## Doses de gesso agrícola na produção do milho segunda-safra

Lucas Iarrocheski Rotta<sup>1\*</sup> e Luiz Antônio Zanão Júnior<sup>1</sup>

<sup>1</sup>Curso de Agronomia, Centro Universitário Fundação Assis Gurgacz, Cascavel, Paraná.

Resumo: O cultivo de milho segunda safra possui enorme importância no cenário econômico nacional, principalmente na região oeste do Paraná onde esse cultivo é amplamente difundido. O objetivo desse trabalho foi avaliar os efeitos do gesso agrícola na produtividade do milho segunda safra. O experimento foi conduzido no Instituto Agronômico do Paraná (IAPAR), em Santa Tereza do Oeste - PR. O delineamento experimental utilizado foi de blocos ao acaso (DBC) com os tratamentos (0, 3, 6, 9 e 12 t ha<sup>-1</sup> de gesso agrícola) e seis repetições, totalizando 30 unidades experimentais. Cada unidade experimental foi constituída de uma parcela de 30 m². O híbrido utilizado no experimento foi o 2B810 PW®, semeado com um espaçamento de 0,5 m. O gesso agrícola foi aplicado em dezembro de 2013, tendo em vista que o seu efeito residual perdura por 5 anos no solo. Foram avaliados teores de nutrientes foliares, massa de mil grãos e produtividade da cultura. Os dados foram submetidos a analise de variância e os efeitos das doses do gesso agrícola avaliados por análise de regressão com auxílio do pacote estatístico ASSISTAT. As diferentes doses de gesso agrícola influenciaram significativamente na produtividade e massa de mil grãos do milho, porém não alterou a absorção de nutrientes da cultura.

Palavra-chave: Zea mays, adubação, produtividade.

# Doses of agricultural gypsum in the production of second-crop maize

Abstract: The cultivation of second crop maize is extremely important in the national economic scenario, especially in the western region of Paraná where this crop is widespread. The objective of this work was to evaluate the effects of the agricultural gypsum on the yield of second crop maize. The experiment was conducted at the Agronomic Institute of Paraná (IAPAR), in Santa Tereza do Oeste - PR. The experimental design was a randomized complete block (DBC) with treatments (0, 3, 6, 9 and 12 t ha<sup>-1</sup> of gypsum) with six replicates, totaling 30 experimental units. Each experimental unit consisted of a plot of 30 m<sup>2</sup>. The hybrid used in the experiment was the 2B810 PW<sup>®</sup>, seeded with a spacing of 0.5 m. The agricultural gypsum was applied in December of 2013, considering that its residual effect lasts for 5 years in the soil. Leaf nutrient contents, one thousand grain mass and crop productivity were evaluated. The data were submitted to analysis of variance and the effects of the gypsum doses evaluated by regression analysis with the aid of the statistical package ASSISTAT. The different doses of gypsum influenced significantly the productivity and mass of corn without grains, but did not alter the nutrient absorption of the crop.

Key words: Zea mays, fertilization, yield.

<sup>1\*</sup>lucas\_iarrocheski@hotmail.com

## Introdução

A cultura do milho (*Zea Mays* L.) no Brasil possui grande importância econômica. Segundo a CONAB (2018), para o cultivo de milho de segunda safra se estima uma área de 11.389,3 mil hectares na safra de 2018. O estado do Paraná possui participação desse cenário com uma área de aproximadamente 2.409,3 mil hectares e uma produtividade média em torno de 5456 kg ha<sup>-1</sup> (CONAB, 2017).

O milho possui a característica de apresentar grandes respostas em relação à correção de solo e adubação, entretanto, o cultivo realizado na segunda safra entre os meses de fevereiro a março apresentam riscos para os produtores tais como déficit hídrico e geadas (BROCH; RANNO, 2009).

