CENTRO UNIVERSITÁRIO FACULDADE ASSIS GURGACZ DANIEL AUGUSTO TEIXEIRA

ESTUDO DA SUBSTITUIÇÃO DO R22 PELO R438A EM SISTEMAS DE REFRIGERAÇÃO

CASCAVEL 2017

DANIEL AUGUSTO TEIXEIRA

ESTUDO DA SUBSTITUIÇÃO DO R22 PELO R438A EM SISTEMAS DE REFRIGERAÇÃO

Trabalho de conclusão de curso referente ao curso de engenharia mecânica da instituição de ensino Centro universitário Faculdade Assis Gurgacz.

Professor Orientador: Me. Eng. Mec. Eliseu Avelino Zanella Junior

CENTRO UNIVERSITÁRIO DA FUNDAÇÃO ASSIS GURGACZ DANIEL AUGUSTO TEIXEIRA

ESTUDO DA SUBSTITUIÇÃO DO R22 PELO R438A EM SISTEMAS DE REFRIGERAÇÃO

Trabalho de Conclusão de Curso, apresentado como requisito parcial de avaliação para obtenção do título de Engenheiro Mecânico pelo Centro Universitário Assis Gurgacz, sob orientação do professor Engenheiro Mestre Eliseu A. Zanella Junior.

BANCA EXAMINADO

ELISEU AVELINO ZANELLA JUNIOF

Centro Universitário da Fundação Assis Gurgacz

Mestre Engenheiro Mecânico

ROBERSON R. PARIZOTTO

Centro Universitário da Fundação Assis Gurgacz

Mestre Engenheiro Mecânico

SERGIO HENRIQUE RODRIGUES MOTA

Centro Universitário da Fundação Assis Gurgacz

Mestre Engenheiro Mecânico

RESUMO

O objetivo desse estudo é descobrir a eficiência do R-438A sobre o R-22 em um mesmo sistema. Os fluidos refrigerantes existem com o objetivo de trocar calor com um sistema, para que o ambiente receba a temperatura desejada, como por exemplo em um ar condicionado. Após o tratado de Montreal, foram estabelecidas metas para que alguns desses fluidos sejam retirados do mercado por agredir a camada de ozônio, por isso existi a necessidade da troca do R-22 por outro gás que cumpra o mesmo objetivo. A partir de um teste em um equipamento, foi possível coletar os dados de temperatura e pressão de cada um dos fluidos para definir sua eficiência. Com os resultados obtidos foi possível descobrir que o novo fluido apresentou uma eficiência 55% menor. Esse estudo demonstrou que ainda não é possível definir se o R-438A é o substituto ideal, já que apresenta uma eficiência bem inferior.

Palavras-chave: Ozônio; Montreal; Fluido; Eficiência.

ABSTRACT

The purpose of this study is to discover the efficiency of R-438A over R-22 in the same system. Cooling fluids exist with the purpose of exchanging heat with a system, so that the environment receives the desired temperature, such as in an air conditioner. After the Montreal treaty, targets were set for some of these fluids to be withdrawn from the market because of the ozone layer, so there was a need to exchange the R-22 with another gas that meets the same objective. From a test on an equipment, it was possible to collect the temperature and pressure data of each of the fluids to define their efficiency. With the results obtained it was possible to discover that the new fluid has a 55% lower efficiency. This study demonstrated that it is not yet possible to determine if R-438A is the ideal substitute, since it has a much lower efficiency.

Keywords: Ozone; Montreal; Fluid; Efficiency.

.

LISTA DE FIGURAS

Figura 1 – Redução de consumo	17
Figura 2 – Utilização HCFC-22	18
Figura 3 – Estrutura Molecular R-22	19
Figura 4 – Exemplo de substância pura e mistura	20
Figura 5 - % em mol R-438A	21
Figura 6 – Propriedade físicas R438A x R22	24
Figura 7 – Teste realizado em Calorímetro	24
Figura 8 – Teste realizado em um sistema de ar condicionado	25
Figura 9 – Gráfico do ciclo de refrigeração	28
Figura 10 – Ciclo de refrigeração	29
Figura 11 - Tanque	32
Figura 12 – Especificações da unidade condensadora	33
Figura 13 – Central de Refrigeração	34
Figura 14 – Fluido refrigerante sendo colocado no sistema	36
Figura 15 – Manômetro	37
Figura 10 – Tabela termodinâmica R-22 evaporador	41
Figura 10 – Conversor psi -> kpa	42
Figura 11 – Tabela termodinâmica R-22 condensador entrada	43
Figura 12 – Tabela termodinâmica R-22 condensador saída	43
Figura 13 – Tabela termodinâmica R-438A saida evaporador	44
Figura 14 – Tabela termodinâmica R-438A entrada condensador	45
Figura 15 – Tabela termodinâmica R-438A saída condensador	46
FIGURA 16 – TABELA R-22 SATURADO	51
FIGURA 17 – TABELA R-22 SATURADO	52
FIGURA 19 – TABELA R-22 SATURADO	53
FIGURA 20 – TABELA R-22 SUPERSATURADO	54
FIGURA 21 – TABELA R-438A SATURADO	55
FIGURA 22 – TABELA R-438A SATURADO	56
FIGURA 23 – TABELA R-438A SUPERSATURADO	57

LISTA DE TABELAS

Tabela 1 – Características do fluido R438A	20
Tabela 2 – Valor de ODP das substâncias	22
Tabela 3 – Dados do teste realizado na Unicamp	27
Tabela 10 – R-22 durante o processo	38
Tabela 11 – R-22 final do processo	39
Tabela 12 – R-438A durante o processo	40
Tabela 13 – R-438A final do processo	40

LISTA DE EQUAÇÕES

Equação 1 – Formula do COP	29
Equação 2 – Fórmula do trabalho (w)	30
Equação 3 – Fórmula de interpolação	41

LISTA DE ABREVIAÇÕES

CFC - Clorofluorcarbonos

HCFC –Hidrofluorocarbonetos

HCF –Hidrofluorcarboneto

O3 –Ozônio

MMA - Ministério do Meio Ambiente

ISCEON MO99 - Gás refrigerante R-438ª

ODP - Potencial de destruição da camada de ozônio

GWP –Fator de Aquecimento Global

FREON 22 – Gás refrigerante R-22

SUMARIO

1 INTRODUÇÃO	12
1.1 OBJETIVOS	12
1.1.1 Objetivo Geral	12
1.1.2 Objetivos Específicos	13
1.2 JUSTIFICATIVA	13
1.3 CARACTERIZAÇÃO DO PROBLEMA	14
1.4 DELIMITAÇÃO DO PROBLEMA	15
2 REVISÃO BIBLIOGRÁFICA	16
2.1 FLUIDOS REFRIGERANTES	16
2.2 O QUE É O R-22	17
2.2.1 Estrutura Molecular	18
2.3 R-438A (FREON MO99)	19
2.3.1 Composição química do R438A	19
2.4 DIFERENÇA ODP E GWP	21
2.5 COMPARAÇÃO ENTRE R22 E O R438A	23
2.5.1 Retrofit do sistema	23
2.5.2 Eficiência Energética	23
2.5.3 Propriedades físicas	23
2.5.4 Eficiência	24
2.6 CLASSIFICAÇÃO ASHRAE	27
2.7 CICLO DE REFRIGERAÇÃO	28
2.8 CÁLCULO DO COEFICIENTE DE PERFORMANCE (COP)	29
2.9 TRABALHO (W) PRODUZIDO	30
3 METODOLOGIA	31
3.1 EQUIPAMENTOS UTILIZADOS	31
3.1.1 Central de Refrigeração	31
3.1.1.1 Tanque	31
3.1.2 Equipamentos auxiliares	33
3.1.3 Fluidos Refrigerante	35
3.2 PROCESSO UTILIZADO	35
4 RESULTADOS E DISCUSSÕES	38
4.1 RECOLHIMENTO DOS DADOS	38

4.1.1 Dados do R-22	38
4.1.2 Dados do R-438A	39
4.2 CÁLCULO DO COP	41
4.2.1 Cálculo do COP no fluido R-22	41
4.2.2 Cálculo do COP no fluido R-428A	44
4.3 CALCULO DO TRABALHO (W)	46
5 CONCLUSÃO	48
6 TRABALHOS FUTUROS	49
REFERÊNCIAS bIBLIOGRÁFICAS	50
ANEXOS	51

1 INTRODUÇÃO

Com a temperatura no planeta sofrendo grandes mudanças, existe um temor maior sobre os problemas causados contra a camada de ozônio. Diversas reuniões internacionais vêm acontecendo para que o mundo produza cada vez mais equipamentos que não sejam prejudiciais ao meio ambiente. Com isso, em 1987 foi feito uma reunião em Montreal, que foi decidido em comum acordo com diversos países do mundo, que segundo regras pra diferentes países, vários tipos de substancias teriam que ser aposentadas. Os processos de refrigeração vão ser muito afetados, já que a maioria das substancias usadas por eles possuem alguma restrição, graças a isso é necessário que exista uma preocupação cada vez maior com a data limite chegando.

O Brasil apesar de ter um tempo maior por ser um pais em desenvolvimento ainda, sofrendo algumas mudanças em relação a países desenvolvidos, é um dos que assinaram o acordo e precisa fazer mudanças em seus equipamentos de refrigeração. O liquido refrigerante R-22 como é conhecido, é um dos que entram nesse acordo, e como substituto provável, o R-438A vem ganhando força no mercado aos poucos e sendo introduzidos em substituição ao usado hoje,uma de suas vantagens é não possuir nenhuma restrição ao tratado.

Nesse trabalho vão ser vistos pesquisas sobre os dois líquidos, calculando suas eficiências e vendo o quanto um é mais eficiente sobre o outro.

1.1 OBJETIVOS

1.1.1 Objetivo Geral

Analisar e comparar o R22 com o R438A. Avaliando a eficiência de um sobre o outro.

1.1.2 Objetivos Específicos

Para atingir o objetivo principal, é necessário que várias etapas sejam realizadas, entre elas:

- Realizar o teste do R-22 em um equipamento que já o use;
- Recolher os dados de temperatura e pressão do fluido;
- Realizar o mesmo teste e recolhimento de dados com o R-438A;
- Calcular o COP e o trabalho dos dois fluidos;
- Comparar a eficiência dos dois com os resultados obtidos.

1.2 JUSTIFICATIVA

A pesquisa será realizada não só visando o tratado de Montreal que deve ser modificado até o ano de 2040 em países em desenvolvimento, mas também pensando no meio ambiente e seus graves problemas enfrentados ultimamente, como a camada de ozônio, que é um dos maiores "vilões" do progresso, mas ao mesmo tempo é um dos grandes problemas que garantem que a evolução continue preservando o que nos foi dado.

A camada de ozônio como o nome já diz, é composta pelo gás ozônio, também conhecido como O3, que protege o planeta contra a entrada de raios ultravioletas. Quando o oxigênio está na estratosfera, ele recebe radiação do sol e se quebra em duas partículas, essas duas se unem a outras duas partículas de oxigênio, formando-se assim duas partículas do gás (MMA, 2017).

Segundo dados do ministério do meio ambiente, cerca de 90% dele está situado entre 20km a 35km de altura, e a sua maior importância é inibir a entrada do tipo UV-B. Esse tipo é o mais nocivo dos raios ultravioletas, provocando câncer de pele, supressão do sistema imunológico e catarata como principais efeitos no ser humano. (SANTOS, 2010).

Seu estudo teve início em 1956, quando na época se usava instrumentos de solo para medir o nível, com o tempo e tecnologia, ele começou a ser medido por meio de satélites, que conseguem ter um aumento de visão visualizando as pequenas partículas existentes. Com o passar do tempo, no final da década de 1970

foi visto que em uma região situada na Antártica, existiu um decréscimo da quantidade de ozônio acentuada, esse fenômeno se tornou conhecido como "buraco de ozônio", que explica de forma mais clara a diminuição dessa camada naquele lugar. (LEME e ALVALÁ, 2007).

Segundo também o MMA, os animais acabam sofrendo com as radiações também, os animais aquáticos por exemplo são prejudicados em suas fases iniciais de vida, provocando um desequilíbrio ambiental que pode ser ainda mais prejudicial as pessoas, diminuindo o volume de alimentos e piorando a precária vida de alguns países, em especial africanos.

Além desses problemas, por não deixar que os raios ultravioletas passem, ele protege contra altas variações de temperatura, desastres ecológicos e períodos com clima pouco definidos.

E por meio de tratados como esse, é preciso estabelecer pesquisas e parâmetros para que antigos componentes sejam substituídos e entrem de acordo com o futuro, que é a preservação do nosso bem-estar.

1.3 CARACTERIZAÇÃO DO PROBLEMA

Conforme o tempo vem passando sentimos cada vez mais os efeitos do aquecimento global. Temperaturas se tornam cada vez mais elevadas e com um diferencial de temperatura em um dia muito maior tornando o tempo instável e prejudicando a vida.

Com o passar dos anos vem surgindo muitas tecnologias que facilitam a entrada de produtos que agridem menos o meio ambiente, mas ainda existe um passo muito grande na aceitação desses produtos, já que a maioria não agrada ainda o consumidor.

E na refrigeração existe o mesmo problema, apesar de leis surgirem e várias alternativas no mercado, ainda existe uma certa dificuldade em fazer essa troca por meios menos poluentes. Algumas vezes por falta de informação, mas na maioria dos casos pelo custo que esse produto novo.

