da estrutura de aço é realizada na laje ou estrutura do telhado por pendurais".

A diferença básica entre os diversos tipos de forros *drywall* está na estrutura de suporte às chapas e se estas são removíveis ou não. Os forros podem ser classificados em quatro tipos: estruturados, perfurados, armados e removíveis. Os três primeiros são fixos, formam superfícies monolíticas e são executados com chapas de bordas longitudinais rebaixadas, que devem receber tratamento de juntas para uniformização da superfície. O quarto tipo, o removível, é constituído por chapas com bordas quadradas.

O forro D112, apresentado na Figura 12 e Figura 13, utiliza uma estrutura metálica, na qual são parafusadas uma ou mais chapas de *drywall*, fixadas em uma estrutura metálica unidirecional. A estrutura é fixada na laje superior e nas paredes laterais por meio de guias, perfis, tirantes e suportes niveladores, tendo os espaçamentos entre guias com variação de 40 a 60 centímetros. Esse teto é especialmente indicado para ambientes internos residenciais ou comerciais com áreas que necessitem de acabamento perfeitamente liso e uniforme.

As ferramentas necessárias para o serviço são: martelo, alicate, trena, nível laser, furadeira, parafusadeira, linha de marcação de nível, estilete, lápis de carpinteiro, tesoura de corte de perfis metálicos.

Distância entre fixações
Suporte nivelador para F47
Distância entre perfis
Conector de perfil F47
Chapa Knauf Drywall
Perfil F47
Tirante

Figura 12: Teto Knauf D112 Unidirecional.

Fonte: Knauf, 2016.

Detalhes de instalação D112 Unidirecional Tabica Distância entre fixações Distância entre perfis Parafuso com bucha ou fincapino Unidirecional Suporte nivelador Distância entre perfis (b) Chapas Distância entre Peso do teto Espessura (mm) fixações (a) (mm) Longitudinal Perfil F-47 Transversal KN/m² (mm) (mm) < 0,15 1.000 mm 0,15<p<0,30 1.000 mm 600 400 0,30<p<0,50 750 mm

Figura 13: Detalhe Teto Knauf D112 Unidirecional.

Fonte: Knauf, 2016.

De acordo Gypsum, no Manual de Fixação, Manutenção e Acabamento (2006), e a Associação Brasileira dos Fabricantes de Chapas para Drywall, as placas "devem ser fechadas com chapas de gesso, parafusadas a cada 25 ou 30 cm e é feito o tratamento das juntas no encontro das chapas com fita e massa próprias para o drywall. Após lixamento das juntas e cabeças dos parafusos, a superfície está pronta para receber o acabamento final". Na Figura 14, é mostrada a sequência da montagem e acabamento do forro de drywall.

Figura 14: Sequência esquemática da montagem e acabamento do forro de drywall.

Fonte: Gypsum, 2007.

2.1.4 Composições de custos unitários

Segundo González (2008),

"os orçamentos discriminados, conhecidos também como detalhados, são aqueles compostos por uma listagem dos serviços necessários para a execução de uma obra. Em princípio, só podem ser realizados após a conclusão do projeto, com as discriminações técnicas, memoriais, projetos gráficos (arquitetônico, estrutural, hidráulico, elétrico e outros) e detalhamentos".

Isso significa dizer que o orçamento discriminado somente poderá ser feito quando todas as definições necessárias já tiverem sido efetuadas pelos projetistas.

Não existem orçamentos "exatos", a rigor, pois, a quantidade de informações a ser gerenciada é grande e a construção civil é um setor que tipicamente apresenta variabilidade. Esses orçamentos são os empregados corriqueiramente, na construção civil, para a obtenção do custo de execução com a finalidade de participação em concorrências públicas e privadas. São elementos importantes dos contratos, servindo para dirimir a grande maioria das dúvidas que surgem com relação aos custos.

O orçamento discriminado de uma obra é a relação dos serviços a serem executados, com as respectivas quantidades e com seus preços. A discriminação orçamentária auxilia na montagem da lista dos itens a serem considerados. As quantidades a serem executadas são medidas seguindo um determinado conjunto de critérios de medição. Os preços unitários são obtidos em publicações, como na revista Construção e Mercado, da Editora Pini, ou calculados em *softwares* específicos, de acordo com fórmulas próprias (as composições de preços de serviços).

Nas composições de custos, já estão considerados todos os materiais e equipamentos necessários, bem como a mão de obra, com preços que levam em conta transporte, aluguel, leis sociais e outros acréscimos. A soma dos produtos de cada quantidade por seu preço unitário correspondente fornece o custo total direto da obra, basicamente composto pelos custos de canteiro. Pode-se dizer que a qualidade do orçamento discriminado depende de medições criteriosas, composições de custos adequadas, preços de mercado e um bom sistema informatizado.

CAPÍTULO 3

3.1 METODOLOGIA

Para cumprir os objetivos propostos no trabalho, foi analisado o processo de execução do forro de gesso em dois sistemas, o convencional e o de gesso acartonado. Para tanto, foi feita a análise da execução em três apartamentos com tipologias diferentes.

3.1.1 Caracterização da amostra

3.1.1.1 Método de execução

O sistema de gesso em *drywall* foi executado em três apartamentos, um de cada tipologia, sendo aplicado em todos os ambientes, nos demais apartamentos foram executados no sistema com placas de 60x60cm.

Para análise, foi cronometrado o tempo de execução dos sistemas de forro de gesso, sendo designada uma equipe de dois funcionários, esta equipe executou o foro de gesso em todos os apartamentos.

Antes do início da execução do forro de gesso, todos os materiais já estavam acondicionados próximos ao local a ser executado, para que fosse diminuído o tempo de transporte e deslocamento dos materiais e não houvesse atrasos na mão de obra.

Nos apartamentos que a execução foi em forro de gesso, com placas de 60x60cm, intertravadas e aplicadas com moldura de dilatação no encontro das suas bordas com vigas e paredes, para ancoragem do sistema, utilizou-se arame galvanizado, revestido em PVC, fixação com bucha e parafuso, conforme representado na Figura 15.

Já nos apartamentos que o sistema é de forro de gesso acartonado, foi adotado o sistema de forro unidirecional com chapas *standard* – ST, com espessura de 12,50mm e dimensões de 120x180cm. Nos encontros das bordas de vigas e paredes, utilizar-se-á os perfis metálicos tipo tabica e, na ancoragem do sistema, buchas e parafusos fixados com os tirantes, suporte nivelador para perfil F-47 e perfil F-47, conforme representado na Figura 16.

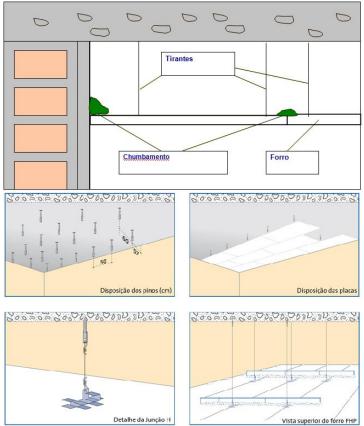
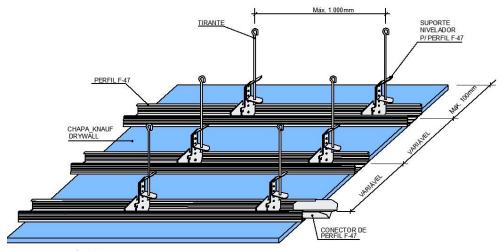



Figura 15: Representação executiva forro de gesso em placas.

Fonte: Placo, 2016.

Figura 16: Perspectiva - Teto D112 unidirecional com perfil F-47 e uma chapa.

Fonte: Knauf, 2016.

3.1.1.2 Tipologias dos apartamentos

No experimento, foram analisadas três tipologias de apartamentos residenciais de uma construtora.

3.1.1.2.1 Apartamento Tipo 1

O apartamento está localizado na Rua Marechal Cândido Rondon, possui um pé direito de 2,95m e área construída privativa de 64,61m², distribuída em:

- Hall com 2,95m²;
- Sala de Estar/Jantar com 16,86m²;
- Cozinha/Serviço com 8,29m²;
- Circulação com 1,61m²;
- Dormitório 1 com 9,92m²;
- Dormitório 2 com 9,38m²;
- Banheiro com 2,97m²;

No Anexo A, encontra-se a planta baixa do apartamento acima referido.