A maioria dos solos da região Oeste do Paraná são classificados como Latossolos. Encontram-se em um avançado estágio de intemperismo, são solos profundos e com alto teor de argila. Na sua grande maioria possuem baixo teor de nutrientes, uma baixa saturação por bases baixa e elevada acidez ao longo do seu perfil (ZANÃO JÚNIOR, 2014). Tais fatores prejudicam o desenvolvimento radicular da cultura, limitando sua capacidade em buscar água e nutrientes em profundidade, podendo agravar os problemas relacionados ao déficit hídrico.

Existe uma grande necessidade de melhorar as condições químicas do solo ao longo do seu perfil com relação à acidez e a presença de alumino trocável. Esses fatores são limitantes para o desenvolvimento das culturas (GUEDES JÚNIOR, 2017). principalmente em segunda safra de milho em que as condições climáticas não são as mais favoráveis para as plantas.

A alternativa de manejo que vem mostrando os melhores resultados para a correção do alumino tóxico na sub superfície do solo é a utilização do gesso agrícola (CAIRES *et al.*, 2003; ARAUJO, 2015).

O gesso agrícola é classificado como um condicionador, quando entra em contato com a umidade no solo apresenta alta mobilidade, chegando até nas camadas sub superficiais, onde possui a capacidade de se ligar com o alumínio trocável, e então neutraliza-lo, além de fornecer cálcio e enxofre em profundidade propiciando um ambiente favorável para um bom desenvolvimento radicular das culturas (CAIRES *et al.*, 2003).

As respostas da aplicação de gesso agrícola na produtividade do milho podem ser variáveis segundo condições climáticas, textura de solo e condições químicas do solo, segundo Amaral *et al.* (2017). Caires *et al.* (2004), em um experimento instalado em um Latossolo Vermelho distroférrico de textura média verificou máxima produtividade da cultura do milho com uma dose de 9 t ha<sup>-1</sup> de gesso. Amaral *et al.* (2017), nessa mesma classe de

solo, verificaram que a máxima produtividade foi obtida com a dose de 4 t ha<sup>-1</sup>. Zandoná (2015) obteve um aumento de 9,3 % na produtividade do milho, em relação à testemunha, com uma dose de 2 t ha<sup>-1</sup> de gesso agrícola.

É pertinente a realização de novos trabalhos nesse sentido para melhor compreender o efeito do gesso. Então o objetivo desse trabalho é avaliar o efeito do gesso agrícola em um cultivo de milho de segunda safra em um Latossolo Vermelho Distroférrico na região oeste do Paraná.

#### **Material e Métodos**

O experimento foi conduzido na safra de 2018 na Estação Experimental do Instituto Agronômico do Paraná (IAPAR) em Santa Tereza do Oeste, PR. As coordenadas geográficas do local são 25° 5' 44,61" S e 53° 35' 33,31" W, com altitude de 800 m.

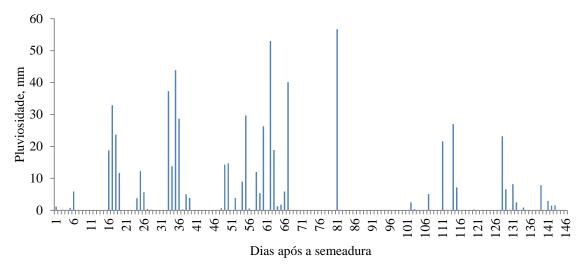
O clima da região, segundo a classificação de Koppen, é Cfa, subtropical úmido, com temperaturas médias anuais variando entre 20 e 21 °C e precipitações totais entre 1800 e 2000 mm, bem distribuídos durante o ano e com verões quentes (CAVIGLIONE *et al.*, 2000).

O solo é classificado como Latossolo Vermelho Distroférrico típico, textura muito argilosa, fase floresta subtropical perenifólia e relevo suave ondulado.

Em dezembro de 2013 foi realizada a coleta de amostras solo em todas as parcelas experimentais, em cinco profundidades: 0-10; 10-20; 20-40; 40-60 e 60-80 cm, para quantificar atributos químicos de solo antes da aplicação de gesso agrícola. Para a coleta das amostras de solo utilizou-se trado holandês. Foram coletadas cinco subamostras em cada parcela, para formar uma amostra composta, para cada profundidade. Os resultados das análises químicas são apresentados na Tabela 1.