Por isso, tem-se como pergunta de pesquisa "A eficiência do R-438A e suas vantagens são boas o suficiente para se tornar viável economicamente a sua troca por um produto de boa qualidade, mas poluente como o R-22?".

1.4 DELIMITAÇÃO DO PROBLEMA

A pesquisa será entorno do porquê da troca do gás, e quais os motivos do R-438A ser o melhor substituto do gás R-22. Será realizado testes para mostrar o desempenho na prática, visando a troca dele no futuro. Também serão colocados os motivos dessa substituição, e quais os prós e contras.

2 REVISÃO BIBLIOGRÁFICA

2.1 FLUIDOS REFRIGERANTES

Os fluidos refrigerantes são substancias utilizadas em ciclos de refrigeração que tem como objetivo principal absorver calor do sistema para resfriamento.

Como a refrigeração é um processo amplo quem é usado em diversos processos, cada tipo de situação exige um fluido diferente, com características próprias para aquela função. Um bom fluido é escolhido quanto as qualidades dele para aquele determinado uso.

Algumas propriedades que definem um bom gás:

Não deve ser inflamável, explosivo ou tóxico em seu estado puro ou quando misturado com o ar, e caso haja vazamento, não contamine alimentos ou outros produtos armazenados no local.

As pressões que correspondem as suas temperaturas não devem ser muito altas, mas devem ser acima de pressões atmosféricas, para que não entre vapor de Água dentro do sistema.

Quanto maior o calor de vaporização, maior a capacidade do fluido e com consequência melhor é o desempenho dele com uma menor quantidade.

Seu volume especifico deve ser baixo, para que o compressor não tenha um tamanho muito excessivo, além de ocupar menos espaço, deixando o sistema mais barato.

Em caso de vazamentos, o fluido deve ser facilmente detectado para que não haja problemas mais sérios e o equipamento não sofra maiores danos

Com base em novos estudos, o fluido não pode contribuir para a destruição da camada de ozônio ou para o meio ambiente. (UNIVASF, 2017)

Existem alguns tipos de fluidos mais comuns, o CFC, que é composto por cloro, flúor e carbono, e foram os primeiros fluidos a serem descobertos e utilizados por um longo período de tempo, até a descoberta de sua grande capacidade de destruição da camada de ozônio. O HCFC que veio como substituto para diminuir a degradação da camada, com a ajuda de protocolos internacionais, entrou rapidamente nas industrias, e sua grande diferença é a substituição de alguns átomos de cloro por hidrogênio. Por fim o HFC, que por se tratar de um fluido que

não possui cloro, não tem qualquer potencial de destruição, já que seu tempo de vida é diminuído na atmosfera, facilitando seu desaparecimento. (CEFET-BA, 2008)

2.2 O QUE É O R-22

O R-22, também conhecido como HCFC-22 ou Clorodifluorometano, é um gás fluido refrigerante usado em equipamentos de refrigeração que apesar do ótimo funcionamento, possui alguns problemas que vem sido cada vez mais levantados com o tempo. Um deles é a segurança, o Gás é perigoso por ser inflável, e com alguns acontecimentos grandes de acidentes em países desenvolvidos, ele foi suspenso sendo proibida sua utilização. Mas, além disso, no tratado de Montreal, realizado, foi decidido que até 2020 países desenvolvidos deveriam excluir totalmente de seus sistemas o R-22, por ser extremamente perigoso ao planeta, prejudicando a camada de ozônio e provocando o aquecimento em várias regiões.

O Brasil por ser um pais em desenvolvimento, ainda não entrou nesse critério e tem ainda alguns anos para tirar completamente o uso dele. Mas por se tratar de um gás perigoso, existe a necessidade cada vez mais rápido de achar medidas que consigam suprir suficientemente sem perder eficiência e aumentar gastos. Mas ainda é muito difícil encontrar algum gás que consiga atuar de forma igualitária ou melhor que ele, por isso existe um problema em acabar com o uso antecipadamente, podendo ocorrer apenas próximo a 2040 que é a data limite.

Figura 1 – Redução de consumo

Linha de Base = Média do consumo nos anos 2009 e 2010 2013 → congelamento no valor da Linha de Base 2015 → redução de 10% em relação à Linha de Base 2020 → redução de 35% em relação à Linha de Base 2025 → redução de 67,5% em relação à Linha de Base 2030* → redução de 97,5% em relação à Linha de Base 2040 → redução de 100% em relação à Linha de Base

Fonte: Ministério do Meio Ambiente (MMA)

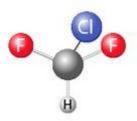
^{*} o consumo residual (2,5%) poderá ser usado apenas para o setor de serviço

Antes dos HCFCs, os equipamentos de refrigeração usavam os clorofluorcarbonos (CFCs), no Brasil, o uso deles cabia-se por meio do R-11 e R-12. Eram gases que possuíam uma grande eficiência, mas sempre foi um destruidor silencioso da camada de ozônio. Até na década de 90 eram fabricados diversos equipamentos que utilizavam esses gases, mas a partir dessa data ele foi parado de ser fabricado e seu uso foi limitado a pouco uso. Em 2007 ele foi completamente eliminado, apesar disso sua utilização é encontrada ainda em maquinas mais antigas, principalmente em geladeiras.

O HFC-22 veio como substituto dos CFCs, criado nos anos 50, começou a ser mais usado a partir da eliminação do seu antecessor, por possuir uma grande eficiência e apesar de ainda ser muito prejudicial, não se compara ao outro, e hoje faz parte da maioria dos equipamentos de refrigeração de pequeno e médio porte, como ar condicionados e sistemas de refrigeração.

Figura 2 – Utilização HCFC-22

Refrigerante	Utilização		
HCFC-22 (R-22)	ar condicionado residencial (splits e de janela)		
(O refrigerante mais utilizado atualmente)	 equipamentos para ar condicionado comercial (rooftop) 		
1.00000700864.02E-9800	 bombas de calor (no Brasil para aquecimento de piscinas) 		
	sistemas de ar condicionado central (chillers)		
	 sistemas de refrigeração comercial para supermercados, armazenamento frigorificado, etc. 		


Fonte: Almeida (2012)

2.2.1 Estrutura Molecular

A estrutura do R-22 é constituída por um átomo de carbono (12,0107 g/mol), um hidrogênio (1,00794 g/mol), um cloro (35,453 g/mol) e dois flúores (37,9968064 g/mol), formando o conjunto CHCLF2 (86,4684 g/mol).

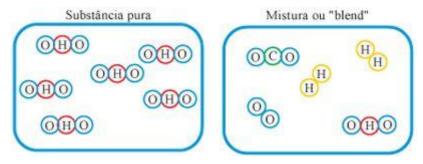
Figura 3 – Estrutura Molecular R-22

R-22 (HCFC)

Fonte: CAREL (2017)

2.3 R-438A (FREON MO99)

Como alternativa ao R-22, foi criado diversos fluidos refrigerantes que atendessem o protocolo de Montreal, não agredindo a camada de ozônio. O R-438ª foi criado com o objetivo de que a transição entre o R-22 e novos gases fosse de forma fácil e descomplicada. Ele é um composto HCF, ou seja, não possui cloro em sua composição, assim sua taxa de destruição da camada de ozônio é zero, sendo permitido conforme as regras do tratado internacional.


Por se tratar de um fluido novo, sua utilização ainda é extremamente pequena, o conhecimento sobre esse fluido ainda é baixo comparado aos seus concorrentes, mas pela facilidade do seu uso, se torna uma das grandes alternativas do mercado.

2.3.1 Composição química do R438A

Existem dois tipos de gases, aqueles que são criados a partir de um único constituinte, e os que nascem a partir de uma junção de vários outros, eles são chamados de uma substância pura e mistura (*blend*).

O R-22 por se tratar de um fluido que possui em sua constituição 100% de clorodifluormetano, é um exemplo de substância pura. Já o freon MO99 nasceu a partir de uma mistura de outros gases, para ser mais especifico, a sua criação nasce a partir de várias substâncias puras, que unidas com proporções diferentes criam uma nova estrutura, denominada mistura. (Garrido, 2013)

Figura 4 – Exemplo de substância pura e mistura

Fonte: DuPont (2013)

Como falado anteriormente, por se tratar de uma mistura, o fluido é constituído em sua composição pelo R-134A (Tetrafluoroetano - CH2FCF3), R-125 (Pentafluoroetano-CHF2CF3), R-32 (Difluorometano - CH2F2), R-600 (N-butano - C4H10) e R-601a (Iso-pentano - C5H2).

Tabela 1 – Características do fluido R438A

CARACTERISTICAS			
PROPRIEDADES	UNIDADES	FREON R438A	
Descrição	-	TetrafluorocetanoPentafluoretanoDufluorometano	
		N-butano	
		iso-pentano	
Fórmula Química	-	CH2FCF3	
		CHF2CF3	
		CH2F2	
		C4H10	
		C5H2	
Componentes	-	R134A	
		R125	
		R32	
		R600	
		R601a	

Fonte: gastenor (2017)

Cada componente existente no fluido possui uma quantidade em % de mol que é representado na tabela a seguir:

Figura 5 - % em mol R-438A

Componente	Peso em %
HFC-32	8,5
HFC-125	45,0
HFC-134a	44,2
n-butano (HC-600)	1,7
Isopentano (HC-601ª)	0,6

Fonte: Dupont (2011)

2.4 DIFERENÇA ODP E GWP

Conforme o tratado de Montreal, as substâncias começaram a ser tratadas com dois novos índices, um referente a camada de ozônio e o outro ao aquecimento global.

Com o intuito de diminuir principalmente o coeficiente da destruição da camada de ozônio, foi criada a ODP (*Ozone Depleting Potential*), que mede qual o potencial de cada fluido por unidade de massa de destruir a camada. Como base desse cálculo é usado como referência o cfc-11 (Tricloromonofluormetano), que leva o valor 1 por ser o mais prejudicial. Logo em seguida dos CFC, situam-se os HCFC com os maiores valores, o R-22 possui um valor de 0,055, bem abaixo do seu anterior, mas conforme a nova regra, esse valor deve ser levado a 0, tirando todo tipo de possibilidade de consumo ou fabricação de ODP. (UNEP, 2014)

Tabela 2 – Valor de ODP das substâncias

SUBSTANCIA	MONTREAL	WMO	WMO	WMO	WMO	WMO
	PROTOCOL(VALORES	(1998)	(2002)	(2006)	(2010)	(2014)
	REPORTADOS)					
CFC-11	1	1	1	1	1	1
CFC-12	1	0,9	1	1	0,82	0,73
CFC-113	0,8	0,9	1	1	0,85	0,81
HCFC-22	0,055	0,05	0,05	0,05	0,04	0,034
HCFC-123	0,02	0,04	0,02	0,02	0,01	-
HCFC-141b	0,11	0,1	0,12	0,12	0,12	0,102
MethylBromide	0,6	0,37	0,38	0,51	0,66	-
Halon 1301	10	13	12	16	15,9	15,2
CarbonTetrachloride	1,1	1,20	0,73	0,73	0,82	0,72

Fonte: UNEP (2014)

Com base nisso, os novos gases HFC como no caso do R-438A, não possuem mais cloro na sua constituição, anulando qualquer tipo de produção de ODP, não prejudicando a camada de ozônio.

Apesar de esse fator ser positivo, e estar dentro do tratado, existe um ponto negativo em relação ao R-22, quando analisamos o GWP (*Global Warming Potential*), que é o cálculo de quanto cada determinada massa de gás pode reter calor na atmosfera, contribuindo para o aquecimento global, essa equação é feita com base no dióxido de carbono (CO2), que tem valor padrão 1, com base na nova pesquisa feita pela *FourthAssessmentReport* (AR4), enquanto o freon 22 possui 1810 GWP por dióxido de carbono, o R-438A possui 2265, um valor bem alto em relação a alguns outros gases, mas ainda sim menor comparado a maioria dos HFC. (Linde, 2017)

Apesar desse dado um pouco preocupante, ele continua sendo 42% menor que um dos gases mais usados atualmente, R-404A.

2.5 COMPARAÇÃO ENTRE R22 E O R438A

2.5.1 Retrofit do sistema

Logo de cara um dos benefícios de se fazer o retrofit em equipamentos que já possuem o R-22 como gás principal, é a facilidade da troca de gases, já que os dois possuem estruturas parecidas em termos de pressão, e, além disso, usam o mesmo tipo de óleo, os dois sistemas usam lubrificantes do tipo AB (Alquibenzeno), OM (óleo mineral) E POE (Poliolester), eliminando a possibilidade de troca de óleo, só em casos extremos. Na maioria dos casos existe apenas a troca dos filtros. Como possuem características parecidas, não a necessidade de troca de válvulas de pressão ou outros componentes mecânicos. Em caso de retrofit, também existe a necessidade de troca das vedações elastoméricas, pois com o tempo elas podem sofrer algum tipo de inchaço, perdendo sua atuação completa podendo acontecer vazamentos (DuPont, 2011)

Possui uma temperatura menor de descarga, aumentando a vida útil do compressor.