3.1.1.2.2 Apartamento Tipo 2

O apartamento está localizado na Rua Marechal Cândido Rondon, possui um pé direito de 2,95m e área construída privativa de 74,31 m², distribuída em:

- Hall com 2,70m²;
- Sala de Estar/Jantar com 19,11m²;
- Cozinha/Serviço com 9,57m²;
- Circulação com 2,07m²;
- Dormitório com 9,52m²;
- Suíte com 11,47m²;
- Banheiro Social com 2,97m²;
- Banheiro da Suíte com 2,97m².

No Anexo B, encontra-se a planta baixa do apartamento acima mencionado.

3.1.1.2.3 Apartamento Tipo 3

O apartamento está localizado na Rua Flamboyant, possui um pé direito de 2,95m e área construída privativa de 63,14 m², distribuída em:

- Sala de Estar/Jantar com 9,41m²;
- Cozinha/Serviço com 15,16m²;
- Circulação com 1,95m²;

- Dormitório 1 com 8,88m²;
- Dormitório 2 com 11,86m²;
- Banheiro com 3,12m²;
- Sacada com 3,14m².

No anexo C, encontra-se a planta baixa do apartamento descrito acima.

3.1.2 Coleta de dados

Os dados foram coletados no próprio local da edificação, por meio de *check list* elaborado pelo pesquisador e com acesso aos projetos das edificações. Também, foram utilizados como suporte informações dos fornecedores para os materiais e mão de obra, além de pesquisas em livros, artigos, revistas, sites e normas regulamentadoras.

O levantamento quantitativo dos materiais para orçamento foram todos coletados em obra, com o real consumo dos materiais e, após toda a coleta dos dados, foram verificados os preços dos insumos, considerando compra direta para a construtora, bem como os custos de frete. Para o custo da mão de obra, foi considerado o tempo de execução e contabilizado o registro do funcionário para a construtora.

Abaixo são demonstrados os modelos das planilhas elaboradas para utilização da coleta quantitativa dos materiais para cada tipo de sistema executivo, conforme a Tabela 2, para o sistema de forro de gesso em placas, e a Tabela 3, para o sistema *drywall* com placa de gesso acartonado para forros unidirecionais.

Tabela 2: Planilha de levantamento de dados para o gesso em placas.

Apartamento Tipo	
Descrição	Unidade
Forro de Gesso	m²
Dilatação	m
Placa Gesso 60 x 60 cm	und.
Moldura de Dilatação (1,0 m)	und.
Gesso Fundição (40 Kg)	kg
Sisal	m^3
Arame revestido de PVC	m
Parafuso olha e bucha	und.
Mão de obra	h
Resíduo	m^3

Fonte: O autor, 2018.

Tabela 3: Planilha de levantamento de dados para o gesso acartonado.

Apartamento Tipo		
Descrição	Unidade	
Chapa ST 12,5mm - 1,20 x 1,80 m	und.	
Suporte nivelador	und.	
Tirante 1.0 m	und.	
Perfil F-47 - 3,00 m	barra	
Tabica Lisa	barra	
Fita p/ juntas	M	
Conector de perfil	und.	
Massa Readyfix - BR 30 Kg	Kg	
Parafuso TA-25	und.	
Parafuso PA	und.	
Parafuso e bucha S-6	und.	
Mão de Obra	Н	
Resíduo	m³	

Fonte: O autor, 2018.

3.1.3 Análise de dados

Os dados obtidos no experimento foram tabelados e processados, utilizando-se planilha eletrônica Microsoft Excel e, para a avaliação financeira, foram coletados os orçamentos dos materiais e da mão de obra para a região oeste do Paraná, na cidade de Cascavel.

CAPÍTULO 4

4.1 RESULTADOS E DISCUSSÕES

4.1.1 Consumo de Materiais

4.1.1.1 Apartamento Tipo 1

Foram analisados quatorze apartamentos do Tipo 1, com área executada em gesso de 51,24m², sendo que, em treze deles, foi aplicado o sistema do forro de gesso em placa e, em apenas um deles, o sistema forro em *drywall*.

Conforme Tabela 4, tem-se o consumo de todos os materiais utilizados em obra, o tempo de execução e o volume de resíduo gerado para o sistema do forro de gesso em placa intertravada.

Tabela 4: Consumo médio de materiais do forro de gesso em placas do apartamento Tipo 1.

Descrição	Unidade	Média
Forro de Gesso – área executada	m²	51,24
Dilatação - executada	m	65,79
Placa Gesso 60 x 60 cm - consumo	und.	145,00
Moldura de Dilatação (1,0 m) - consumo	und.	71,00
Gesso Fundição (40 Kg)	sc	2,00
Sisal	kg	3,13
Arame revestido de PVC	m	171,71
Parafuso olha e bucha	und.	214,64
Mão de obra	h	24,80
Resíduo	m³	0,29

Fonte: O autor, 2018.

Conforme demonstra a Tabela 5, tem-se o consumo de todos os materiais utilizados em obra, o tempo de execução e volume de resíduo gerado para o sistema de forro em *drywall*.

Tabela 5: Consumo médio de materiais de forro *drywall* do apartamento Tipo 1.

Descrição	Unidade	Total
Chapa ST 12,5mm - 1,20 x 1,80 m	und.	24,00
Suporte nivelador	und.	87,00
Tirante 1.0 m	und.	87,00
Perfil F-47 - 3,00 m	br	31,00
Tabica Lisa – 3,00 m	br	22,00
Fita p/ juntas	m	78,00
Conector de perfil	und.	0,00
Massa Readyfix - BR 30 Kg	kg	23,40
Parafuso TA-25	und.	780,00
Parafuso PA	und.	75,00
Parafuso e bucha S-6	und.	66,00
Mão de Obra	h	16,20
Resíduo	m³	0,14

Fonte: O autor, 2018.

Conforme apresentado na Tabela 4 e Tabela 5, estão relacionados os consumos distintos dos materiais de cada sistema, sendo que, no método em *drywall*, apesar de ter uma quantidade maior de itens aplicados, teve a geração de resíduos de gesso 51,72% menor que o sistema em placas.

O que foi constatado acima se deve ao consumo das placas de gesso e das molduras de dilatação serem maiores, pois, para a execução dos mesmos 51,24 m² de forro, o consumo de placas de gesso 60x60cm foi de 52,20m² contra 51,84m². Quanto às dilatações, estas foram de 71m para 66m, sendo, respectivamente, 6,90% e 7,04% maior para este apartamento no sistema em placas.

Considerando o tempo de execução da mão de obra nos dois sistemas avaliados, o drywall é executado 34,68% mais rápido, contabilizando 8,6 horas a menos do que o forro em placas.

4.1.1.2 Apartamento Tipo 2

Foram analisados sete apartamentos do Tipo 2, com área executada em gesso de 59,96m², sendo que, em seis deles, foi aplicado o sistema do forro de gesso em placa e, em apenas um, o sistema forro em *drywall*.

No apartamento Tipo 2, tiveram seis repetições da amostragem do forro de gesso em placas. A média de consumo de material, o tempo de execução e volume de resíduo gerado são apresentados na Tabela 6.

Tabela 6: Consumo médio de materiais do forro de gesso em placas do apartamento Tipo 2.

Descrição	Unidade	Média
Forro de Gesso – área executada	m²	59,96
Dilatação - executada	m	83,61
Placa Gesso 60 x 60 cm - consumo	und.	170,00
Moldura de Dilatação (1,0 m) - consumo	und.	90,00
Gesso Fundição (40 Kg)	sc	2,30
Sisal	kg	3,53
Arame revestido de PVC	m	211,20
Parafuso olha e bucha	und.	264,00
Mão de obra	h	28,62
Resíduo	m³	0,36

Fonte: O autor, 2018.

Conforme Tabela 7, tem-se o consumo de todos os materiais utilizados em obra, o tempo de execução e o volume de resíduo gerado para o sistema de forro em *drywall* do apartamento Tipo 2.