**Tabela 1**. Análise química do solo utilizado, em diferentes profundidades. IAPAR, Santa Tereza do Oeste, PR. 2013.

| _ | Prof  | pН                   | С                  | K    | Ca   | Mg                    | Al              | H+Al  | V  | m  | P                   |
|---|-------|----------------------|--------------------|------|------|-----------------------|-----------------|-------|----|----|---------------------|
|   | Cm    | (CaCl <sub>2</sub> ) | g dm <sup>-3</sup> |      |      | - cmol <sub>c</sub> d | m <sup>-3</sup> |       | (  | %  | mg dm <sup>-3</sup> |
|   | 0-10  | 4,59                 | 30,23              | 0,62 | 4,99 | 2,82                  | 0,50            | 9,14  | 47 | 2  | 12,52               |
|   | 10-20 | 4,32                 | 28,12              | 0,41 | 3,60 | 2,31                  | 0,73            | 11,21 | 36 | 12 | 9,80                |
|   | 20-40 | 4,17                 | 23,71              | 0,29 | 2,70 | 1,67                  | 1,01            | 11,63 | 29 | 19 | 3,50                |
|   | 40-60 | 4,17                 | 15,40              | 0,19 | 2,12 | 1,27                  | 0,91            | 10,27 | 26 | 20 | 1,24                |
|   | 60-80 | 4,42                 | 11,79              | 0,13 | 2,27 | 1,60                  | 0,36            | 7,96  | 34 | 9  | 0,72                |


Extrator: P e K (HCl 0,05 mol  $L^{-1} + H_2SO_4$  mol  $L^{-1}$ ); Al, Ca, Mg = (KCl 1 mol  $L^{-1}$ ).

O delineamento experimental adotado foi o de blocos ao acaso, com seis repetições, totalizando 30 unidades experimentais. Cada unidade experimental será constituída de uma parcela de 30 m².

Os tratamentos avaliados foram cinco doses de gesso agrícola (0, 3, 6, 9 e 12 t ha<sup>-1</sup>). As doses de gesso agrícola foram baseadas na dose recomendada oficialmente. A literatura recomenda a aplicação de gesso 50 kg de gesso agrícola para cada 1 % de argila do solo. Nesse caso a dose recomendada foi de 3 t ha<sup>-1</sup> de gesso agrícola. A partir desse resultado definiram-se as seguintes doses de gesso: zero, uma vez, duas vezes, três vezes e quatro vezes a dose recomendada.

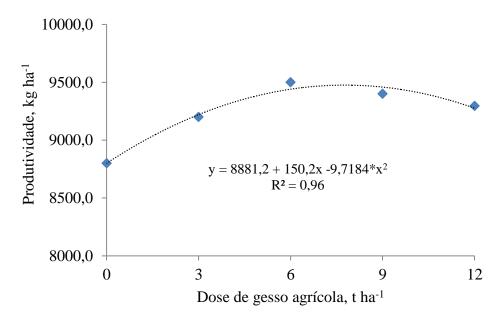
As doses de gesso agrícola foram aplicadas manualmente a lanço, em suas respectivas parcelas, em dezembro de 2013. Esse experimento foi conduzido por pelo menos cinco anos. Já foram cultivados, no experimento: milho segunda safra, feijão, soja, milho segunda safra, feijão, aveia-preta, soja, feijão, aveia preta, feijão e no momento milho segunda safra.

Na semeadura, em todas as parcelas foram aplicados 320 kg ha<sup>-1</sup> do fertilizante 10-15-15. A implantação do milho foi efetuada no dia 3 de fevereiro de 2018, após a colheita do feijoeiro. No dia da semeadura foi realizado o tratamento de sementes do material com fungicida e inseticida. O hibrido utilizado foi o 2B810 PW<sup>®</sup>. A semeadura foi realizada com semeadora comercial de 9 linhas com espaçamento entre linhas de 50 cm. Os tratos culturais posteriores a semeadura, como controle de plantas invasoras, pragas e doenças, foram realizados de acordo com as necessidades das mesmas, utilizando defensivos indicados para a cultura. Os dados relativos à precipitação pluviométrica durante à condução do experimento encontram-se na Figura 1.