2.5.2 Eficiência Energética

Uma forma de perceber a eficiência energética de um sistema, e também a economia que ele pode gerar financeiramente, é calculando o COP, que nada mais é que o coeficiente de performance que o fluido possui no sistema. Ele representa a relação entre energia térmica fornecida e energia elétrica consumida. Em relação a isso. O MO99 possui na maioria dos casos um desempenho parecido com o R-22, dependendo da instalação e de como ela foi efetuada. (Chemours, 2013)

2.5.3 Propriedades físicas

Como dito anteriormente, por se tratar de um composto feito precisamente para ser retrofit do R22, eles possuem características parecidas, como pressão, temperatura e densidade. Na tabela a seguir é possível ver um exemplo em uma temperatura pré-determinada.

Figura 6 – Propriedade físicas R438A x R22

Propriedade Física	Unidade	ISCEON® MO99™	R-22
Ponto de Bolha (1 atm)	ōC	-43	-41
Pressão de Vapor a 25ºC	psia	161.3	151.2
Densidade do Líquido a 25ºC	Kg/m ³	1139.4	1194.98
Densidade do Vapor Saturado a 25ºC	Kg/m ³	47.57	43.57
Potencial de Degradação da Camada de Ozônio	CFC-11 = 1.0	0	0.05
Potencial de Aquecimento Global, Valores SAR	CO ₂ = 1	1890	1500
Valores AR4		2264	1810

Fonte: DuPont (2011)

2.5.4 Eficiência

a) Teste realizado em Calorímetro

Em teste realizado pela Dupont, foi possível medir o desempenho do compressor por testes em calorímetro e com base nas propriedades termodinâmicas foi possível notar que os desempenhos dos dois fluidos foram parecidos, reduzindo sua temperatura de descarga na maioria das vezes.

Figura 7 – Teste realizado em Calorímetro

	Baixa Temperatura -31,7 °C evaporador 40,5 °C condensador 18,3 °C retorno de gás com -12 °C de subresfriamento	Média Temperatura -6,6 °C evaporador 48,9 °C condesador 18,3 °C Retorno de gás com -12 °C de subresfriamento	AltaTemperatura& A/C 7,2 °C evaporador 46,1 °C condensador 18,3 °C retorno de gás com -9,4 °C de subresfriamento
Temperatura de Descarga	-30 °C	-42,8 °C	-35 °C
Pressão de Descarga	+3 psi	+6psi	+5psi

[&]quot;+" se refere a aumento e "-" a diminuição para ISCEON® MO99 vs. R-22

Fonte: DuPont (2011)

Na tabela se percebe que em temperaturas menores do evaporador, o R-438A apresenta resultados melhores, com uma temperatura de descarga de 105°C, e pressão de +3psi. Os valores com temperaturas médias e alta, também foram

^{*}R-22 assume demanda de refrigeração com baixa temperatura de descarga de 135 ℃

positivos com uma temperatura de -42,8°C e -35°C, e pressão de +6 e +5psi. Os valores de pressão não foram especificados no teste, apenas o diferencial deles.

b) Teste laboratorial em sistemas de ar condicionado

Em teste laboratorial realizado pelos Drs. Allgood e Lawson, os fluidos foram comparados em um sistema de ar condicionado com temperaturas especificadas na tabela a baixo.

Figura 8 – Teste realizado em um sistema de ar condicionado

	R-438A Performance Relative to R-22		
Performance Criteria	LT	MT	HT
Cooling Capacity (%)	-6	-8	-7
Estimated EER (%)	+7	-1	-2
Suction P (kPa)	-14	-21	-21
Discharge P (kPa)	+21	+21	+34
Discharge T (°C)	-12	-23	-17
Temperature Glide (°C)	+3.6	+3.3	+3.9

LT: Low Temperature: -31.7°C avg evaporator, 40.6°C avg condenser, 18.3°C return gas, 5.6° liquid subcooling from avg condenser T MT: Medium Temperature: -6.7°C avg evaporator, 40.6°C avg condenser, 18.3°C return gas, 5.6°C liquid subcooling from avg condenser T HT: High Temperature: 7.2°C avg evaporator, 46.1°C avg condenser, 18.3°C return gas, 8.3°C liquid subcooling from avg condenser T R-22 assumes liquid injection with discharge temperature of 135°C

Fonte: Allgood, Lawson (2010)

Em teste realizado em temperaturas baixas, foi utilizada a temperatura média de -31,7°C no evaporador, 40,6°C no condensador, 18,3°C no retorno do gás e uma média de 5,6°C de liquido sub-resfriado pelo condensador. Nessas especificações foi notado que o R-438A possui uma capacidade de resfriamento menor em 6% ao do R-22, o índice de eficiência energética ficou em 7% maior, a pressão de sucção e descarga ficaram respectivamente em -14kpa e +21kpa, a descarga de temperatura foi 12°C menor, já o diferencial de temperatura de evaporação mais alta e mais baixa em comparação ao R-22 foi 3,6°C maior.

Com o teste realizado em temperaturas médias, sendo elas com uma média de -6,7°C no evaporador, 40,6°C no condensador, 18,3°C de retorno de gás e 5,6°C de liquido sub-resfriado no condensador. Teve um resultado parecido com temperaturas menores, tendo uma capacidade de resfriamento menor em 8%, eficiência energética 1% menor, pressões de sucção e descarga de -21kPa e

+21kPa. As temperaturas de descarga e o diferencial ficaram em menos 23°C e mais 3,3°C.

Em temperaturas altas realizadas com uma média de 7,2°C no evaporador, 46,1°C no condensador, 18,3°C de retorno de gás e 8,3°C de liquido sub-resfriado no condensador. Foram concebidos resultados parecidos com os anteriores, a capacidade de resfriamento ficou na média de 7% menor, a eficiência energética foi a menor entre os três testes, ficando menos 2% em relação ao R-22, as pressões de sucção e descarga foram as mais altas, respectivamente em -21kPa e +34kPa, as temperaturas ficaram na média aos outros testes com -17°C e +3,9°C de diferencial.

Com base nos testes realizados, e os valores computados pelos doutores, é possível notar que a capacidade foi similar nos três casos apesar de menor, a eficiência energética é melhor quando as temperaturas são mais baixas. As pressões foram ligeiramente diferentes, podendo assim usar a mesma pressão existente no sistema. A válvula de expressão pode ser utilizada a mesma já que a pressão de sucção e a quantidade de diferencial ficaram próximas ao R-22, mas foi visto que o novo fluido pode exigir alguns ajustes para que exista o superaquecimento desejado do evaporador. Foi visto também que com temperaturas de descargas menores, o sistema possui uma economia maior, principalmente em temperaturas menores onde a temperatura do liquido do condensador é baixa, sem a necessidade de adição de liquido. (Allgood, Lawson, 2010)

c) Teste de retrofit em condicionador de ar de 12000BTU

Em teste realizado pela Unicamp em um ar condicionado foi confirmado a economia do fluido no sistema, sendo retirado 1kg de R-22 e colocado no lugar 0,8kg de R-438A.

O sistema operou em óleo mineral e teve uma corrente menor no novo processo, o que em longo prazo traz uma maior economia de energia. Por fim foi visto que as temperaturas foram muito próximas e a pressão de sucção teve uma diferença de 15psig, a tabela a seguir demonstra os dados do processo.

Tabela 3 – Dados do teste realizado na Unicamp

	R-22	FREON MO99
CARDA DE FLUIDO DO SISTEMA	1050g	770g
TEMP. AMBIENTE (°C)	25	27
TEMP. DE SUCÇÃO (°C)	11	15,5
PERSSÃO DE SUCÇÃO (psig)	60	45
TEMP. DE SERPENTINA (°C)	7,5	8,5
TEMP. DO AR NA ENTRADA DO EVAPORADOR (°C)	24	25
TEMP. DO AR NA SAIDA DO EVAPORADOR (°C)	7,5	8,5
TEMP DO AR NA ENTRADA DO CONDENSADOR (°C)	27,8	28,4
TEMP. DO AR NA SAIDA DO CONDENSADOR (°C)	35	34,6
CORRENTE (A)	3,65	3,51

Fonte: Unicamp (2015)

2.6 CLASSIFICAÇÃO ASHRAE

A ASHRAE(American SocietyofHeating, Refrigerating, and Air-ConditioningEngineers) é uma sociedade americana criada para proteger e fornecer informações técnicas referentes aos campos de aquecimento, refrigeração e ar condicionado. Ela possui uma classificação em que os fluidos são colocados conforme seu perigo para a sociedade, permitindo seu uso dependendo da sua classe. Eles são classificados conforme sua toxidade e inflamabilidade. A toxidade se divide em 2 grupos, o de Classe A que são compostos em que a toxidade não foi identificada, e Classe B, com identificadas evidencias de existência. (Chemours, 2013)

A inflamabilidade se divide em 3 classes:

- Classe 1 Não se observa propagação de chamas a pressão atmosférica
- Classe 2 Limite inferior de inflamabilidade superior a 0,10kg/m³.
- Classe 3 Inflamabilidade elevada

Com base nisso, cada fluido recebe sua classificação, gerando informação para que profissionais da área possam observar qual a melhor escolha para cada tipo de ambiente.

O R-438A possui essa vantagem, por se situar na Classe A1, ele não possui qualquer tipo de toxidade, e não sofre perigo de explosões ou acidentes perante possíveis vazamentos que podem ocorrer no sistema. (Chemours, 2013)

2.7 CICLO DE REFRIGERAÇÃO

Todo ciclo de refrigeração pertence a um diagrama necessário para que seu correto funcionamento seja feito, a partir do ciclo é possível estabelecer parâmetros para que cálculos sejam realizados, as etapas são representadas por números de 1 a 4 ou letras de A a D.

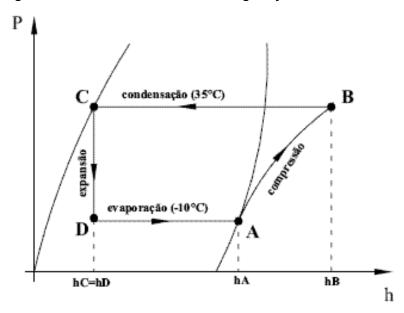


Figura 9 – Gráfico do ciclo de refrigeração

Fonte: ROTADOSCURSOS (2007)

Transferência de calor para o ar ambiente ou água de refrigeração (Vapor Superaquecido) Vapor a alta pressão Condensador (Liquido Saturado) Liquido a Compressor alta pressão Trabalho Válvula de expansão Vapor a baixa Mistura de líquido e pressão vapor a baixa pressão (Vapor Saturado) (Mistura bifásica líquido-vapor) Evaporador Transferência de calor do espaço refrigerado

Figura 10 – Ciclo de refrigeração

Fonte: VAN WYLEN (2003)

Conforme mostrado nas figura 9 e 10, é possível saber que o ciclo começa saindo do evaporador como liquido saturado, sobe com entropia constante a pressão baixa e como vapor saturado nem A, passando pelo compressor, que realiza trabalho e aumenta sua pressão superaquecendo o vapor em B. Logo que passa pelo condensador trocando calor com o ar ambiente transforma o vapor em liquido saturado mantendo sua pressão C. Após passar pela válvula a pressão diminui transformando parte do liquido em vapor. Em seguida passa pelo evaporador recebendo calor do espaço refrigerado e refazendo seu ciclo novamente.

2.8 CÁLCULO DO COEFICIENTE DE PERFORMANCE (COP)

O coeficiente de performance (COP) pode ser usado para analisar a energia térmica de um sistema de refrigeração, usando a relação da capacidade de refrigeração pela quantidade de trabalho produzido, ou seja, quanto de calor o ciclo produz por unidade de trabalho.

A fórmula utilizada para calcular o COP:

$$COP = \beta ref = \frac{Ql}{|Wc|} = \frac{qL}{|wc|} = \frac{h1 - h3}{h2 - h1}$$
 (1)

Onde:

COP = Coeficiente de performance do sistema

QI = Calor de entrada do evaporador

Wc = Trabalho do compressor

H1 = entalpia de saída do evaporador

H2 = entalpia de entrada do condensador

H3 = entalpia de saída do condensador

O Q (Calor de entrada do evaporador) e o W (trabalho do compressor) são encontrados pela diferença de entalpia do sistema que podem ser obtidas pela temperatura em que cada componente trabalha. É possível visualizar as posições de cada entalpia pela figura 10.

2.9 TRABALHO (W) PRODUZIDO

O trabalho (w) é o quanto o compressor produz de energia para que o sistema funciona, e é definido pela fórmula a seguir

$$W = hs - he (2)$$

Onde:

W = Trabalho produzido

hs = entalpia de saída do compressor

he = entalpia de entrada do compressor

3 METODOLOGIA

O projeto visa colocar em prova a eficiência energética que o fluido R-438A possui sobre seu antecessor R-22, com base em estudos realizados anteriormente e o aprendizado durante o curso, principalmente com as matérias de Refrigeração e termodinâmica.

3.1 EQUIPAMENTOS UTILIZADOS

3.1.1 Central de Refrigeração

Como forma de apresentar o teste realizado sobre a pesquisa do fluido, foi necessário a utilização de um equipamento para que isso fosse possível. Por facilidade em manejo e tranquilidade na disponibilização da mesma, se aderiu ao equipamento existente no laboratório de maquinas térmicas dentro da instituição ao qual esse trabalho foi proposto, sendo assim possível a realização de todo planejamento. A máquina disponível é uma central de refrigeração feita justamente para a facilidade na demonstração do processo de refrigeração, funcionando normalmente ela não só se disponibiliza em trabalhos mais complexos como também ajuda no aprendizado demonstrando todo funcionamento de um ciclo completo de refrigeração.