Tabela 7: Consumo médio de materiais de forro *drywall* do apartamento Tipo 2.

Descrição	Unidade	Total
Chapa ST 12,5mm - 1,20 x 1,80 m	und.	28,00
Suporte nivelador	und.	105,00
Tirante 1.0 m	und.	105,00
Perfil F-47 - 3,00 m	br	34,00
Tabica Lisa – 3,00 m	br	28,00
Fita p/ juntas	m	90,00
Conector de perfil	und.	2,00
Massa Readyfix - BR 30 Kg	kg	27,00
Parafuso TA-25	und.	900,00
Parafuso PA	und.	85,00
Parafuso e bucha S-6	und.	56,00
Mão de Obra	h	18,90
Resíduo	m³	0,14

Fonte: O autor, 2018.

Conforme apresentado na Tabela 6 e Tabela 7, estão relacionados os consumos distintos dos materiais de cada sistema, sendo que, no método em *drywall*, apesar de ter uma quantidade maior de itens aplicados, houve a geração de resíduos de gesso 61,11% menor que o sistema em placas.

Isso foi devido ao consumo médio das placas de gesso e das molduras de dilatação serem maiores, pois, para a execução dos mesmos 59,96 m² de forro, o consumo de placas de gesso 60x60cm é de 61,20m² contra 60,48m². No que se refere às dilatações, estas foram de 90m para84 m, sendo, respectivamente, 1,18% e 6,67% maior para este apartamento no sistema em placas.

Considerando o tempo de execução da mão de obra nos dois sistemas avaliados, o drywall é executado 33,96% mais rápido, totalizando 9,72 horas a menos do que o forro em placas.

4.1.1.3 Apartamento Tipo 3

Foram analisados quatro apartamentos do Tipo 3, com área executada em gesso de 48,00m², sendo que, em três deles, foi aplicado o sistema do forro de gesso em placa e, em apenas um, o sistema forro *drywall*.

Conforme Tabela 8, tem-se o consumo de todos os materiais utilizados em obra, o tempo de execução e o volume de resíduo gerado para o sistema do forro de gesso em placa intertravada.

Tabela 8: Consumo médio materiais de forro de gesso em placas do apartamento Tipo 3.

Descrição	Unidade	Média
Forro de Gesso – área executada	m²	48,00
Dilatação - executada	m	69,00
Placa Gesso 60 x 60 cm - consumo	und.	137,00
Moldura de Dilatação (1,0 m) - consumo	und.	76,00
Gesso Fundição (40 Kg)	sc	2,00
Sisal	kg	3,00
Arame revestido de PVC	m	211,20
Parafuso olha e bucha	und.	264,00
Mão de obra	h	22,33
Resíduo	m³	0,29

Fonte: O autor, 2018.

Na Tabela 9, tem-se o consumo de todos os materiais utilizados em obra, o tempo de execução e volume de resíduo gerado para o sistema de forro em *drywall* do apartamento Tipo 3.

Tabela 9: Consumo médio materiais do forro de gesso *drywall* do apartamento Tipo 3.

Descrição	Unidade	Total
Chapa ST 12,5mm - 1,20 x 1,80 m	und.	22,50
Suporte nivelador	und.	85,00
Tirante 1.0 m	und.	85,00
Perfil F-47 - 3,00 m	br	28,00
Tabica Lisa – 3,00 m	br	23,00
Fita p/ juntas	m	72,00
Conector de perfil	und.	4,00
Massa Readyfix - BR 30 Kg	kg	21,60
Parafuso TA-25	und.	720,00
Parafuso PA	und.	80,00
Parafuso e bucha S-6	und.	69,00
Mão de Obra	h	15,10
Resíduo	m³	0,14

Fonte: O autor, 2018.

Conforme apresentado nas Tabela 8 e 9, estão relacionados os consumos distintos dos materiais de cada sistema, sendo que, no método em *drywall*, apesar de ter uma quantidade maior de itens aplicados, houve a geração de resíduos de gesso 51,72% menor que o sistema em placas.

Isso foi devido ao consumo médio das placas de gesso e das molduras de dilatação serem maiores, pois, para a execução dos mesmos 48,00m² de forro, o consumo de placas de gesso 60x60cm é de 49,32m² contra 48,60 m². As dilatações foram de 76m para 69m, sendo, respectivamente, 1,46% e 9,21% maior para este apartamento no sistema em placas.

Considerando o tempo de execução da mão de obra nos dois sistemas avaliados, o *drywall* é executado 32,38% mais rápido, significando 7,23 horas a menos do que o forro em placas.

4.1.2 Custos

Os custos podem ser classificados de diversas formas, dependendo de cada finalidade ou exposição. Para a implementação de um empreendimento de construção civil, existem

basicamente três insumos básicos (e consequentemente custos): a mão de obra, os materiais a serem utilizados e as ferramentas necessárias ao beneficiamento destes materiais durante a transformação do produto final (POZZOBON, 2008).

4.1.2.1 Materiais

Todos os materiais quantificados no experimento foram planilhados e emitidos os orçamentos a seus respectivos fornecedores de matéria-prima, sendo estes fornecedores regionais ou indústria que fabrica os insumos. Foi verificado também o fato de gerar ou não custos adicionais de entrega, dependendo do fornecedor e a quantidade a ser entregue. Foram feitos orçamentos em pelo menos três empresas, adotado o preço médio, de modo que, para forro de gesso em placas, os valores estão apresentados abaixo, conforme a Tabela 10, e, para a tipologia do sistema em *drywall*, a média dos valores está na Tabela 11.

Tabela 10: Custo unitário do sistema de forro de gesso em placas.

Descrição	Unidade	Preço
Forro de Gesso	m²	8,18
Placa Gesso 60 x 60 cm	und.	3,78
Moldura de Dilatação (1,0 m)	und.	2,00
Gesso Fundição (40 Kg)	sc	18,40
Sisal	Kg	7,16
Arame revestido de PVC	m	0,07
Parafuso olha e bucha	und.	0,10

Fonte: Trevo, 2018.

Tabela 11: Custo unitário do sistema de forro drywall.

Descrição	Unidade	Preço
Chapa ST 12,5mm - 1,20 x 1,80 m	m²	8,49
Suporte nivelador	und.	0,90
Tirante 1.0 m	und.	0,76
Perfil F-47 - 3,00 m	m	2,59
Tabica Lisa - 3,00 m	m	2,78
Fita p/ juntas	m	0,17
Conector de perfil	und.	0,29
Massa Readyfix - BR 30 Kg	kg	1,45
Parafuso TA-25	und.	0,02
Parafuso PA	und.	0,025
Parafuso e bucha S-6	und.	0,15

Fonte: Saint-Gobain, 2018.

O custo do material para o forro de gesso, em ambos os sistemas, é apresentado na tabela 12.

Tabela 12: Custo de material para cada apartamento.

	Apartamento			
Sistema	Tipo 1	Tipo 2	Tipo 3	
Placa 60x60 cm	R\$ 782,79	R\$ 931,38	R\$ 769,32	
Drywall	R\$ 1.083,46	R\$ 1.269,03	R\$ 1.034,56	

Fonte: O autor, 2018.

4.1.2.2 Mão de Obra

Segundo CAGED - Cadastro Geral de Empregados e Desempregados do Ministério do Trabalho, o salário médio para a função de gesseiro, com jornada de trabalho de 220 horas por mês (atualizado em 3 de abril de 2018), está apresentado na Tabela 13, com a média em cada estado brasileiro, sendo a do Paraná de R\$ 1.595,63.

Tabela 13: Média salarial para a função de gesseiro em cada estado brasileiro.