**Figura 1**. Precipitação pluviométrica durante o período de condução do experimento, da semeadura (25/01/2018) à colheita (19/06/2018).

A adubação de cobertura foi realizada manualmente quando as plantas se encontravam entre o estágio V3 e V4, utilizando-se a ureia (45 % de N) como fonte para o fornecimento de 50 kg ha<sup>-1</sup> de N.


A colheita foi realizada de forma manual. As espigas foram trilhadas e os grãos colhidos na área útil das parcelas, depois a produtividade foi corrigida para 13 % de umidade.

Também foi avaliado a massa de mil grãos, determinada em balança de precisão de 0,01 g, com teor de água dos grãos corrigido para 13 % (base úmida), sendo realizadas em cinco repetições por unidade experimental.

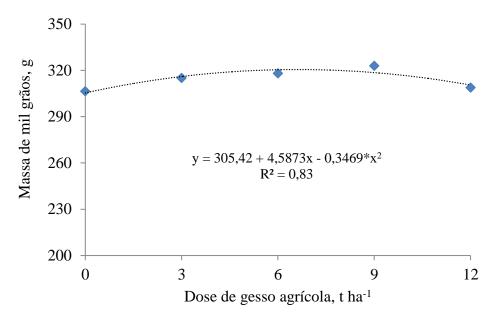
Os dados foram submetidos à análise de variância (ANOVA). O efeito das doses de gesso agrícola, por análise de regressão. As análises estatísticas foram realizadas utilizando o programa Assistat (SILVA; AZEVEDO, 2016).

### Resultados e Discussão

A produtividade da cultura do milho segunda safra foi influenciada significativamente em função das doses de gesso agrícola aplicadas (Figura 2).



**Figura 2.** Produtividade do milho em função da aplicação de doses de gesso agrícola. Santa Tereza do Oeste, PR, 2018. \* = significativo a 5 % de probabilidade pelo teste de t.


Ocorreu aumento quadrático da produtividade conforme aumento das doses de gesso, onde que a produtividade máxima da cultura foi de 9461,5 kg ha<sup>-1</sup>, com a aplicação de 7,72 t ha<sup>-1</sup> do condicionador, a partir desse ponto ocorreu decréscimo da produtividade da cultura.

Tal resposta positiva pode estar relacionada com um período de déficit hídrico, não ocorreu pluviosidade durante 30 dias, iniciando no final do florescimento e persistindo por parte da fase de granação da cultura, conforme Figura 1.

Resultado semelhante foi encontrado por Amaral (2017), onde o mesmo obteve a máxima produtividade da cultura milho de segunda-safra com uma dose de 4 t ha<sup>-1</sup> em um latossolo vermelho distroférico de textura muito argilosa.

Em outro experimento conduzido pra se avaliar o efeito do gesso agrícola sobre a cultura do milho e da soja, Zandona (2015), obteve aumento de 9,3% na produtividade do milho com a aplicação de 2 t ha<sup>-1</sup> de gesso agrícola, onde a resposta pode estar associada com a melhoria da fertilidade em profundidade do solo, após a aplicação do produto. Já na cultura da soja a aplicação do condicionador resultou em um aumento de 0,3 t ha<sup>-1</sup>, resultado positivo que pode estar associado a um período de déficit hídrico que ocorreu no florescimento da cultura, tendo em vista que o gesso melhora o ambiente subsuperficial do solo para o desenvolvimento radicular das culturas, reduzindo a atividade do Al<sup>3+</sup> e fornecendo Ca<sup>2+</sup> em profundidade, aumentando a capacidade das plantas em buscar água e nutrientes em profundidade, principalmente em pequenos períodos de estiagem.

A massa de mil grãos também foi influenciada significativamente com as diferentes doses de gesso agrícola (Figura 3).