3.1.1.1 Tanque

Ela possui um tanque com capacidade para 4 litros de fluido de modelo 0021000 da linha Parker, o tanque é universal e serve para vários tipos de fluidos, entre eles o R-22.

O tanque ainda possui um filtro de linha compatível com vários fluidos, conseguindo trabalhar a uma pressão de até 46 bar.

Figura 11 - Tanque

Fonte: Autor (2017)

3.1.1.2 Unidade condensadora

A unidade condensadora possui em sua consistência um compressor que age durante o processo movendo o fluido pelo sistema e um condensador que transforma o gás em liquido. A unidade é da marca flexcold, modelo FLEX150H2C-A, com um número de série M11H263295, o compressor trabalha a 208/230 volts, 3 fases, com uma frequência de 50 hertz, e uma corrente circulando em plena carga de 5,4 RLA e uma corrente com o motor bloqueado de 31 LRA, enquanto o condensador possui uma potência de 1/20 HP, com uma frequência entre 50 e 60 Hz. O fluido de trabalho do equipamento é o R-22como mostrado na figura.

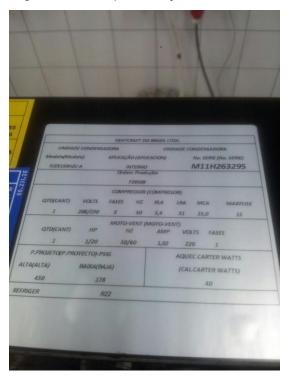


Figura 12 – Especificações da unidade condensadora

Fonte: Autor (2017)

3.1.1.3 Evaporador

Além desses equipamentos ainda possui um evaporador que age como um trocador de calor no sistema recebendo o fluido refrigerante com baixas temperaturas e pressões e transferindo sua energia térmica com o meio ambiente. O evaporador é do mesmo modelo dos da unidade condensadora, também daflexcold.

3.1.2 Equipamentos auxiliares

Para inserir o fluido dentro da máquina, foram necessários alguns procedimentos e utilização de alguns equipamentos.

3.1.2.1 Bomba de vácuo

Para a troca de gás é necessário a utilização de algo que faça com que a pressão se estabilize e tire todo o ar ou substancia que ainda exista dentro da máquina. Para isso é usado uma bomba de vácuo, com ela é possível se criar vácuo

dentro do sistema retirando toda pressão que existe. Sem o devido uso do mesmo, apesar de ser possível a colocação do novo fluido, isso diminui a vida útil da máquina, pois ela estará sujeita a sofrer com oxidação e também sujeira que pode estar impregnada no ar. A utilização da bomba como também a máquina, é apresentada conforme a figura a seguir.

Figura 13 - Central de Refrigeração

Fonte: Autor (2017)

3.1.2.2 Manômetro

Na imagem anterior, também é possível visualizar duas tubulações, uma ligando a bomba de vácuo e outra com o compressor. Esse equipamento é conhecido como manômetro, e serve como controle da pressão entrando no sistema. Por se tratar de pressões, se o equipamento receber uma pressão muito

alta ele pode vir a sofrer danos em seu interior, com isso durante o processo é necessário o uso do mesmo para manter a pressão estável.

3.1.2.3 Cronômetro

Também foi utilizado um cronômetro para a marcação do tempo em que a câmara demorou para chegar a temperatura desejada

3.1.3 Fluidos Refrigerante

Por último e não menos importante, os fluidos refrigerantes como parte principal do teste foram indispensáveis no processo. Foram utilizados dois fluidos durante o teste, o primeiro a ser usado foi o R-22, que além de ser o original da máquina, é o grande motivo desse trabalho ser realizado. O outro é o novo fluido R-438A que faz parte central da pesquisa.

3.2 PROCESSO UTILIZADO

O processo se limita a testar a eficiência do novo fluido no mesmo sistema, comparando suas temperaturas, pressões, entalpias e por fim sua eficiência com o diferencial de COP.

Primeiramente foi necessário a obtenção do fluido refrigerante, contudo, por ser um fluido novo, foi percebido uma grande dificuldade em se encontrar no mercado, sendo necessário conversar diretamente com o fornecedor, e com alguma dificuldade foi encontrado o fluido com 11,36kg.

Com o fluido em mãos, a bomba de vácuo e o manômetro, foi possível o início do teste.

O teste foi realizado primeiramente com o R-22 que já estava no sistema da máquina, o teste foi realizado com o seguinte intuito de marcar o tempo em que o processo de refrigeração demorava para chegar ao estado indicado no setup.

Primeiramente foi necessário se esperar para que a câmara do evaporador situada a baixo da bancada chegasse a temperatura ambiente. A temperatura usada foi 15°C para ambos os processos, o equipamento foi ligado uma vez para que ele

tivesse uma primeira rodagem, assim era possível ter uma melhor noção dos resultados comparativos.

Após a chegada a temperatura ideal dentro da câmara (onde está localizado o evaporador), que nesse caso foi programada para -10°C, foi possível então a obtençãodos dados, como temperaturas e pressões.

Com o primeiro teste realizado, a troca do fluido R-22 pelo R-438A foi realizada, utilizamos a bomba de vácuo. Por ser um processo demorado, foram necessários 30 minutos para que todo o fluido do sistema estivesse puro. Esse tempo foi definido pelo próprio sistema, já que para sabermos quando não é mais necessário o uso da bomba, a pressão do sistema precisa estar negativa, mostrando que todo tipo de resíduo ou impurezano sistema foi devidamente retirada. Com a ajuda do manômetro realizou-se a colocação do R-438A como representado na figura a seguir.

Figura 14 – Fluido refrigerante sendo colocado no sistema

Fonte: Autor (2017)

Como visto na figura a cima, o recipiente em que o fluido se encontra, precisa ser colocado de cabeça para baixo, pois como a base dele é uma mistura, sem esse método, não se consegue retirar o fluido adequadamente.

Deve-se ter o uso do manômetro, pois a entrada do fluido deve ser regularmente monitorada para não exceder a pressão que gira em torno de 60 na alta. Sem esse devido monitoramento o fluido pode entrar com uma pressão muito alta, danificando o condensador.

A troca do fluido é demorada e lenta, podendo levar um bom tempo para que atinja a pressão ideal. Evidenciado pela figura 7

Figura 15 – Manômetro

Fonte: Autor (2017)

Com o fluido no sistema foi possível então anotar as pressões, temperaturas e o tempo que levou para efetuar o mesmo processo em que o R-22 foi realizado pelo fluido R-22.

4 RESULTADOS E DISCUSSÕES

4.1 RECOLHIMENTO DOS DADOS

4.1.1 Dados do R-22

O primeiro teste realizado com o R-22 pode se obter os seguintes dados durante o processo para um maior destaque:

Tabela 10 – R-22 durante o processo

LOCAL MEDIDO	TEMPERATURA EM °C
Temperatura do tanque liquido	31,7
Temperatura entrada do condensador	34,3
Temperatura de saída do condensador	77,3
Temperatura entrada do compressor	15,1
Temperatura de saída do evaporador	12,2
Temperatura da câmara	2,2

Fonte: Autor (2017)

Como dados oficiais, foram retirados ao fim do processo quando a câmara chegou aos -10°C os seguintes dados:

Tabela 11 – R-22 final do processo

LOCAL MEDIDO	TEMPERATURA EM °C
Temperatura do tanque liquido	33,1
Temperatura entrada do condensador	47,3
Temperatura de saída do condensador	83,8
Temperatura entrada do compressor	0,5
Temperatura de saída do evaporador	-3,8
Temperatura da câmara	-10

Fonte: Autor (2017)

As pressões de trabalho do sistema se mantiveram com uma média de 188,5psi na alta e 33psi na baixa.

O tempo total que o processo demorou para acontecer foi de 5 minutos e 55 segundos.

4.1.2 Dados do R-438A

Para possível comparação foram retirados os seguintes dados durante o processo:

Tabela 12 – R-438A durante o processo

LOCAL MEDIDO	TEMPERATURA EM °C
Temperatura do tanque liquido	32
Temperatura entrada do condensador	49
Temperatura de saída do condensador	66.9
Temperatura entrada do compressor	10,2
Temperatura de saída do evaporador	6,0
Temperatura da câmara	1,3

Fonte: Autor (2017)

Para dados oficiais utilizados em cálculo serão usadas as seguintes temperaturas quando o mesmo chegou a -10°C dentro da câmara:

Tabela 13 – R-438A final do processo

LOCAL MEDIDO	TEMPERATURA EM °C
Temperatura do tanque liquido	32,0
Temperatura entrada do condensador	49,0
Temperatura de saída do condensador	66,9
Temperatura entrada do compressor	-3,9
Temperatura de saída do evaporador	-7,4
Temperatura da câmara	-10

Fonte: Autor (2017)

A pressão de alta como a anterior se manteve em média 188,5psi, enquanto a de baixa ficou bem irregular, variando de 28-40, uma média de 35psi.

O tempo de processo demorou 6 minutos e 21 segundos.

4.2 CÁLCULO DO COP

4.2.1 Cálculo do COP no fluido R-22

É possível fazer uma análise mais aprofundada do cálculo usando a figura 9, presente nas referências bibliográficas, os dados de entalpia vão ser retirados da tabela de termodinâmica dos dois fluidos, elas estão disponíveis nos anexos.

Os valores conforme tabelas anexadas no final deste trabalho para o fluido refrigerante R-22 são os seguintes:

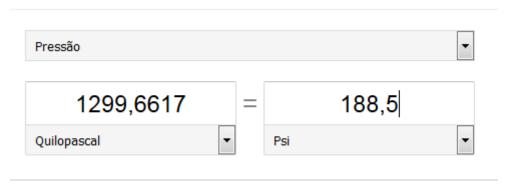
Usando a temperatura de saída do evaporador de -3,8°C, segundo a tabela é necessário fazer uma interpolação de valores para chegar a entalpia do vapor saturado entre -3°C e -4°C conforme a fórmula a seguir.

$$E = \frac{(F-D).(B-A)}{(C-A)} + D$$
 (3)

Onde conforme na figura a seguinte, se nota que os valores referentes as letras disponíveis estão circuladas, sendo eles temperatura e entalpia no estado de vapor saturado (estado de saída do evaporador).

Figura 10 – Tabela termodinâmica R-22 evaporador

-6	407.7	0.0008	0.0571	1302.0	17.500	193.0	209.8	402.8	0.974	1.760	-6	L
-5	421.8	0.0008	0.0553	1298.0	18.090	194.2	209.0	403.2	0.979	1.758	-5	
-4	436.3	0.0008	0.0535	1295.0	18.680	195.3	208.2	403.5	0.983	1.757	-4	
-3	451.1	0.0008	0.0518	1292.0	19.300	196.5	207.4	403.9	0.987	1.755	-3	
-2	466.4	0.0008	0.0502	1288.0	19.920	197.7	206.6	404.3	0.992	1.754	-2	
-1	482.0	0.0008	0.0486	1285.0	20.570	198.8	205.9	404.7	0.996	1.752	-1	
0	498.0	0.0008	0.0471	1282.0	21.230	200.0	205.0	405.0	1.000	1.751	0	


$$A = -4^{\circ}C$$
 $D = 403,5 \text{kj/kg}$ $B = -3,8^{\circ}C$ $E = ?$ $C = -3^{\circ}C$ $F = 403,9 \text{kj/kg}$

$$E = \frac{(403,9 - 403,5).(-3,8 + 4)}{(-3 + 4)} + 403,5$$
$$E = 403,58kj/kg$$

Conforme a equação o valor de h1 = 403,58kj/kg.

Para calcular h2 é necessário pegar a temperatura de entrada do condensador e a pressão em alta para assim definir, como a pressão em alta está em psi, é necessário a transformação em kpa para visualizar na tabela

Figura 10 - Conversor psi ->kpa

Fonte: Google (2017)

Conforme o conversor a cima, 188,5psi = 1299,66kpa, aproximadamente 1300kpa que será usado para cálculo.

Segundo a tabela a seguir, a temperatura de entrada em 47,3°C na pressão saturada trabalha a entre 1812kpa e 1855kpa, por isso o fluido na saída do compressor e entrada do condensador é superaquecido conforme a tabela a seguir

I emp 1000 °C (23.42°C) (0.0196)(414.3)(1.711)(0.0180 (0.0236)(412.6) (1.719)(413.5)25 0.0239 0.0219 30 416.2 1.724 0.0246 418.2 1.738 30 0.0202 418.6 1.725 0.0182 416.5 1.712 35 0.0253 422.3 1.752 0.0225 420.5 1.738 35 0.0232 424.7 1.751 0.0209 422.9 1.739 0.0188 421.1 1.726 40 0.0260 426.4 1.765 0.0215 427.2 1.752 0.0194 1.740 45 1.778 0.0238 428.9 1.765 0.0267 430.5 50 0.0245 433.0 1.777 0.0221 431.4 1.765 0.0200 1.754 434.5 1.790 0.0273 55 0.0251 437.1 1.790 0.0206 1.767 0.0280 438.5 1.802 0.0226

Figura 11 – Tabela termodinâmica R-22 condensador entrada

Usando a fórmula de interpolação (3) pegando os dados de entalpia em 1300kpa é possível chegar ao seguinte valor, onde:

$$A = 45^{\circ}C$$
 $D = 425,5kj/kg$ $B = 47,3^{\circ}C$ $E = ?$ $C = 50^{\circ}C$ $F = 429,8kj/kg$

$$E = \frac{(429,8 - 425,5).(47,3 - 45)}{(50 - 45)} + 425,5$$
$$E = 427,47kj/kg$$

Como resultado de h2 = 427,47kj/kg.