Estado	<u>Salário</u>
Acre – AC	R\$ 1.174,67
Alagoas - AL	R\$ 1.135,92
Amapá - AP	R\$ 1.390,00
Amazonas - AM	R\$ 1.451,19
Bahia - BA	R\$ 1.560,89
Ceará - CE	R\$ 1.388,79
Distrito Federal - DF	R\$ 1.481,49
Espírito Santo - ES	R\$ 1.262,60
Goiás - GO	R\$ 1.353,01
Maranhão - MA	R\$ 1.308,71
Minas Gerais - MG	R\$ 1.422,06
Mato Grosso - MT	R\$ 1.323,90
Mato Grosso do Sul - MS	R\$ 1.353,24
Pará – PA	R\$ 1.303,44
Paraíba - PB	R\$ 1.338,93
Paraná - PR	R\$ 1.595,63

Pernambuco - PE	R\$ 1.246,22
Piauí – PI	R\$ 1.408,00
Rio de Janeiro - RJ	R\$ 1.855,41
Rio Grande do Norte - RN	R\$ 1.268,64
Rio Grande do Sul - RS	R\$ 1.470,85
Rondônia - RO	R\$ 1.414,92
Roraima - RR	R\$ 954,00
Santa Catarina - SC	R\$ 1.642,08
São Paulo - SP	R\$ 1.685,36
Sergipe - SE	R\$ 1.355,25
Tocantins - TO	R\$ 1.287,97
Et CACED 2010	

Fonte: CAGED, 2018.

Porém, segundo MATTOS (2006), para a obtenção do custo total da mão de obra, soma-se o salário base do funcionário com os encargos sociais e trabalhistas impostas pela legislação e pelas convenções do trabalho. Os encargos se apresentam em duas formas, os encargos em sentido estrito e em sentido amplo. Os encargos em sentido estrito são tipos de encargos sociais, trabalhistas e indenizatórios previstos em lei, aos quais o empregador está obrigado, vez que são encargos sociais básicos que podem ter seus percentuais fixados em lei, como contribuição para o INSS (Instituto Nacional do Seguro Social), FGTS (Fundo de Garantia Sobre Tempo de Serviço), salário-educação, seguro contra acidente de trabalho e outros encargos que possuem percentuais variáveis, pois dependem da realidade de cada empresa. Esta última situação é exemplificada com alguns encargos trabalhistas com percentual variável: aviso prévio, faltas justificadas, auxílio enfermidade, acidente de trabalho; estas despesas, através da política de prevenção de acidentes e segurança do trabalho da empresa podem ser reduzidos. Os encargos em sentido amplo têm sua origem em acordos coletivos entre sindicatos patronais e de trabalhadores da construção civil, é o caso do café da manhã, almoço, vale transporte, EPI, dentre outros.

Portanto, conforme o Sinduscon Oeste e através das informações coletadas em obra, pelos fornecedores e funcionários do setor gesseiro, os valores apresentados não condizem com o salário de um gesseiro, conforme a Tabela 13, para a região oeste do Paraná. Segundo os empresários, está em média R\$ 4.000,00 por mês, pois os gesseiros trabalham por produtividade, o que gera a média de R\$ 5,00/m² como base o custo de mão de obra para forro de gesso em placas, R\$ 5,00/m para colocação de moldura de dilatação 3x3cm do forro de

gesso em placa e R\$ 13,00/m² para forro em *drywall* no sistema unidirecional, já incluindo a colocação das tabicas para este sistema, sendo necessário considerar, ainda, os encargos sociais da empresa que forneceu a mão de obra, o qual é de, aproximadamente, 164%.

O custo da mão de obra para o forro de gesso, em ambos os sistemas, é apresentado na tabela 14.

Tabela 14: Custo da mão de obra para cada apartamento.

	Apartamento			
Sistema	Tipo 1	Tipo 2	Tipo 3	
Placa 60x60 cm	R\$ 959,65	R\$ 1.177,27	R\$ 959,40	
Drywall	R\$ 1.092,44	R\$ 1.278,35	R\$ 1.023,36	

Fonte: O autor, 2018.

4.1.3 Avaliação dos custos dos sistemas de forro de gesso.

Devido às particularidades de cada obra, nas quais o custo é regional, isto é, salários de mão de obra e preços de materiais podem variar de região pra região, para que haja uma comparação correta de preços, é necessário que os fornecedores tenham a mesma base do escopo do serviço (DIAS, 2006).

Segundo MATTOS (2006), quando as cotações dos insumos estão próximas, pode-se adotar o preço médio, caso contrário o orçamentista terá que realizar novas cotações, até chegar ao consenso de atribuição do valor do insumo.

Portanto, para o experimento, na avaliação dos custos, foram adotadas as médias dos consumos de cada tipologia de apartamento e multiplicado pelo preço médio obtido para cada insumo, a soma total de destes insumos foi dividida pela área média dos apartamentos para encontrar o custo por metro quadrado da execução de cada sistema, conforme está apresentado na Tabela 15, para o sistema do forro de gesso em placas, e na Tabela 16, para o sistema de forro em *drywall*, sendo que, nas duas últimas linhas de cada tabela estão apresentados o custo médio total e o custo médio por metro quadrado.

Para melhor compreensão nos Apêndices A, B e C, está apresentada a prancha do *layout* executivo dos dois sistemas para cada tipologia de apartamento, com as disposições das placas de gesso, os locais que foram considerados na aplicação das molduras de dilatação e perfis tabica e as disposições dos perfis F-47 do forro em *drywall* no sistema de teto unidirecional.

No sistema de forro de gesso em placas, conforme apresentado na Tabela 15, obtevese um custo médio para execução do sistema de 35,74 R\$/m².

Tabela 15: Avaliação financeira forro de gesso em placas

Descrição	Unid.	Tipo 1	Tipo 2	Tipo 3	Média	Unitário	Total R\$
Forro de Gesso – área executada	m²	51,24	59,96	48,00	53,07	8,18	-
Dilatação - executada	m	65,79	83,61	69,00	72,80	2,00	-
Placa Gesso 60 x 60 cm	und.	145,00	170,00	136,00	150,33	3,78	568,24
Moldura de Dilatação (1,0 m)	und.	67,00	86,00	71,00	74,67	2,00	149,34
Gesso Fundição (40 Kg)	sc	2,00	2,30	2,00	2,10	18,40	38,64
Sisal	kg	3,13	3,53	3,00	3,22	7,16	23,05
Arame revestido de PVC	m	171,71	211,20	211,20	198,04	0,07	13,86
Parafuso olha e bucha	und.	214,64	264,00	264,00	247,55	0,10	24,75
Mão de obra	h	24,80	28,62	22,33	25,25	40,88	1032,13
Resíduo	m³	0,29	0,36	0,29	0,31	150,00	46,50
						Total R\$	1.896,51
						Total R\$/m²	35,74

Fonte: O autor, 2018.

Já no forro em drywall, tivemos um custo médio para execução do sistema de 41,79 R 2 , conforme apresentado na Tabela 16.

Tabela 16: Avaliação financeira forro em *drywall*

Descrição	Unid.	Tipo 1	Tipo 2	Tipo 3	Média	Unitário	Total R\$
Chapa ST 12,5mm - 1,20 x 1,80	m und.	51,24	59,96	48,00	53,07	8,49	450,56
Suporte nivelador	und.	87,00	105,00	85,00	92,33	0,90	83,10
Tirante 1.0 m	und.	87,00	105,00	85,00	92,33	0,76	70,17
Perfil F-47 - 3,00 m	br	93,00	102,00	84,00	93,00	2,59	240,87
Tabica Lisa – 3,00 m	br	66,00	84,00	69,00	73,00	2,78	202,94
Fita p/ juntas	m	78,00	90,00	72,00	80,00	0,17	13,60
Conector de perfil	und.	0,00	2,00	4,00	2,00	0,29	0,58
Massa Readyfix - BR 30 Kg	kg	23,40	27,00	21,60	24,00	1,45	34,8
Parafuso TA-25	und.	780,00	900,00	720,00	800,00	0,02	160,00
Parafuso PA	und.	75,00	85,00	80,00	80,00	0,025	2,00
Parafuso e bucha S-6	und.	66,00	56,00	69,00	63,67	0,15	9,55
Mão de Obra	h	16,20	18,90	15,10	16,73	67,63	1131,45
Resíduo	m³	0,14	0,14	0,14	0,14	150,00	21,00
						Total R\$	2217,68
						Total R\$/m²	41,79

Fonte: O autor, 2018.

O custo para execução do forro de gesso em placas é 14,48% mais barato do que o sistema *drywall*, considerando a produtividade e materiais empregados nessa pesquisa.