**Figura 3.** Massa de mil grãos do milho em função da aplicação de doses de gesso agrícola. Santa Tereza do Oeste, PR, 2018. \* = não-significativo a 5 % de probabilidade pelo teste de t.

Ocorreu aumento gradativo no peso de mil grãos da cultura, conforme se aumentou as doses do gesso agrícola, onde que o valor máximo obtido foi de 301,46 g, com a dose de 6,67

t ha<sup>-1</sup>, onde que a partir desse ponto ocorreu decréscimo na massa de mil grãos, resultado positivo que pode estar relacionado com um veranico que ocorreu no período de granação da cultura, onde que o gesso propicia um melhor desenvolvimento radicular da cultura e consequentemente proporcionando uma maior absorção de água e nutrientes em profundidade, resultando em um maior peso de grãos nas doses adequadas do produto.

No entanto, em trabalho realizado com milho de segunda safra, Amorin *et al* (2017) não constataram diferenças significativas na massa de mil grãos da cultura, resultado possivelmente relacionado com a intensa precipitação que ocorreu durante o desenvolvimento da cultura, não ocorrendo limitação do crescimento radicular.

Os teores foliares de N, P e K não foram influenciados significativamente com as diferentes doses de gesso agrícola (Tabela 2). Resultados semelhantes foram encontrados por Maluf *et al* (2010), que também não observaram diferença significativa na absorção de N e P na cultura do milho, com a aplicação de diferentes doses de gesso variando de 2 a 8 t ha<sup>-1</sup>.

Tabela 2 - Teores de N, P e K em folhas de milho em função da aplicação de gesso agrícola.

| Dose de gesso agrícola   | N                  | P                  | K           |
|--------------------------|--------------------|--------------------|-------------|
| t ha <sup>-1</sup>       |                    | g kg <sup>-1</sup> |             |
| 0                        | 30,90              | 3,10               | 22,00       |
| 3                        | 31,50              | 3,20               | 21,80       |
| 6                        | 30,50              | 3,20               | 21,40       |
| 9                        | 31,80              | 3,10               | 22,00       |
| 12                       | 31,50              | 3,20               | 22,10       |
| Média                    | 31,24              | 3,16               | 21,86       |
| Teste F                  | $0.55^{\text{ns}}$ | $0,63^{ns}$        | $0,53^{ns}$ |
| CV%                      | 4,5                | 5,6                | 4,2         |
| Faixa adequada* (g kg-1) | 27 a 35            | 1,9 a 4            | 17 a 35     |

ns = não-significativo a 5 % de probabilidade pelo teste F. \* Faixa de teores foliares adequados para o milho, segundo Manual de adubação e calagem para o estado do Paraná. (2017).

Ressalta-se que os teores de N, P e K encontrados no trabalho estão adequados para a cultura do milho de acordo com o manual de adubação e calagem para o estado do Paraná (2017).

## Conclusões

A aplicação das diferentes doses de gesso agrícola influenciou significativamente a produtividade do milho de segunda-safra, sendo que a dose de 7,72 t ha<sup>1</sup> foi a que apresentou a produtividade máxima da cultura.

A massa de mil grãos também foi influenciada pela doses do condicionador, onde que a dose de 6,67 t ha<sup>1,</sup> foi a que proporcionou o maior peso de mil grãos da cultura.

A absorção dos nutrientes P, K e N não foram influenciadas pelas doses de gesso agrícola.