O cálculo do h3 se dá pela saída do condensador a uma temperatura de 83,8°C saindo liquido saturado.

Figura 12 – Tabela termodinâmica R-22 condensador saída

80	3664.0	0.0011	0.0051	893.7	195.400	310.4	101.6	412.0	1.342	1.630
81	3736.0	0.0011	0.0050	884.8	201.700	312.3	99.1	411.4	1.347	1.627
82	3810.0	0.0011	0.0048	875.4	208.300	314.3	96.4	410.7	1.353	1.624
83	3885.0	0.0012	0.0047	865.7	215.300	316.3	93.6	409.9	1.358	1.621
84	3961.0	0.0012	0.0045	855.5	222.700	318.3	90.8	409.1	1.363	1.618
85	4038.0	0.0012	0.0043	844.8	230.600	320.4	87.8	408.2	1.369	1.614

Fonte: Chemours (2013)

Onde:

 $A = 83^{\circ}C$ D = 316,3kj/kg $B = 83,8^{\circ}C$ E = ? $C = 84^{\circ}C$ F = 318,3kj/kg

$$E = \frac{(318,3 - 316,3).(83,8 - 83)}{(84 - 83)} + 316,3$$
$$E = 317,9 \text{kj/kg}$$

Conforme o resultado, h3 = 317,9kj/kg, com os 3 dados achados, é possível se calcular a fórmula do COP (1).

$$COP = \frac{403,58 - 317,9}{427,47 - 403,58}$$
$$COP = 3,58$$

Como resultado, a eficiência energética da máquina é 3,58, um padrão bem alto comparado a outros equipamentos, já esperado por ser usada para estudos e apresentações.

4.2.2 Cálculo do COP no fluido R-428A

Com a equação (3) é possível realizar o mesmo método feito anteriormente para o fluido diferente. Iremos utilizar a tabela de propriedades saturadas e vapor superaquecido para os cálculos.

Para achar h1 é necessário pegar a temperatura de saída do evaporador a -7,4°C na tabela de vapor saturado.

Figura 13 – Tabela termodinâmica R-438A saída evaporador

-10	380.358	310.060	0.000779	0.0649	1284.3	15.409	186.5	189.2	375.7	0.950	1.677	-10
-9	393.954	321.962	0.000781	0.0626	1280.7	15.980	187.8	188.4	376.3	0.955	1.676	-9
-8	407.915	334.211	0.000783	0.0604	1277.2	16.567	189.2	187.6	376.8	0.960	1.676	-8
-7	422.249	346.814	0.000785	0.0582	1273.6	17.172	190.5	186.8	377.4	0.965	1.675	-7
-6	436.960	359.777	0.000787	0.0562	1270.0	17.794	191.9	186.1	377.9	0.970	1.674	-6

Fonte: Chemours (2013)

Será necessário a interpolação entre -8°C e -7°C utilizando a fórmula (3).

Onde:

$$A = -8^{\circ}C$$
 $D = 376,8kj/kg$ $B = -7,4^{\circ}C$ $E = ?$ $C = -7^{\circ}C$ $F = 377,4kj/kg$

$$E = \frac{(377,4 - 376,8).(-7,4 + 8)}{(-7 + 8)} + 376,8$$
$$E = 377,16 \text{kj/kg}$$

Como E = h1, o valor de h1 é 377,16kj/kg.

O h2 é o valor de entalpia na entrada do condensador a uma temperatura de 49,0°C, e pode ser encontrado pela tabela de vapor supersaturado já que a essa temperatura a pressão é 2030,530kpa, muito maior que a pressão coletada nos dados.

Figura 14 – Tabela termodinâmica R-438A entrada condensador

40	0.0221	409.8	1.799	0.0197	407.9	1.786	0.0176	405.9	1.774	0.0158	403.8	1.762	40
45	0.0228	414.9	1.815	0.0203	413.2	1.803	0.0182	411.4	1.791	0.0164	409.5	1.780	45
50	0.0234	420.0	1.831	0.0209	418.4	1.819	0.0188	416.7	1.808	0.0170	415.0	1.797	50
55	0.0240	425.1	1.847	0.0214	423.6	1.835	0.0193	422.0	1.824	0.0175	420.4	1.814	55

Fonte: Chemours (2013)

Onde:

$$A = 45^{\circ}C$$
 $D = 409,5kj/kg$ $B = 49^{\circ}C$ $E = ?$ $C = 50^{\circ}C$ $F = 415,0kj/kg$

$$E = \frac{(415,0 - 409,5).(49,0 - 45)}{(50 - 45)} + 409,5$$
$$E = 413,9 \frac{kj}{kg}$$

Como E = h2, então h2 = 413,9kj/kg.

Por fim h3 é definido pela temperatura de saída do condensador, que sai como liquido saturado a uma temperatura de 66,9°C.

Figura 15 – Tabela termodinâmica R-438A saída condensador

65	2888.919	2704.957	0.001097	0.0062	911.9	160.489	301.1	100.0	401.1	1.323	1.621
66	2950.311	2767.201	0.001107	0.0060	903.3	165.886	303.1	97.8	400.9	1.329	1.619
67	3012.676	2830.645	0.001118	0.0058	894.3	171.553	305.1	95.6	400.6	1.334	1.617
68	3076.026	2895.319	0.001130	0.0056	885.1	177.514	307.1	93.3	400.3	1.340	1.615
69	3140.370	2961.261	0.001142	0.0054	875.4	183.800	309.1	90.9	400.0	1.346	1.613

Fonte: Chemours (2013)

Usando a fórmula de interpolação (3) é possível chegar a entalpia de 66.9°C. Onde:

$$A = 66^{\circ}C$$
 $D = 303,1 \text{kj/kg}$ $B = 66,9^{\circ}C$ $E = ?$ $C = 67^{\circ}C$ $F = 305,1 \text{kj/kg}$

$$E = \frac{(305,1 - 303,1).(66,9 - 66)}{(67 - 66)} + 303,1$$
$$E = \frac{304,9kj/kg}{(67 - 66)} + \frac{303,1}{(67 - 66)} +$$

Como E = h3, a entalpia encontrada na saída do condensador é 304,9kj/kg.

Com as três entalpias encontradas é possível achar o COP do sistema para esse fluido.

$$COP = \frac{377,16 - 304,9}{414,23 - 377,16}$$
$$COP = 1,96$$

4.3 CALCULO DO TRABALHO (W)

Com a equação (2) presente nas referências bibliográficas é possível achar o valor de trabalho que o compressor produziu para cada fluido.

Com isso, o W do R-22 pegando h2 e h1 é dado por:

$$W = H2 - H1$$

 $W = 427,47 - 403,58$
 $W = 23,89$

O W do R-438A com suas entalpias 2 e 1 fica:

$$W = H2 - H1$$

 $W = 414,23 - 377,16$
 $W = 37,07$

5 CONCLUSÃO

O trabalho teve como objetivo testar os fluidos e demonstrar a eficiência do fluido R-438A.

Existiu grande dificuldade de encontrar o fluido no mercado, por ainda ser novo existem poucos revendedores, e a poucas pessoas que realmente usam ainda esse produto, além disso ele só é encontrado em 11,35kg, o que pode incapacitar o uso em alguns casos em que se é necessária uma pequena fração dele.

O preço de compra também ainda continua caro em comparação ao R-22.

O teste demonstrou que o COP do R-438A não foi satisfatório em comparação ao R-22.

Foi identificado que o trabalho do R-438A é 55% maior, o que vai acarretar um consumo maior de energia elétrica.

Apesar disso, mesmo não tendo a possibilidade de pesar os fluidos, se notou que a presença do R-438A foi muito menor em relação ao R-22, isso pode significar uma economia de fluido em equipamentos de grande porte com um estudo mais específico. Outro ponto positivo é trabalhar em temperaturas menores, que eleva a vida útil do equipamento, promovendo uma economia a curto e longo prazo.

Como o R-22 sairá de mercado em alguns anos, o novo fluido foi de fácil substituição, podendo haver mais estudo para que no futuro tenham mais dados para aumentar ou diminuir a aceitação do mesmo.

6 TRABALHOS FUTUROS

Realizar um teste no qual o fluido funcione por 8 horas ao dia, recolhendo dados em um período de trabalho maior.

A realização de um teste em um sistema maior, com mais dados e possibilidade de um teste mais adequado onde o fluido funcione diariamente com um poder de visualização maior e mais completo.

Uma comparação do R-438A com outros fluidos que estão disputando no mercado uma posição de destaque no lugar do R-22, testando eles e destacando suas diferenças e vantagens que levam sobre os outros.

REFERÊNCIAS BIBLIOGRÁFICAS

SANTOS, J. C. Radiação Ultravioleta: Estudo dos índices de Radiação, Universidade Estadual de Santa Cruz. Disponível em http://www.biblioteca.uesc.br/biblioteca/bdtd/733767599d.pdf. Acesso em 07 de Abril de 2017.

LEME, N. P.; ALVALÁ, P. **A camada de ozônio**, 2007. Instituto Nacional de Pesquisas Espaciais (INPE).

Ministério do Meio Ambiente. **Substancias destruidoras da camada de Ozônio**, 2017. Disponivel em http://www.mma.gov.br/clima/protecao-da-camada-de-ozonio/substancias-destruidoras-da-camada-de-ozonio. Acessado em 10 de Abril de 2017.

The Linde Group. Zero ozone depletionpotential replacement for R22, 2017. Disponível em http://www.linde-gas.com. Acessado em 14 de Abril de 2017.

Diretrizes de Retrofit para Fluidos Refrigerantes Dupont ISCEON MO99 (R-438^a). Dupont. Disponível em https://www.chemours.com. Acessado em 18 de Abril de 2017.

Regicases. O que quer dizer GWP e ODP, 2017. Disponível em http://www.recigases.com/odp_dwp.html. Acessado em 18 de Abril de 2017.

PIETROBON, T.; NEULAENDER, P.; DIBA, S. Eliminação do R22: Prazos, cenários e alternativas. ABRAVA. Acessadoem 29 de Abril de 2017.

SAEED, M. U.; QURESHI, S. R.; HASHMI, K. J.; KHAN, M. A. **Performance** assessment of alternate refrigerants for retrofitting **R22** based air conditioning system. PNEC Campus, 2017.

ALLGOOD, Charles C.; LAWSON, C. Curtis. **Perfomance of R-438A in R-22 Refrigeration and Air Conditioning Systems.** PurdueUniversity, 2010.

WYLLEN, Van; Fundamentos da Termodinâmica. 8ª ed. Blucher, 2013.