A Figura 17 apresenta o gráfico do custo de execução de cada sistema em relação ao custo da mão de obra e dos materiais. Verifica-se que o custo para execução em relação da mão de obra é pequeno, em torno de R\$ 100,00, no entanto, o custo dos materiais acaba sendo o limitante para a escolha do tipo de revestimento.

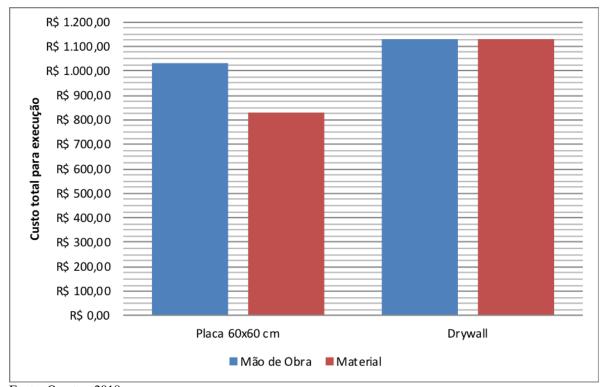


Figura 17: Custo total para execução dos sistemas.

Fonte: O autor, 2018.

Na Tabela 17, tem-se um comparativo do custo total das edificações estudadas se fosse adotado, na sua totalidade, o sistema convencional ou em *drywall*, considerando que a área total avaliada nos dois empreendimentos foi de 1.329,08m².

Tabela 17: Comparativo entre o custo total e o tempo de execução.

	Tempo (h)	Custo Total
Forro de Gesso em Placas 60 x 60 cm	636,86	R\$ 47.501,32
Forro de Gesso Acartonado - Drywall	419,50	R\$ 55.542,25

Fonte: O autor, 2018.

O forro de gesso em placas apresentou custo total de R\$ 8.040,93 a menos do que o em *drywall*, porém o tempo de conclusão da atividade seria um mês depois, ou seja, para a mesma área avaliada, o sistema do forro de gesso em placas levaria 2 meses e 24 dias, enquanto, para o sistema em *drywall*, levaria 1 mês e 24 dias.

CAPÍTULO 5

5.1 CONSIDERAÇÕES FINAIS

Após a apresentação dos dados, pode-se verificar a viabilidade econômica da execução do forro de gesso por diferentes métodos, por placas convencionais e por placas acartonadas.

Com o estudo, observa-se a importância da existência de projetos executivos com especificações completas para realização de orçamentos, análises e, principalmente, o acompanhamento da obra, resultando em melhores controles de custo. Pois, agindo assim, é possível viabilizar a diminuição de erros, vez que todas as informações estão em mãos e, consequentemente, ocorre a redução das probabilidades de atrasos ou, ainda, alterações em obra para ajustes de falhas nos projetos, que, dependendo da fase em que se encontra a obra, acarreta aumento considerável em seu custo.

Através do embasamento teórico a respeito dos dois sistemas construtivos apresentados, foi possível compilar informações sobre suas particularidades, demonstrando uma visão sobre as etapas construtivas e as vantagens da aplicação em cada uma das metodologias. Evidenciou-se que a construção em ambos os sistemas oferece inúmeros benefícios técnicos e construtivos, porém cada uma tem suas particularidades específicas. Tais características tornam um método mais atrativo do que o outro, dependendo, basicamente, se a escolha é o tempo de execução (a depender do prazo de entrega da obra), ou o valor incorporado ao empreendimento, o qual está diretamente relacionado com o preço para a sua escolha.

Portanto, como resultado final do estudo realizado neste trabalho, houve a constatação de que o método construtivo do forro em *drywall* obteve maior agilidade para sua execução, sendo 1/3 maior, exatamente 33,13% mais rápido, o que garante agilidade superior para a entrega do serviço. No entanto, o método em *drywall* exige que a mão de obra seja mais qualificada e com maior treinamento do profissional. Outra vantagem é que o canteiro de obras fica mais limpo e organizado, gerando um volume de resíduo de gesso 54,84% menor, porém, para não ocorrer patologias, só deve ser instalado após o fechamento completo da obra (portas e janelas), pois, se não o fizer, podem ocorrer patologias, como ondulações no forro devido à umidade.

No entanto, com o método construtivo do forro de gesso em placas de 60x60cm, que corresponde, no método avaliado, à melhor alternativa para o empreendimento no que tange à

economia, seu custo foi de 35,74 R\$/m², quando comparado ao outro sistema, que foi de 41,79 R\$/m², totalizando 14,48% menos custos. Outro fator é que a mão de obra não tem a necessidade de ser tão qualificada, além de encontrar profissionais mais facilmente no mercado. Em contrapartida, gera um canteiro de obras mais sujo e, com isso, a geração de um volume maior de resíduos. Por outro lado, não existem restrições para o seu início, permitindo a entrada na obra antes de seu fechamento e fazer a liberação para as demais atividades.

Portanto, conclui-se que o sistema do forro de gesso em placas é 14,48% mais econômico que o sistema *drywall* em placas de gesso acartonado, gerando uma economia de R\$ 8.040,93. Porém, seu tempo de execução é 33,13% maior, ou seja, para a execução do forro de gesso convencional em placas 60x60cm, demoraria, aproximadamente, três meses, enquanto, para o sistema em *drywall*, levaria dois meses.

CAPÍTULO 6

6.1 SUGESTÕES PARA TRABALHOS FUTUROS

Com base nos resultados obtidos, tem-se como sugestões de trabalhos futuros:

- Avaliar a produtividade das equipes em relação a tabela SINAPI;
- Comparar os custos reais com os estimados em tabelas de referência;
- Verificar as quantidades reais empregadas na obra;
- Avaliar se a produtividade se altera com mais equipes de trabalho;
- Avaliar os custos de contratação direta de empresas fornecedoras do serviço pronto, vez que o material e mão de obra são os maiores geradores de custo, considerando que o fornecedor contabilizaria impostos dos insumos, despesas administrativas e o lucro da empresa.

REFERÊNCIAS

ASSOCIAÇÃO BRASILEIRA DOS FABRICANTES DE CHAPAS PARA DRYWALL. Manual de Fixação, Manutenção e Acabamento. 1. ed. São Paulo – SP, 2007.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. **NBR 14715-1**: Chapas de gesso para drywall - Parte 1: Requisitos. Rio de Janeiro, 2010.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. **NBR 14715-2**: Chapas de gesso para drywall - Parte 2: Métodos de ensaio. Rio de Janeiro, 2010.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. **NBR 15217**: Perfilados de aço para sistemas construtivos em chapas de gesso para drywall - Requisitos e métodos de ensaio. Rio de Janeiro, 2009.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. **NBR 16382**: Placas de gesso para forro - Requisitos. Rio de Janeiro, 2015.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. **NBR 16574**: Gesso-cola - União de elementos pré-fabricados de gesso - Método de ensaio. Rio de Janeiro, 2017.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. **NBR 16591**: Execução de forro autoportante com placas de gesso - Procedimento. Rio de Janeiro, 2017.

BARROS, M. M. B. Metodologia para implantação de tecnologias construtivas racionalizadas na produção de edifícios. São Paulo, 1996. Tese (Doutorado) — Escola Politécnica, Universidade de São Paulo.

BARROS, M. M. B. **O** desafio da implantação de inovações tecnológicas no sistema **produtivo das empresas construtoras.** Seminário tecnologia e gestão na produção de edifícios: vedações verticais. São Paulo, 1998. EPUSP, 1998. p.249-85.

BARROS, M. M. B.; TANIGUTI E. K. Inovação Tecnológica e o processo de implantação de divisórias de gesso acartonado. São Paulo – SP, 1998.

BENIGNO, F. **Instalação de forro de gesso em placas.** Revista PINI. ed. 92. Março, 2009. Acesso em: 11 novembro 2016. Disponível em http://construcaomercado17.pini.com.br/negocios-incorporacao-construcao/92/artigo298959-1.aspx/>

CORBIOLLI, N. Mercado Futuro: fundação da Placo coloca o grupo inglês BPB no Brasil. Construção. No 2498, p. 10. 1995.

DIAS, Paulo Roberto Vilela. **Engenharia de custos: uma metodologia de orçamentação para obras civis.** 6. ed. Rio de Janeiro: Hoffmann, 2006. P. 215.