### Referências

- AMARAL, L. A.; ASCARI, J. P.; DUARTE, W. M.; MENDES, I. R. N.; SANTOS, E. S.; JULIO, O. L. L. Efeito de doses de gesso agrícola na cultura do milho e alterações químicas no solo. **Agrarian**, v. 10, n. 35, p 31-41, 2017.
- AMORIN, V. A.; MACHADO, R. A. F.; FIORINI, I. V. A.; JOANELLA, G. K.; PEREIRA, C. S. Componente de produção do milho safrinha em função de doses de gesso agrícola. In: **XIV Seminário nacional de milho safrinha**, Cuiaba, MT. Disponível: <a href="http://snms2017.fundacaomt.com.br/assets/trabalhos/201711/1511726030326361.pdf">http://snms2017.fundacaomt.com.br/assets/trabalhos/201711/1511726030326361.pdf</a>. Acesso em 02/09/2018.
- ARAÚJO, L. G. Uso do gesso e sua influência na produção de cana-de-açúcar, atributos químicos e estoque de carbono no solo de Cerrado. 2015. 87 f. Dissertação (Mestrado em Agronomia) Universidade de Brasília, Brasília, 2015.
- BROCH, D. L.; RANNO, S. K. **Fertilidade do solo, adubação e nutrição da cultura do milho safrinha**. Tecnologia e Produção: Milho safrinha e Culturas de Inverno. Curitiba: MIDIOGRAF, 2009.
- CAIRES, E. F.; BLUM, J.; BARTH, G.; GARBUIO, F. J.; KUSMAN, M. T. Alterações químicas do solo e resposta da soja ao calcário e gesso aplicados na implantação do sistema de plantio direto. **Revista Brasileira de Ciência Solo**, v. 27, n. 2, p. 275-286, 2003.
- CAIRES, E. F.; KUSMAN, M. T.; BARTH, G.; GARBUIO, F. J.; PADILHA, J. M. Alterações químicas do solo e resposta do milho à calagem e aplicação de gesso. **Revista Brasileira de Ciência do Solo**, v. 28, n. 1, p. 125-136, 2004.
- CAVIGLIONE, J. H.; KIIHL, L. R. B.; CARAMORI, P. H.; OLIVEIRA, D.; GALDINO, J.; BORROZINO, E.; GIACOMINII, C. C.; SONOMURA, M. G. Y.; PUGSLEY, L. Cartas Climáticas do Estado do Paraná [CD-ROM]. Londrina: Instituto Agronômico do Paraná; 2000.
- CONAB. Companhia Nacional de Abastecimento. **Acompanhamento da safra brasileira de grãos**: Sétimo levantamento, Safra 2017/2018. Brasília, v. 5, n. 7, p. 82-100, 2018.
- CONAB. Companhia Nacional de Abastecimento. **Acompanhamento da safra brasileira de grão**s: Sétimo levantamento, Safra 2017/2018. Brasília, v. 5, n. 3, p. 83-94, 2017.
- GUEDES JUNIOR, F. D. A. **Gesso agrícola**: Efeito no crescimento radicular e produtividade de grãos da soja. 2017. 73 p. Dissertação (Mestrado em Energia na agricultura) Universidade Estadual do Oeste do Paraná, Cascavel, 2017.
- MALUF, H. J. G., RAMALHO, J. R. C.; COSTA, S. G.; SILVA, J. C. O.; PINTO, S. I. C. Efeito de doses de gesso agrícola na absorção de nutrientes na cultura do milho (*Zea mays L.*). III Semana de Ciência e Tecnologia IFMG Campus Bambuí. III Jornada Científica. 19 a 23 de Outubro de 2010. Bambuí MG Brasil.
- SBCS/NEPAR, Sociedade Brasileira de Ciências do Solo. Núcleo do Paraná. **Manual de adubação e calagem para o estado do Paraná**. 1. Ed. Curitiba, Paraná, 2017. 482 p.

SILVA, F. A. S.; AZEVEDO, C. A. V. The Assistat Software Version 7.7 and its use in the analysis of experimental data. **African Journal of Agricultural Research**, v. 11, n. 39, p. 3733-3740, 2016.

ZANÃO JÚNIOR, L. A. Classificação do solo das áreas experimentais do projeto transectos segundo o sistema brasileiro de classificação de solos. 1. ed. Cascavel, Paraná, 2014. 647p.

ZANDONÁ, R. R.; BEUTLER, A. N.; BURG, G. M.; BARRETO, C. F.; SCHIMIDT, M. R. Gesso e calcário aumentam a produtividade e amenizam o efeito de déficit hídrico em milho e soja. **Pesquisa agropecuária tropical**, v. 45, n. 2, p 128-137, 2015.