ANEXOS

FIGURA 16 – TABELA R-22 SATURADO

Temp	Pressure	Volu	ume	Den	sity	Enthalpy			Ent	гору	Temp
°C	[kPa]	[m ³	/kg]	[kg	/m³]		[kJ/kg]			K-kg]	°c ๋
	` '	Liquid	Vapour	Liquid	Vароиг	Liquid	Latent	Vapour	Liquid	Vapour	
		v _f	Vg	d _f	dg	Hr	H _{fg}	Hg	St	Sg	
-46	78.9	0.0007	0.2684	1424.0	3.726	148.4	236.9	385.3	0.794	1.838	-46
-45	82.9	0.0007	0.2563	1421.0	3.901	149.4	236.4	385.8	0.799	1.835	-45
-44	87.1	0.0007	0.2450	1418.0	4.082	150.5	235.8	386.3	0.804	1.833	-44
-43	91.3	0.0007	0.2342	1416.0	4.270	151.6	235.1	386.7	0.809	1.830	-43
-42	95.8	0.0007	0.2240	1413.0	4.464	152.7	234.5	387.2	0.813	1.828	-42
-41	100.4	0.0007	0.2144	1410.0	4.665	153.8	233.9	387.7	0.818	1.825	-41
-40	105.2	0.0007	0.2052	1407.0	4.873	154.9	233.2	388.1	0.823	1.823	-40
-39	110.2	0.0007	0.1965	1404.0	5.088	156.0	232.6	388.6	0.827	1.821 1.819	-39 -38
-38 -37	115.4	0.0007	0.1883 0.1805	1401.0 1398.0	5.311 5.541	157.1 158.2	232.0 231.3	389.1 389.5	0.837	1.816	-36
	120.7		1	1395.0	5.779	159.3	230.7	390.0	0.841	1.814	-36
-36 -35	126.3 132.0	0.0007	0.1730 0.1660	1393.0	6.025	160.4	230.7	390.0	0.846	1.812	-35
-34	138.0	0.0007	0.1593	1389.0	6.279	161.5	229.4	390.9	0.851	1.810	-34
-33	144.1	0.0007	0.1529	1386.0	6.541	162.6	228.7	391.3	0.855	1.808	-33
-32	150.5	0.0007	0.1323	1383.0	6.811	163.7	228.1	391.8	0.860	1.806	-32
-31	157.1	0.0007	0.1410	1380.0	7.090	164.8	227.4	392.2	0.864	1.804	-31
-30	163.9	0.0007	0.1355	1377.0	7.379	165.9	226.8	392.7	0.869	1.802	-30
-29	170.9	0.0007	0.1303	1374.0	7.676	167.0	226.1	393.1	0.873	1.800	-29
-28	178.2	0.0007	0.1253	1371.0	7.982	168.1	225.5	393.6	0.878	1.798	-28
-27	185.7	0.0007	0.1205	1368.0	8.298	169.2	224.8	394.0	0.882	1.796	-27
-26	193.4	0.0007	0.1160	1365.0	8.623	170.3	224.2	394.5	0.887	1.794	-26
-25	201.4	0.0007	0.1116	1362.0	8.958	171.4	223.5	394.9	0.891	1.792	-25
-24	209.7	0.0007	0.1075	1359.0	9.304	172.6	222.7	395.3	0.896	1.790	-24
-23	218.2	0.0007	0.1035	1356.0	9.659	173.7	222.1	395.8	0.900	1.788	-23
-22	227.0	0.0007	0.0998	1353.0	10.030	174.8	221.4	396.2	0.905	1.786	-22
-21	236.0	0.0007	0.0961	1350.0	10.400	175.9	220.7	396.6	0.909	1.784	-21
-20	245.3	0.0007	0.0927	1347.0	10.790	177.0	220.1	397.1	0.914	1.783	-20 -19
-19	254.9	0.0007	0.0894	1343.0	11.190	178.2	219.3	397.5	0.918 0.922	1.781	-19 -18
-18	264.8	0.0008 0.0008	0.0862 0.0832	1340.0 1337.0	11.600 12.020	179.3 180.4	218.6 217.9	397.9 398.3	0.922	1.779 1.777	-17
-17 -16	275.0 285.4	0.0008	0.0803	1334.0	12.450	181.6	217.9	398.7	0.927	1.776	-16
-15	296.2	0.0008	0.0003	1331.0	12.450	182.7	216.5	399.2	0.935	1.774	-15
-14	307.3	0.0008	0.0749	1328.0	13.360	183.8	215.8	399.6	0.940	1.772	-14
-13	318.7	0.0008	0.0749	1324.0	13.830	185.0	215.0	400.0	0.944	1.771	-13
-12	330.4	0.0008	0.0699	1321.0	14.310	186.1	214.3	400.4	0.949	1.769	-12
-11	342.4	0.0008	0.0675	1318.0	14.810	187.3	213.5	400.8	0.953	1.767	-11
-10	354.8	0.0008	0.0653	1315.0	15.320	188.4	212.8	401.2	0.957	1.766	-10
-9	367.5	0.0008	0.0631	1311.0	15.850	189.6	212.0	401.6	0.962	1.764	-9
-8	380.5	0.0008	0.0610	1308.0	16.380	190.7	211.3	402.0	0.966	1.763	-8
-7	393.9	0.0008	0.0590	1305.0	16.940	191.9	210.5	402.4	0.970	1.761	-7
-6	407.7	0.0008	0.0571	1302.0	17.500	193.0	209.8	402.8	0.974	1.760	-6
-5	421.8	0.0008	0.0553	1298.0	18.090	194.2	209.0	403.2	0.979	1.758	-5
-4	436.3	0.0008	0.0535	1295.0	18.680	195.3	208.2	403.5	0.983	1.757	-4
-3	451.1	0.0008	0.0518	1292.0	19.300	196.5	207.4	403.9	0.987	1.755	-3
-2	466.4	0.0008	0.0502	1288.0	19.920	197.7	206.6	404.3	0.992	1.754	-2
-1	482.0	0.0008	0.0486	1285.0	20.570	198.8	205.9	404.7	0.996	1.752	-1
0	498.0	0.0008	0.0471	1282.0	21.230	200.0	205.0	405.0	1.000	1.751	0
1	514.4	0.0008	0.0457	1278.0	21.910	201.2	204.2	405.4	1.004	1.749	1
2	531.2	0.0008	0.0442	1275.0	22.600	202.4	203.4	405.8	1.008	1.748	2 3
3	548.4	0.0008	0.0429	1271.0	23.310	203.5	202.6	406.1 406.5	1.013 1.017	1.746 1.745	4
4	566.1	0.0008	0.0416	1268.0	24.040 24.790	204.7 205.9	201.8 200.9	406.5	1.017	1.745	5
5	584.1	0.0008	0.0403	1264.0 1261.0	25.560	205.9	200.9	400.0	1.025	1.742	6
6 7	602.6 621.5	0.0008	0.0391	1257.0	26.340	208.3	199.2	407.5	1.030	1.741	7
	021.5	0.0008	0.0300	1207.0	20.340	200.0	135.2	407.0	1.000	1.741	

FIGURA 17 – TABELA R-22 SATURADO

Temp	Pressure		ıme		sity	Enthalpy Entrop		гору	Temp		
°C	[kPa]	[m ³	/kg]	[kg/	m³]		[kJ/kg]		[kJ/l	K-kg]	°C
1 1		Liquid	Vapour	Liquid	Vapour	Liquid	Latent	Vapour	Liquid	Vapour	
		v _f	Vg	df	dg	Hf	H _{fo}	Hg	Sf	Sg	
8	640.9	0.0008	0.0368	1254.0	27.150	209.5	198.4	407.9	1.034	1.739	8
9	660.7	0.0008	0.0358	1250.0	27.970	210.7	197.5	408.2	1.038	1.738	9
10	680.9	0.0008	0.0347	1247.0	28.820	211.9	196.7	408.6	1.042	1.737	10
11	701.7	0.0008	0.0337	1243.0	29.690	213.1	195.8	408.9	1.046	1.735 1.734	11 12
12	722.9	0.0008	0.0327	1239.0	30.570 31.480	214.3	194.9 194.0	409.2 409.5	1.051 1.055	1.734	13
13 14	744.5 766.7	0.0008	0.0318	1236.0 1232.0	32.410	215.5 216.7	193.2	409.5	1.059	1.732	14
15	789.3	0.0008	0.0309	1232.0	33,360	217.9	192.3	410.2	1.063	1.732	15
16	812.4	0.0008	0.0300	1225.0	34.340	219.1	191.4	410.5	1.067	1.729	16
17	836.1	0.0008	0.0283	1221.0	35.340	220.4	190.4	410.8	1.071	1.728	17
18	860.2	0.0008	0.0275	1217.0	36.360	221.6	189.5	411.1	1.076	1.726	18
19	884.8	0.0008	0.0267	1214.0	37.410	222.8	188.6	411.4	1.080	1.725	19
20	910.0	0.0008	0.0260	1210.0	38.480	224.1	187.6	411.7	1.084	1.724	20
21	935.7	0.0008	0.0253	1206.0	39.570	225.3	186.6	411.9	1.088	1.722	21
22	961.9	0.0008	0.0246	1202.0	40.700	226.5	185.7	412.2	1.092	1.721	22
23	988.7	0.0008	0.0239	1198.0	41.850	227.8	184.7	412.5	1.096	1.720	23
24	1016.0	0.0008	0.0232	1195.0	43.030	229.0	183.8	412.8	1.100	1.719	24
25	1044.0	0.0008	0.0226	1191.0	44.230	230.3	182.7	413.0	1.105	1.717	25
26	1072.0	0.0008	0.0220	1187.0	45.470	231.5	181.8	413.3	1.109	1.716	26
27	1101.0	0.0009	0.0214	1183.0	46.730	232.8	180.7	413.5	1.113	1.715	27
28	1131.0	0.0009	0.0208	1179.0	48.020	234.1	179.7	413.8	1.117	1.714	28
29	1161.0	0.0009	0.0203	1175.0	49.350	235.3	178.7	414.0	1.121	1.712	29
30	1192.0	0.0009	0.0197	1171.0	50.700	236.6	177.7	414.3	1.125	1.711	30
31	1223.0	0.0009	0.0192	1167.0	52.090	237.9	176.6	414.5	1.129	1.710	31
32	1255.0	0.0009	0.0187	1163.0	53.520	239.2	175.5	414.7	1,133	1.709	32
33	1288.0	0.0009	0.0182	1158.0	54.970	240.5	174,4	414.9	1.138 1.142	1.707 1.706	33 34
34	1321.0	0.0009	0.0177	1154.0	56.460	241.8 243.1	173.3 172.2	415.1 415.3	1,142	1.705	35
35	1355.0 1389.0	0.0009	0.0172 0.0168	1150.0 1146.0	57.990 59.550	244.4	171.1	415.5	1.150	1.703	36
36 37	1424.0	0.0009	0.0164	1140.0	61.150	245.7	170.0	415.7	1.154	1.702	37
38	1460.0	0.0009	0.0159	1137.0	62.790	247.0	168.9	415.9	1,158	1.701	38
39	1497.0	0.0009	0.0155	1133.0	64.470	248.3	167.8	416.1	1.162	1.700	39
40	1534.0	0.0009	0.0151	1129.0	66.190	249.6	166.6	416.2	1.166	1.698	40
41	1571.0	0.0009	0.0147	1124.0	67.960	251.0	165.4	416.4	1.171	1.697	41
42	1610.0	0.0009	0.0143	1120.0	69.760	252.3	164.3	416.6	1.175	1.696	42
43	1649.0	0,0009	0.0140	1115.0	71.610	253.7	163.0	416.7	1.179	1.695	43
44	1689.0	0.0009	0.0136	1111.0	73.510	255.0	161.8	416.8	1.183	1.693	44
45	1729.0	0.0009	0.0133	1106.0	75.460	256.4	160.6	417.0	1.187	1.692	45
46	1770.0	0.0009	0.0129	1101.0	77.450	257.7	159.4	417.1	1.191	1.691	46
47	1812.0	0.0009	0.0126	1097.0	79.500	259.1	158.1	417.2	1.196	1.689	47
48	1855.0	0.0009	0.0123	1092.0	81.590	260.5	156.8	417.3	1.200	1.688	48
49	1899.0	0.0009	0.0119	1087.0	83.740	261.9	155.5	417.4	1.204	1.687	49
50	1943.0	0.0009	0.0116	1082.0	85.950	263.2	154.2	417.4	1.208	1.685	50
51	1988.0	0.0009	0.0113	1077.0	88.220	264.6	152.9	417.5	1.212	1.684	51
52	2033.0	0.0009	0.0110	1072.0	90.540	266.0	151.6	417.6	1.216	1.682	52
53	2080.0	0.0009	0.0108	1067.0	92.930	267.5	150.1	417.6	1.221	1.681	53
54	2127.0	0.0009	0.0105	1062.0	95.380	268.9	148.7	417.6	1.225	1.680	54
55	2175.0	0.0010	0.0102	1057.0	97.900	270.3	147.4	417.7	1.229	1.678	55 56
56	2224.0	0.0010	0.0100	1052.0	100.500	271.8	145.9	417.7	1.233 1.238	1.677 1.675	57
57	2274.0	0.0010	0.0097	1047.0	103.100	273.2	144.5 142.9	417.7 417.6	1.238	1.674	58
58	2324.0	0.0010	0.0094	1041.0	105.900	274.7 276.1	142.9	417.6	1.242	1.672	59
59	2375.0	0.0010 0.0010	0.0092	1036.0 1030.0	111.600	277.6	139.9	417.5	1.250	1.670	60
60 61	2427.0 2480.0	0.0010	0.0090	1030.0	114.600	279.1	138.4	417.5	1.255	1.669	61
01	2400.0	0.0010	0.0007	1020.0	114.000	2,13.1	1 100.4	4.7.0	1.200	1	