FREITAS, A. M. S.; CRASTO, C. M. **Steel Framing: arquitetura**. Rio de Janeiro: IBS/CBCA, 2006. 121p. (Série Manual da Construção Civil).

GONZÁLEZ, M. A. S. **Noções de orçamento e planejamento de obras.** UNISINOS: São Leopoldo. 2008.

HARADA, E.; PIMENTEL, L. L. **Estudo da viabilidade do reaproveitamento de gesso – queima lenta**. - Encontro de Iniciação Científica da PUC, 14 - Campinas, Anais 2009.

KNAUF. Empresa produtora de chapas de gesso acartonado (Drywall). Rio de Janeiro - RJ, 2016.

LE PLÂTRE. **Physico-chimie Fabrication.** Emplois – Syndicat National dês Industries du Plâtre. Paris – França, 1982. Acesso em: 11 novembro 2016. Disponível em http://www.padraogypsumbrasil.com.br/historia-do-gesso/

LEITÃO, M. A. S. **Gesso: Conhecimento e uso na engenharia** – XXXIII Congresso Brasileiro de Ensino de Engenharia. – Campina Grande, 2005.

HECK, M. G. **Execução de forro de placas de gesso.** Disponível em https://www.ufrgs.br/eso/content/?p=192> Acesso em: 13 novembro 2016.

MATTOS, Aldo Dórea. Como Preparar Orçamentos de Obras. 4. ed. São Paulo: Pini, 2006. p. 281.

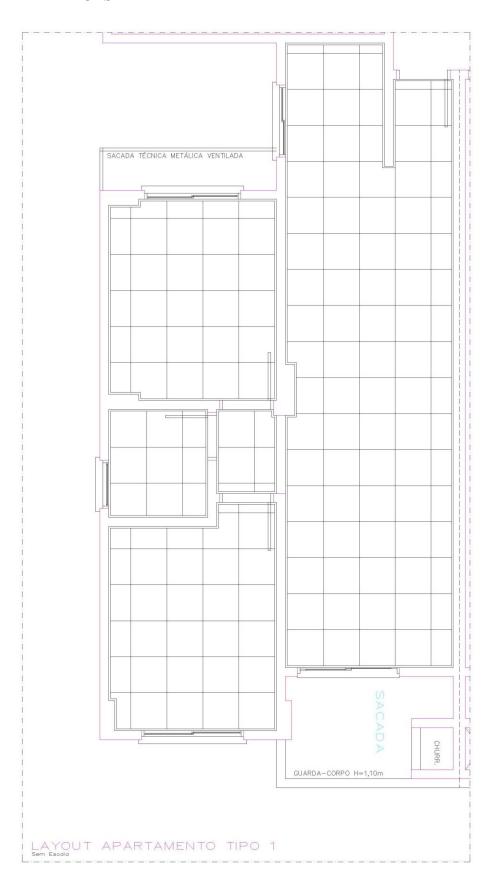
MODESTO. **Empresa produtora de produtos em gesso (Gipsita).** [Homepage]. Ibupi - PE. Disponível em < http://www.gessomodesto.com.br/ >. Acesso em 01 outubro 2016.

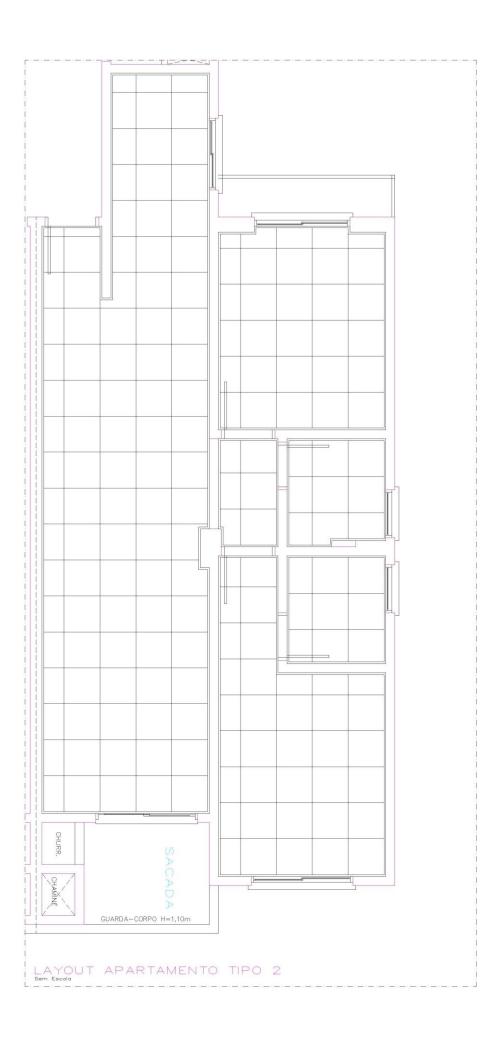
OLIVEIRA, F. M. C. Características mineralógicas e cristalográficas da gipsita do Araripe. Recife – PE. Disponivel em: http://docplayer.com.br/20499670-Caracteristicas-mineralogicas-e-cristalograficas-da-gipsita-do-araripe-mineralogical-and-crystallographic-features-of-the-gipsum-in-araripe.html>. Acesso em 10 outubro 2016.

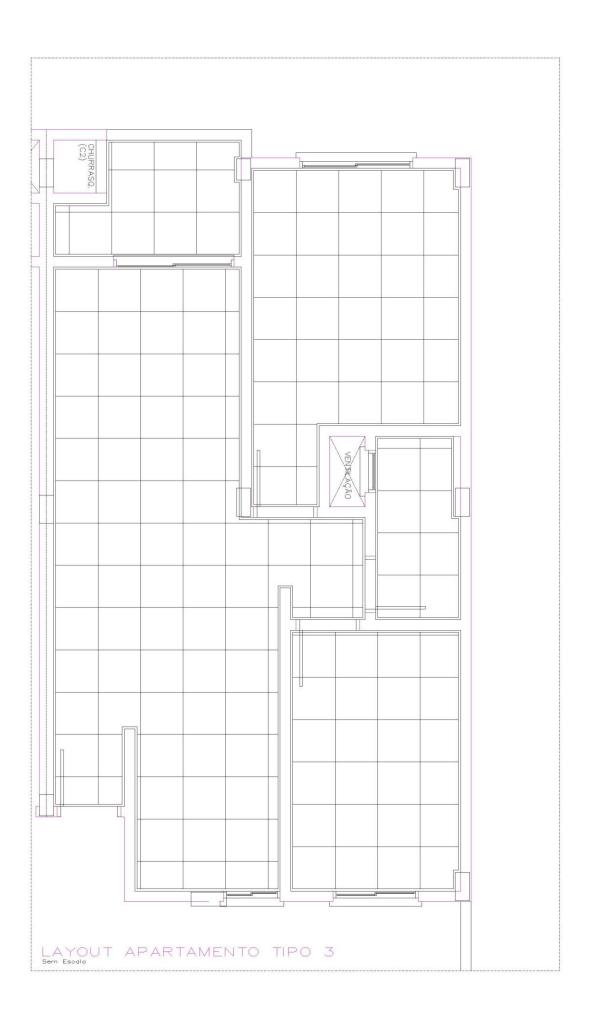
PLACO DO BRASIL. Manual de Sistemas Placostil. s.d. 47p.

ROCHA, Carlos A. L. **O gesso na indústria da construção civil: considerações econômicas sobre utilização de blocos de gesso.** Recife – PE, 2007. Dissertação (Mestre) – UFPE, Universidade Federal de Pernambuco.

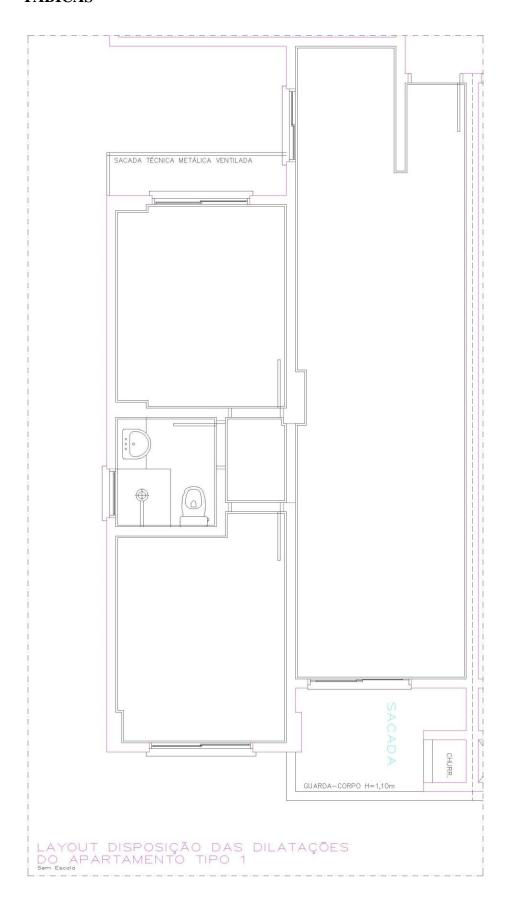
SISALL. Empresa fabricante e exportadora de biomantas, biorretentores, fibras, mantas, telas, fios, cordas e sacos de sisal. [Homepage]. Riachão do Jacuípe - BA. Disponível em < http://www.sisall.com.br/o-sisal/>. Acesso em 22 maio 2018.

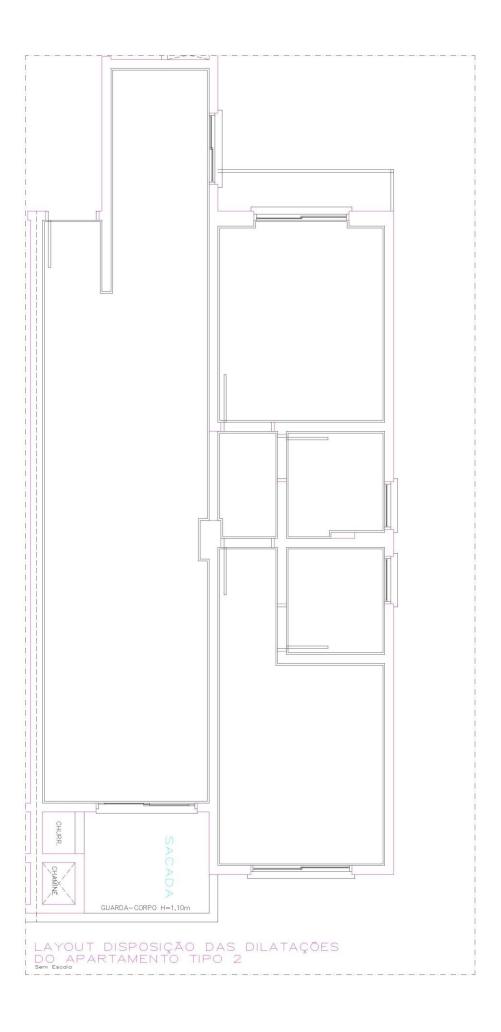

TANIGUTI, Eliana K.; BARROS, Mercia M. B. Vedação vertical com placas de gesso acartonado: qualidade na aquisição e recebimento.: Workshop tendências relativas à gestão da qualidade na construção de edifícios. São Paulo, 1998. p.31-3.

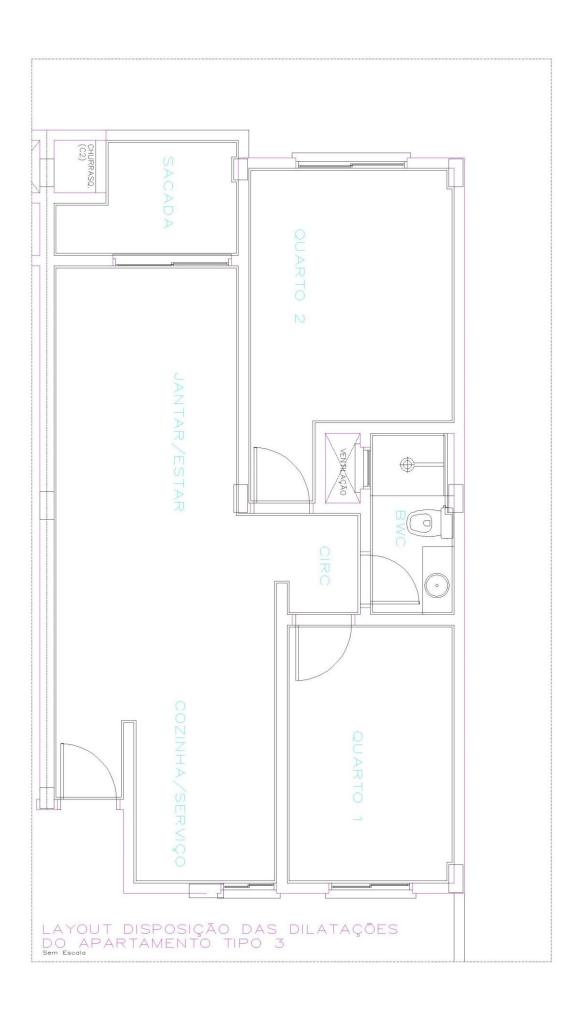

TANIGUTI, Eliana K.; BARROS, Mercia M. B. Dificuldades na implantação datecnologia de produção de divisórias com chapas de gesso acartonado. Congresso Latino-Americano tecnologia e gestão na produção de edifícios: soluções para o terceiro milênio. São Paulo, 1998. v.1, p.201-08.

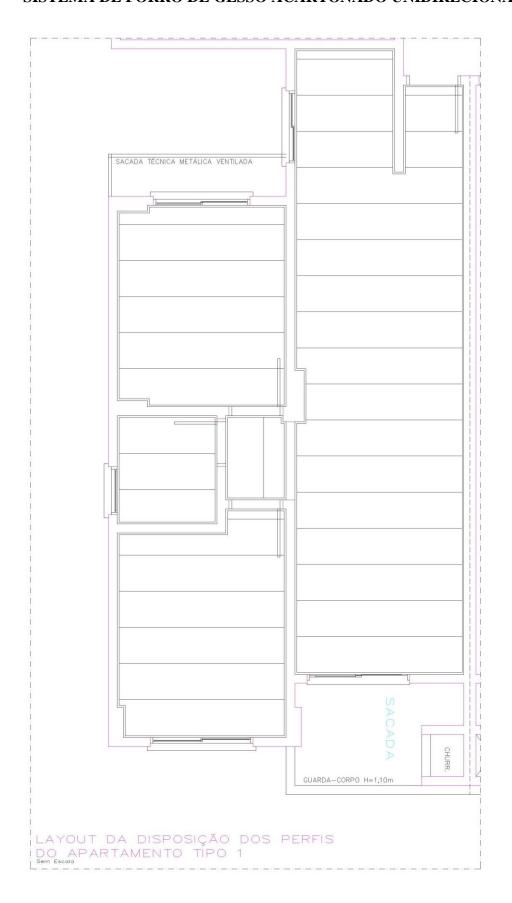

TREVO. **Empresa produtora de produtos em gesso (Gipsita).** [Homepage]. Recife – PE. Disponível em < http://www.trevogesso.com.br/>. Acesso em 03 de outubro 2016.

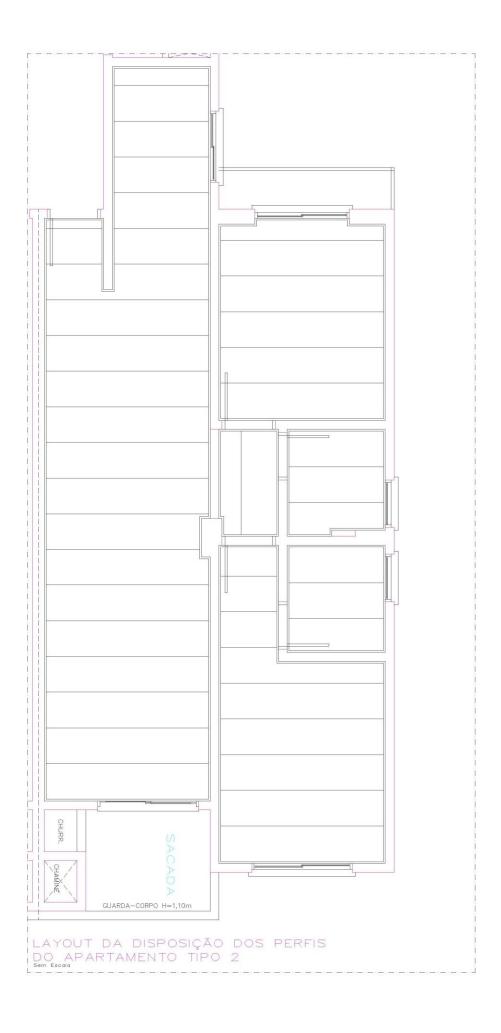
CAGED - Cadastro Geral de Empregados e Desempregados do Ministério do Trabalho. **Salário de Gesseiro CBO 716405.** Disponível em https://www.salario.com.br/profissao/gesseiro-cbo-716405/. Acesso em 04 de março 2018.