FIGURA 19 – TABELA R-22 SATURADO

Temp	Pressure		ume		sity		Enthalpy		Ent	гору
°C	[kPa]	[m ³	/kg]	[kg	/m ³]		[kJ/kg]		[kJ/I	K-kg]
		Liquid	Vapour	Liquid	Vapour	Liquid	Latent	Vapour	Liquid	Vapour
		٧ı	Vg	df	dg	Hf	H _{fg}	Hg	St	Sg
62	2534.0	0.0010	0.0085	1019.0	117.600	280.6	136.8	417.4	1.259	1.667
63	2589.0	0.0010	0.0083	1013.0	120.800	282.1	135.2	417.3	1.263	1.666
64	2645.0	0.0010	0.0081	1007.0	124.100	283.6	133.6	417.2	1.268	1.664
65	2701.0	0.0010	0.0079	1001.0	127.400	285.2	131.9	417.1	1.272	1.662
66	2759.0	0.0010	0.0076	995.3	130.900	286.7	130.2	416.9	1.277	1.660
67	2817.0	0.0010	0.0074	989.1	134.500	288.3	128.4	416.7	1.281	1.659
68	2876.0	0.0010	0.0072	982.8	138.200	289.9	126.6	416.5	1.285	1.657
69	2936.0	0.0010	0.0070	976.3	142.000	291.5	124.8	416.3	1.290	1.655
70	2997.0	0.0010	0.0069	969.7	146.000	293.1	123.0	416.1	1.295	1.653
71	3059.0	0.0010	0.0067	963.0	150.100	294.7	121.1	415.8	1.299	1.651
72	3123.0	0.0011	0.0065	956.1	154.400	296.4	119.1	415.5	1.304	1.649
73	3187.0	0.0011	0.0063	949.0	158.800	298.0	117.2	415.2	1.308	1.647
74	3252.0	0.0011	0.0061	941.8	163.400	299.7	115.2	414.9	1.313	1.645
75	3318.0	0.0011	0.0060	934.4	168.200	301.5	113.0	414.5	1.318	1.642
76	3385.0	0.0011	0.0058	926.7	173.100	303.2	110.9	414.1	1.323	1.640
77	3453.0	0.0011	0.0056	918.9	178.300	305.0	108.6	413.6	1.327	1.638
78	3522.0	0.0011	0.0054	910.8	183.800	306.8	106.3	413.1	1.332	1.635
79	3592.0	0.0011	0.0053	902.4	189.400	308.6	104.0	412.6	1.337	1.633
80	3664.0	0.0011	0.0051	893.7	195.400	310.4	101.6	412.0	1.342	1.630
81	3736.0	0.0011	0.0050	884.8	201.700	312.3	99.1	411.4	1.347	1.627
82	3810.0	0.0011	0.0048	875.4	208.300	314.3	96.4	410.7	1.353	1.624
83	3885.0	0.0012	0.0047	865.7	215.300	316.3	93.6	409.9	1.358	1.621
84	3961.0	0.0012	0.0045	855.5	222.700	318.3	90.8	409.1	1.363	1.618
85	4038.0	0.0012	0.0043	844.8	230.600	320.4	87.8	408.2	1.369	1.614
86	4116.0	0.0012	0.0042	833.5	239.000	322.5	84.7	407.2	1.375	1.610
87	4196.0	0.0012	0.0040	821.6	248.100	324.8	81.3	406.1	1.381	1.606
88	4277.0	0.0012	0.0039	8.808	257.900	327.1	77.7	404.8	1.387	1.602
89	4359.0	0.0013	0.0037	795.1	268.700	329.5	73.9	403.4	1.393	1.597
90	4442.0	0.0013	0.0036	780.1	280.600	332.1	69.8	401.9	1.400	1.592
91	4527.0	0.0013	0.0034	763.6	294.000	334.8	65.3	400.1	1.407	1.586
92	4614.0	0.0013	0.0032	745.1	309.300	337.8	60.1	397.9	1.415	1.580
93	4702.0	0.0014	0.0031	723.7	327.500	341.0	54.3	395.3	1.424	1.572
94	4791.0	0.0014	0.0029	697.8	350.200	344.8	47.2	392.0	1.434	1.562
95	4882.0	0.0015	0.0026	662.9	382.000	349.6	37.7	387.3	1.446	1.549

FIGURA 20 - TABELA R-22 SUPERSATURADO

Absolute Pressure KPa 1300 1100 1200 1000 Temp (30.26°C) (33.37°C °C (23.42°C (26.95°C) н Н (1.715) (0.0196) (1.711)(0.0180)(415.0) (1.707)(0.0214) (414.3)(0.0236)(412.6)(1.719)(413.5)0.0239 1.724 30 0.0246 418.2 1.738 0.0219 416.2 1.724 1.712 4188 1.725 0.0182 416.5 422.3 1.752 0.0225 420.5 1.738 0.0202 35 0.0253 0.0188 421.1 1.726 0.0260 426.4 1.765 0.0232 424.7 1.751 0.0209422.9 1.739 40 0.0194 425.5 1.740 430.5 1.778 0.0238 428.9 1.765 0.0215 427.2 1.752 45 0.0267 0.0200 1.754 50 0.0273 434.5 1.790 0.0245 433.0 1,777 0.0221 431.4 1.765 429.8 0.0206 1.767 0.0280 438.5 1.802 0.0251 437.1 1.790 0.0226 435 B 1.778 434.1 55 438.3 1.780 0.0211 60 0.0286 442.4 1.814 0.0257 441.1 1.802 0.0232439.71.791 0.0216 1,792 1.803 442.5 0.0292 446.4 1.826 0.0263 445.1 1.814 0.0238 443.8 65 1.804 0.0222 446.6 70 0.0299 450.3 1.838 0.0268 449.1 1,826 0.0243447.9 1.815 1.816 452.0 1.827 0.0227 450.8 75 0.0305 454.3 1.849 0.0274 453,1 1.838 0.0248 0.0232 454.9 1.828 0.0254 1.838 80 0.0311 458.2 1.860 0.0279 457.1 1.849 456.0 1.850 0.0236 459.0 1.840 0.0259 460.0 85 0.0316 482.2 1.871 0.0285 461.1 1.880 0.0241 463.0 1.851 1.861 0.0264 464.1 90 0.0322 466.1 1.882 0.0290 465.1 1.871 0.0248 1.862 95 0.0328 470.1 1.893 0.0296 469.1 1.882 0.0269468.1 1.872 467.1 0.0251 471.2 1.873 1.883 100 0.0334 474.0 1.904 0.0301 473.1 1.893 0.0274 472.1 1.893 0.0255 475.3 1.884 0.0279 105 0.0339 478.0 1.914 0.0306 477.1 1 904 476.2 0.0260 479.3 1.895 0.0284 1.904 480.2 110 0.0345 482.0 1.925 0.0312 481.1 1.914 1.915 0.0264 483.4 1.905 0.0351 485.9 1.935 0.0317 485.1 1.924 0.0288 484.3 115 488.3 1.925 0.0269 487.5 1.916 0.0293 120 0.0356 489.9 1,945 0.0322 489 1 1.935 0.0273 491.6 1.926 492.4 1.935 0.02980.0362 494.0 1.956 0.0327493.2 1.945 125 0.0278 1.936 1.945 495.7 0.0303 498.5 1.955 130 0.0367 498.0 1.966 0.0332 497.2 0.0282 1.946 0.0307 500.6 1.955 499.8 135 0.0373 502.0 1.976 0.0337 501.3 1.965 1.956 504.7 1.965 0.0286 503.9 0.0312 140 0.0378 506.1 1.985 0.0342 505.4 1.975 1.975 0.0291 508.1 1.966 0.0317 508.8 145 0.0384 510.1 1,995 0.0347 509.5 1.985 0.0295 512.2 1.976 0.0321 512.9 1.985 150 0.0389 514.2 2.005 0.0352 513.6 1.995 1.995 0.0299 516.4 1.986 155 0.0394 518.3 2.015 0.0357 517.7 2.004 0.0326 517.0 2.004 0.0304 520.5 1.996 160 0.0400 522.5 2.024 0.0362 521.8 2.014 0.0330 521.2 2.005 0.0308 524.7 0.0335 525.4 2.014 0.0405 526.6 2.034 0.0367 526.0 2.023 165 0.0312 528.9 2.015 2.024 529.5 170 0.0410 530.7 2.043 0.0372 530.1 2.033 0.03390.0316 533.1 2.024 2.033 0.0416 534.9 2.052 0.0377 534.3 2.042 0.0344 533.7

FIGURA 21 – TABELA R-438A SATURADO

Temp	Pressure [kPa]		Volume [m³/kg]		Density [kg/m³]		Enthalpy [kJ/kg]			Entropy [kJ/K-kg]		Temp
°C	Liquid	Vapor	Liquid	Vapor	Liquid	Vapor	Liquid	Latent	Vapor	Liquid	Vapor	°C
	P _t	P _R	V _t	V _p	d,	d _a	H,	H _{′o}	H _p	S,	S _p	
-37	129.664	97.172	0.000728	0.1957	1374.2	5.111	151.4	208.5	359.9	0.810	1.705	-37
-36	135.614	102.013	0.000729	0.1869	1371.1	5.350	152.7	207.8	360.5	0.816	1.704	-36
-35	141.774	107.042	0.000731	0.1786	1367.9	5.599	154.0	207.1	361.1	0.821	1.702	-35
-34	148.152	112.265	0.000733	0.1708	1364.7	5.856	155.2	206.5	361.7	0.826	1.701	-34
-33	154.751	117.686	0.000734	0.1633	1361.5	6.122	156.5	205.8	362.3	0.832	1.700	-33
-32	161.578	123.312	0.000736	0.1563	1358.3	6.398	157.8	205.1	362.9	0.837	1.699	-32
-31	168.636	129.147	0.000738	0.1496	1355.0	6.684	159.1	204.4	363.5	0.842	1.697	-31
-30	175.933	135.197	0.000740	0.1433	1351.8	6.980	160.4	203.7	364.1	0.847	1.696	-30
-29 -28	183.472 191.260	141.467 147.982	0.000742	0.1373 0.1315	1348.5 1345.3	7.286 7.602	161.7 162.9	203.0	364.7 365.3	0.853 0.858	1.695 1.694	-29 -28
-27	199.302	154.689	0.000745	0.1313	1342.0	7.929	164.2	201.7	365.9	0.883	1.693	-27
-26	207.603	161.652	0.000745	0.1201	1338.7	8.268	165.5	201.7	366.5	0.868	1.692	-26
-25	216.169	168.858	0.000747	0.1161	1335.4	8.617	166.8	200.3	367.1	0.874	1.691	-25
-24	225.005	176.312	0.000748	0.1114	1332.1	8.978	168.1	199.6	367.7	0.879	1.690	-24
-23	234.118	184.020	0.000753	0.1069	1328.8	9.351	169.4	198.8	368.3	0.884	1.689	-23
-22	243.512	191.987	0.000754	0.1027	1325.4	9.735	170.7	198.1	368.8	0.889	1.688	-22
-21	253.194	200.220	0.000756	0.1027	1322.1	10.133	172.0	197.4	369.4	0.894	1.687	-21
-20	263.169	208.725	0.000758	0.0949	1318.7	10.543	173.3	198.7	370.0	0.899	1.686	-20
-19	273.444	217.507	0.000760	0.0912	1315.3	10.985	174.6	198.0	370.6	0.905	1.685	-19
-18	284.024	226.573	0.000762	0.0877	1312.0	11.402	175.9	195.2	371.2	0.910	1.684	-18
-17	294.914	235.929	0.000764	0.0844	1308.6	11.851	177.2	194.5	371.7	0.915	1.683	-17
-16	306.122	245.581	0.000766	0.0812	1305.1	12.315	178.6	193.7	372.3	0.920	1.682	-16
-15	317.652	255.535	0.000768	0.0782	1301.7	12.793	179.9	193.0	372.9	0.925	1.681	-15
-14	329.511	265.797	0.000770	0.0753	1298.2	13.286	181.2	192.2	373.5	0.930	1.680	-14
-13	341.705	276.375	0.000772	0.0725	1294.8	13.793	182.5	191.5	374.0	0.935	1.680	-13
-12	354.240	287.273	0.000774	0.0699	1291.3	14.316	183.9	190.7	374.6	0.940	1.679	-12
-11	367.123	298.500	0.000777	0.0673	1287.8	14.854	185.2	190.0	375.1	0.945	1.678	-11
-10	380.358	310.080	0.000779	0.0649	1284.3	15.409	186.5	189.2	375.7	0.950	1.677	-10
-9	393.954	321.982	0.000781	0.0626	1280.7	15.980	187.8	188.4	376.3	0.955	1.676	-9
-8	407.915	334.211	0.000783	0.0604	1277.2	16.567	189.2	187.6	376.8	0.960	1.676	-8
-7	422.249	346.814	0.000785	0.0582	1273.6	17.172	190.5	186.8	377.4	0.965	1.675	-7
-6	436.960	359.777	0.000787	0.0562	1270.0	17.794	191.9	186.1	377.9	0.970	1.674	-6
-5	452.057	373.109	0.000790	0.0542	1266.4	18.434	193.2	185.3	378.5	0.975	1.674	-5
-4	487.545	386.815	0.000792	0.0524	1262.8	19.093	194.6	184.4	379.0	0.980	1.673	-4
-3	483.431	400.903	0.000794	0.0506	1259.2	19.770	195.9	183.6	379.6	0.985	1.672	-3
-2 -1	499.721	415.379 430.250	0.000797	0.0489	1255.5 1251.8	20.466 21.183	197.3 198.6	182.8 182.0	380.1 380.6	0.990	1.672 1.671	-2 -1
-1	516.422 533.541	445.524	0.000799	0.0472	1248.1	21.183	200.0	181.2	381.2	1.000	1.670	-1
1	551.083	461.207	0.000804	0.0441	1244.4	22.676	201.4	180.3	381.7	1.005	1.670	1
2	569.055	477.307	0.000806	0.0426	1240.6	23.454	202.7	179.5	382.2	1.010	1.669	2
3	587.465	493.832	0.000809	0.0412	1236.8	24.253	204.1	178.6	382.7	1.015	1.668	3
4	606.319	510.787	0.000811	0.0399	1233.0	25.075	205.5	177.8	383.3	1.020	1.668	4
5	625.623	528.182	0.000814	0.0386	1229.2	25.919	206.9	176.9	383.8	1.025	1.667	5
6	645.385	546.022	0.000816	0.0373	1225.4	26.787	208.3	176.0	384.3	1.030	1.667	6
7	665.612	564.317	0.000819	0.0361	1221.5	27.678	209.6	175.2	384.8	1.034	1.666	7
8	686.309	583.072	0.000821	0.0350	1217.6	28.594	211.0	174.3	385.3	1.039	1.665	8
9	707.484	602.296	0.000824	0.0339	1213.7	29.534	212.4	173.4	385.8	1.044	1.665	9
10	729.144	621.997	0.000827	0.0328	1209.7	30.501	213.8	172.5	386.3	1.049	1.664	10
11	751.297	642.182	0.000829	0.0318	1205.8	31.493	215.2	171.5	386.8	1.054	1.664	11
12	773.948	662.859	0.000832	0.0308	1201.8	32.512	216.6	170.6	387.3	1.059	1.663	12
13	797.105	684.036			1197.7	33.559	218.1	169.7	387.8	1.064	1.663	13
14	820.775	705.720	0.000838	0.0289	1193.7	34.634	219.5	168.8	388.2	1.069	1.662	14
15	844.965	727.921	0.000841	0.0280	1189.6	35.737	220.9	167.8	388.7	1.074	1.661	15
16	869.682	750.646	0.000844	0.0271	1185.5	36.871	222.3	166.9	389.2	1.078	1.661	16
17	894.934	773.903	0.000847	0.0263	1181.3	38.035	223.7	165.9	389.6	1.083	1.660	17
18	920.728	797.700	0.000850	0.0255	1177.1	39.230	225.2	164.9	390.1	1.088	1.660	18
19	947.070	822.046	0.000853	0.0247	1172.9	40.458	226.6	163.9	390.6	1.093	1.659	19
20	973.989	846.949	0.000856	0.0240	1168.6	41.718	228.1	162.9	391.0	1.098	1.659	20
21	1001.431	872.417	0.000859	0.0232	1164.3	43.012 44.341	229.5 231.0	161.9	391.4	1.103	1.658	21
22	1029.465	898.460	0.000882	0.0226	1160.0			160.9	391.9	1.108	1.658	
23 24	1058.077	925.085 952.303	0.000865	0.0219	1155.6 1151.2	45.706 47.108	232.4	159.9 158.8	392.3 392.7	1.112	1.657 1.657	23
25	1117.065	980.120		0.0212	1146.8	48.548	235.4	157.8	393.2	1.117	1.656	25
20	1117.005	000.120	3.000012	0.0200	1140.6	10.040	200.4	107.0	000.2	1.122	1.000	20

FIGURA 22 – TABELA R-438A SATURADO

Temp	Pressure [kPa]		Volume [m³/kg]		Density [kg/m³]		Enthalpy [kJ/kg]			Entropy [kJ/K-kg]		Temp
°C	Liquid	Vapor	Liquid	Vapor	Liquid	Vapor	Liquid	Latent	Vapor	Liquid	Vapor	∘c ·
	P _r	P _o	v _r	v _o	dr	d _o	Ĥ,	H _b	H _o	s,	S _o	
26	1147.458	1008.547	0.000875	0.0200	1142.3	50.026	236.8	156.7	393.6	1.127	1.656	26
27	1178.458	1037.592	0.000879	0.0194	1137.8	51.545	238.3	155.6	394.0	1.132	1.655	27
28	1210.075	1067.265	0.000882	0.0188	1133.2	53.105	239.8	154.6	394.4	1.137	1.654	28
29	1242.316	1097.575	0.000886	0.0183	1128.6	54.707	241.3	153.5	394.8	1.142	1.654	29
30	1275.189	1128.530	0.000890	0.0177	1123.9	56.354	242.8	152.3	395.2	1.146	1.653	30
31	1308.701	1160.141	0.000893	0.0172	1119.2	58.045	244.3	151.2	395.5	1.151	1.653	31
32	1342.861	1192.418	0.000897	0.0167	1114.5	59.783	245.8	150.1	395.9	1.156	1.652	32
33	1377.676	1225.369	0.000901	0.0162	1109.7	61.570	247.3	148.9	396.3	1.161	1.652	33
34	1413.154	1259.005	0.000905	0.0158	1104.8	63.406	248.9	147.7	396.6	1.166	1.651	34
35	1449.303	1293.336	0.000909	0.0153	1099.9	65.294	250.4	146.6	397.0	1.171	1.650	35
36	1486.131	1328.372	0.000913	0.0149	1094.9	67.234	251.9	145.4	397.3	1.176	1.650	36
37	1523.648	1364.123	0.000918	0.0144	1089.9	69.230	253.5	144.1	397.6	1.181	1.649	37
38 39	1561.859	1400.600	0.000922	0.0140 0.0136	1084.8 1079.7	71.283	255.0 256.6	142.9	397.9	1.185	1.648 1.648	38
40	1600.775 1640.403	1437.813 1475.773	0.000926	0.0136	1079.7	73.394 75.567	258.2	141.6 140.4	398.2 398.5	1.190 1.195	1.648	39 40
41	1680.752	1514.491	0.000931	0.0132	1074.5	77.803	259.8	139.1	398.8	1.195	1.646	41
42	1721.830	1553.979	0.000933	0.0125	1063.9	80.105	261.3	137.8	399.1	1.200	1.646	42
43	1763.646	1594.247	0.000945	0.0123	1058.4	82.475	262.9	136.4	399.4	1.210	1.645	43
44	1806.209	1635.308	0.000950	0.0121	1052.9	84.917	264.5	135.1	399.6	1.215	1.644	44
45	1849.527	1677.173	0.000955	0.0114	1047.4	87.432	266.1	133.7	399.9	1.220	1.643	45
46	1893.609	1719.855	0.000960	0.0111	1041.7	90.024	267.8	132.3	400.1	1.225	1.643	46
47	1938.464	1763.365	0.000965	0.0108	1036.0	92.697	269.4	130.9	400.3	1.230	1.642	47
48	1984.101	1807.718	0.000971	0.0105	1030.2	95.454	271.0	129.5	400.5	1.235	1.641	48
49	2030.530	1852.925	0.000976	0.0102	1024.3	98.299	272.7	128.0	400.7	1.240	1.640	49
50	2077.759	1899.000	0.000982	0.0099	1018.3	101.236	274.4	126.5	400.9	1.245	1.639	50
51	2125.798	1945.957	0.000988	0.0096	1012.1	104.269	276.0	125.0	401.1	1.250	1.638	51
52	2174.657	1993.811	0.000994	0.0093	1005.9	107.402	277.7	123.5	401.2	1.255	1.637	52
53	2224.344	2042.575	0.001000	0.0090	999.6	110.643	279.4	121.9	401.3	1.260	1.636	53
54	2274.871	2092.265	0.001007	0.0088	993.1	113.994	281.1	120.3	401.4	1.265	1.635	54
55	2326.246	2142.897	0.001014	0.0085	986.6	117.464	282.9	118.6	401.5	1.270	1.634	55
56	2378.479	2194.487	0.001021	0.0083	979.9	121.058	284.6	117.0	401.6	1.275	1.633	56
57	2431.581	2247.052	0.001028	0.0080	973.0	124.784	286.4	115.3	401.6	1.280	1.632	57
58	2485.562	2300.609	0.001035	0.0078	966.0	128.649	288.2	113.5	401.7	1.286	1.631	58
59	2540.433	2355.177	0.001043	0.0075	958.9	132.663	289.9	111.7	401.7	1.291	1.630	59 60
60 61	2596.203 2652.883	2410.774 2467.422	0.001051 0.001059	0.0073 0.0071	951.6 944.1	136.835 141.175	291.8 293.6	109.9 108.0	401.7 401.6	1.296 1.301	1.628 1.627	61
62	2710.484	2525.141	0.001039	0.0071	936.4	145.696	295.4	106.0	401.5	1.307	1.625	62
63	2769.016	2583.953	0.001068	0.0069	928.5	150.412	295.4	106.1	401.5	1.307	1.625	63
64	2828.491	2643.884	0.001077	0.0064	920.3	155.337	299.2	102.1	401.4	1.312	1.622	64
65	2888.919	2704.957	0.001007	0.0062	911.9	160.489	301.1	100.0	401.3	1.323	1.621	65
66	2950.311	2767.201	0.001037	0.0060	903.3	165.886	303.1	97.8	400.9	1.329	1.619	66
67	3012.676	2830.645	0.001118	0.0058	894.3	171.553	305.1	95.6	400.6	1.334	1.617	67
68	3076.026	2895.319	0.001130	0.0056	885.1	177.514	307.1	93.3	400.3	1.340	1.615	68
69	3140.370	2961.261	0.001142	0.0054	875.4	183.800	309.1	90.9	400.0	1.346	1.613	69
70	3205.717	3028.507	0.001156	0.0053	865.3	190.446	311.2	88.4	399.6	1.352	1.611	70
71	3272.075	3097.100	0.001170	0.0051	854.8	197.497	313.3	85.8	399.1	1.358	1.608	71
72	3339.451	3167.088	0.001185	0.0049	843.8	205.002	315.5	83.0	398.6	1.364	1.606	72
73	3407.850	3238.526	0.001202	0.0047	832.1	213.025	317.8	80.2	398.0	1.370	1.603	73
74	3477.272	3311.476	0.001220	0.0045	819.8	221.646	320.1	77.2	397.3	1.377	1.600	74
75	3547.715	3386.014	0.001240	0.0043	806.6	230.964	322.5	74.0	396.5	1.383	1.597	75
76	3619.167	3462.230	0.001262	0.0041	792.5	241.110	325.0	70.5	395.5	1.390	1.593	76
77	3691.605	3540.236	0.001287	0.0040	777.2	252.262	327.6	66.8	394.4	1.397	1.589	77
78	3764.988	3620.177	0.001315	0.0038	760.3	264.665	330.4	62.8	393.2	1.405	1.585	78
79	3839.235	3702.251	0.001349	0.0036	741.4	278.686	333.3	58.3	391.7	1.413	1.580	79

FIGURA 23 – TABELA R-438A SUPERSATURADO

ABSOLUTE PRESSURE, kPa												
	1000			1100			1200			1300		
Temp 2	.70		С		29.08	С		32.23	С		35.19	С
°C	V	Н	S	V	Н	S	V	Н	S	V	Н	S
	0.0202	394.6	1.749	0.0182	396.0	1.747	0.0166	397.2	1.746	0.0152	398.2	1.744
30	0.0208	399.3	1.765	0.0184	397.0	1.751	-	-	-	-	-	-
35	0.0215	404.6	1.782	0.0190	402.5	1.769	0.0170	400.3	1.758	-	-	-
40	0.0221	409.8	1.799	0.0197	407.9	1.786	0.0176	405.9	1.774	0.0158	403.8	1.762
45	0.0228	414.9	1.815	0.0203	413.2	1.803	0.0182	411.4	1.791	0.0164	409.5	1.780
50	0.0234	420.0	1.831	0.0209	418.4	1.819	0.0188	416.7	1.808	0.0170	415.0	1.797
55	0.0240	425.1	1.847	0.0214	423.6	1.835	0.0193	422.0	1.824	0.0175	420.4	1.814
60	0.0246	430.2	1.862	0.0220	428.7	1.851	0.0198	427.3	1.840	0.0180	425.8	1.830
65	0.0251	435.2	1.877	0.0225	433.9	1.866	0.0203	432.5	1.856	0.0185	431.1	1.846
70	0.0257	440.3	1.892	0.0231	439.0	1.881	0.0208	437.7	1.871	0.0190	436.4	1.861
75	0.0263	445.3	1.906	0.0236	444.1	1.896	0.0213	442.9	1.886	0.0194	441.6	1.876
80	0.0268	450.3	1.921	0.0241	449.2	1.910	0.0218	448.0	1.900	0.0199	446.9	1.891
85	0.0273	455.4	1.935	0.0246	454.3	1.925	0.0223	453.2	1.915	0.0203	452.1	1.906
90	0.0279	460.5	1.949	0.0251	459.4	1.939	0.0228	458.4	1.929	0.0208	457.3	1.920
95	0.0284	465.6	1.963	0.0256	464.6	1.953	0.0232	463.6	1.943	0.0212	462.5	1.935
100	0.0289	470.7	1.977	0.0260	469.7	1.967	0.0237	468.7	1.957	0.0216	467.8	1.949
105	0.0294	475.8	1.990	0.0265	474.9	1.980	0.0241	473.9	1.971	0.0221	473.0	1.963
110	0.0299	480.9	2.004	0.0270	480.0	1.994	0.0245	479.1	1.985	0.0225	478.3	1.977
115	0.0304	486.1	2.017	0.0275	485.2	2.008	0.0250	484.4	1.999	0.0229	483.5	1.990
120	0.0309	491.3	2.030	0.0279	490.4	2.021	0.0254	489.6	2.012	0.0233	488.8	2.004
125	0.0314	496.5	2.044	0.0284	495.7	2.034	0.0258	494.9	2.025	0.0237	494.1	2.017
130	0.0319	501.7	2.057	0.0288	500.9	2.047	0.0263	500.2	2.039	0.0241	499.4	2.030
135	0.0324	506.9	2.070	0.0293	508.2	2.060	0.0267	505.5	2.052	0.0245	504.7	2.044
140	0.0329	512.2	2.082	0.0297	511.5	2.073	0.0271	510.8	2.065	0.0249	510.1	2.057
145	0.0334	517.5	2.095	0.0302	516.9	2.086	0.0275	516.2	2.077	0.0252	515.5	2.070
150	0.0338	522.9	2.108	0.0306	522.2	2.099	0.0279	521.6	2.090	0.0256	520.9	2.082
155	0.0343	528.2	2.120	0.0310	527.6	2.111	0.0283	527.0	2.103	0.0260	526.3	2.095
160	0.0348	533.6	2.133	0.0315	533.0	2.124	0.0287	532.4	2.116	0.0264	531.8	2.108
165	0.0353	539.1	2.145	0.0319	538.5	2.136	0.0291	537.9	2.128	0.0268	537.2	2.120
170	0.0357	544.5	2.158	0.0323	543.9	2.149	0.0295	543.3	2.141	0.0271	542.7	2.133
175	0.0362	550.0	2.170	0.0328	549.4	2.161	0.0299	548.8	2.153	0.0275	548.3	2.145