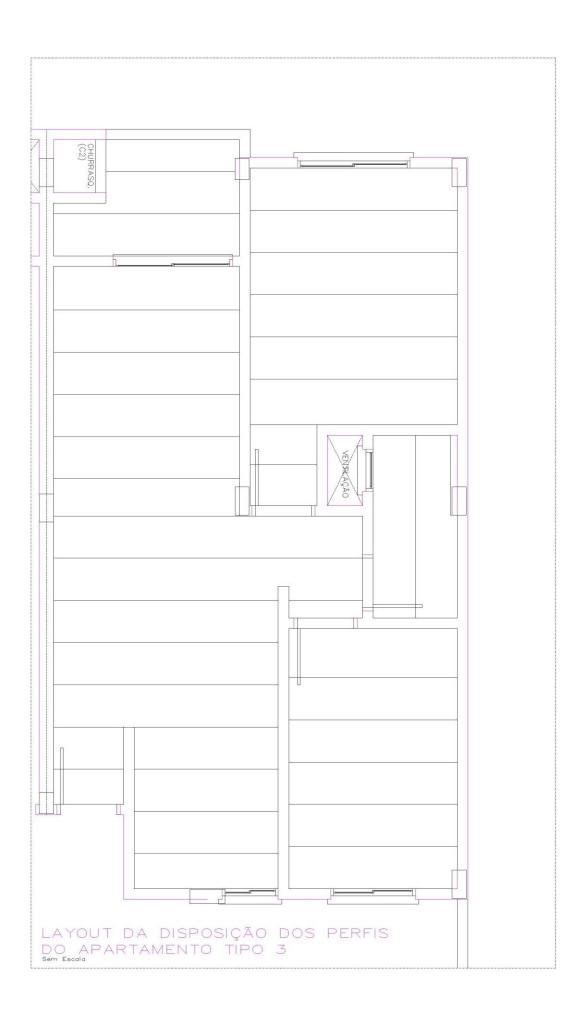

APÊNDICE A – LAYOUT DA DISPOSIÇÃO DAS PLACAS DO FORRO DE GESSO EM PLACAS

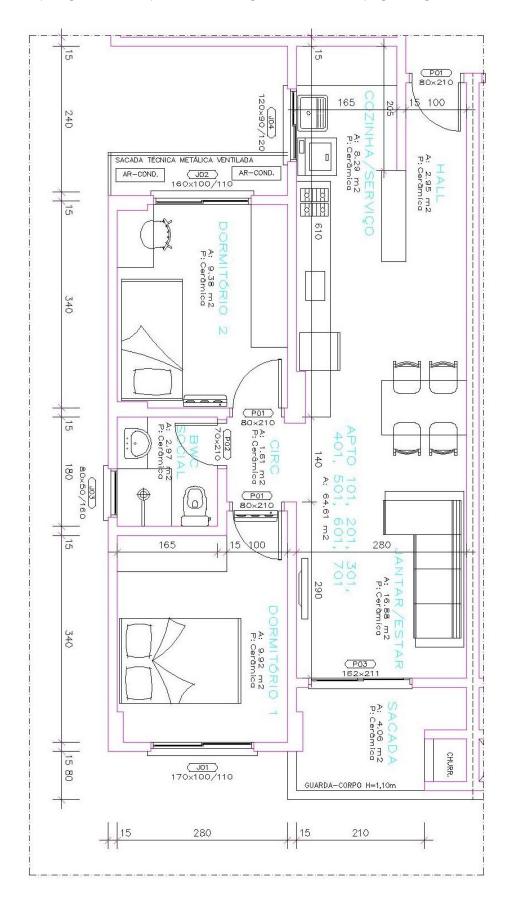


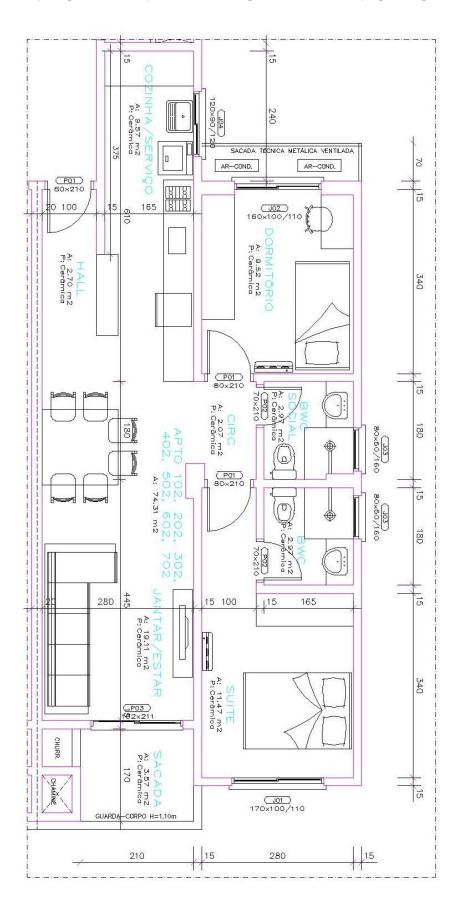


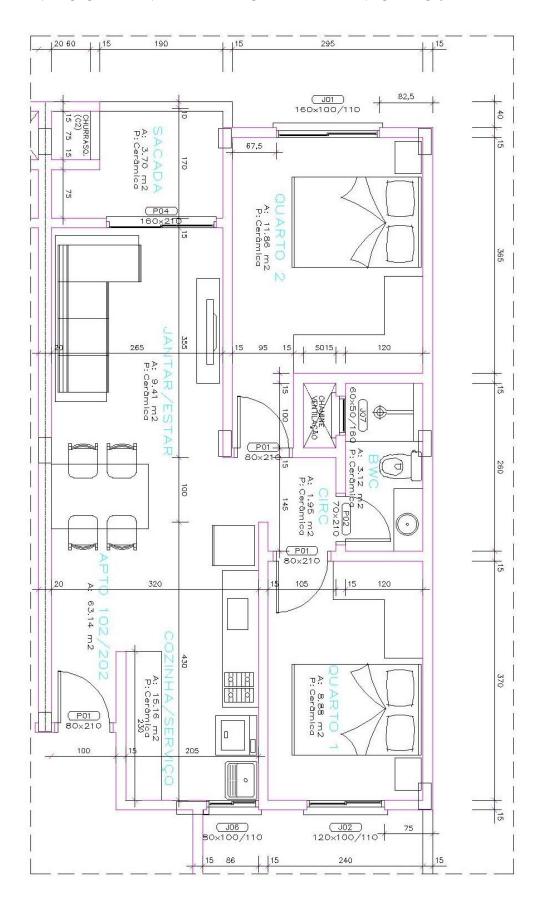

APÊNDICE B – LAYOUT DE DISPOSIÇÃO DAS MOLDURAS DE DILATAÇÃO E TABICAS






APÊNDICE C – LAYOUT DA DISPOSIÇÃO DOS PERFIS METÁLICOS DO SISTEMA DE FORRO DE GESSO ACARTONADO UNIDIRECIONAL




ANEXO A – PLANTA BAIXA DO APARTAMENTO TIPO 1

ANEXO B – PLANTA BAIXA DO APARTAMENTO TIPO 2

ANEXO C – PLANTA BAIXA DO APARTAMENTO TIPO 3

