QUALIDADE DE CAPSULAS DE FLUCONAZOL 150 MG MANIPULADAS NA

CIDADE DE CASCAVEL-PR.

Bruno Augusto de Souza¹, Elen Juchem¹, Thayna Oliveira¹, Giovane Douglas Zanin²

¹ Acadêmicos de Farmácia do Centro Universitário da Fundação Assis Gurgacz.

² Coordenador adjunto do curso de Farmácia do Centro Universitário da Fundação Assis Gurgacz.

Resumo: Fluconazol é um medicamento antifúngico da classe dos triazólicos, que

devido seu amplo espectro de ação é muito utilizado em diversas infecções fúngicas.

Atua sobre a membrana fúngica, resultando na perda de sua integridade. O objetivo deste estudo foi à realização de análise que envolve o controle de qualidade de amostra de fluconazol 150mg magistrais e industriais, utilizando a metodologia de doseamento preconizada pela Farmacopeia Brasileira, V edição de 2010. Foram analisadas três amostras de fluconazol 150mg, duas magistrais e uma industrial, e posteriormente identificadas com letras A à C. Foram realizadas análises em triplicata de peso médio, uniformidade de doses, desintegração e o doseamento espectrofotométrico. Onde foram aprovadas todas das amostras referente ao peso médio. Na determinação do teor nas cápsulas de fluconazol foram obtidos 100% de aprovação. Na uniformidade de doses 100% das amostras estão dentro dos valores

de aceitação. E na análise de desintegração, todas as amostras obtiveram tempo

inferior a 30 minutos, sendo assim, aprovadas. Os resultados obtidos demonstram

necessidade de investimento em Boas Práticas de Fabricação, para garantir aos

pacientes tratamentos eficazes e sem riscos. Além de mostrar a importância da

fiscalização por parte dos órgãos competentes garantindo assim qualidade, segurança

e eficácia dos medicamentos.

Palavras-Chave: Antifúngico. Controle de Qualidade. Doseamento. Fluconazol.

Farmácia de manipulação. Industrial.

Introdução

O controle de qualidade sempre esteve presente na indústria farmacêutica, visto alto padrão de qualidade que os produtos farmacêuticos devem possuir (WATSON, 2005). O controle de qualidade é imprescindível no processo de manufatura de medicamentos independente da escala de produção (DE MARIA; SANTINHO, 2008) Considerando que a qualidade na área da saúde deve ser requisito obrigatório por não se tratar somente de práticas comerciais, mas também de questões como ética, moral e legislação, a realização de testes comparando parâmetros, sejam eles físicos, químicos ou microbiológicos tem sido de grande relevância e utilidade (GIL, 2007)

O fluconazol apresenta-se como um pó branco cristalino, levemente solúvel em água e solúvel em etanol (MCEVOY, 2003). Pode ser administrado oralmente ou intravenosamente. Ele é quase completamente absorvido no trato gastrointestinal. As concentrações plasmáticas são essencialmente idênticas, seja o fármaco administrado por via oral ou intravenosa e a biodisponibilidade não é alterada por alimentos ou pela acidez gástrica. Os máximos de concentração plasmática após doses repetidas de 100 mg são de 4 a 8 µg/mL e são alcançados dentro de 1 a 2 horas após administração oral. A excreção renal é responsável por mais de 90% da eliminação, sendo que um percentual de 80% é eliminado inalterado na urina e o restante na forma de metabólitos. A meia-vida de eliminação é de 25 a 30 horas. A ligação às proteínas plasmáticas é baixa, de 11 a 12%. O fluconazol difunde-se rapidamente para os líquidos corporais, inclusive para o escarro e saliva. As concentrações no líquido cefalorraquidiano correspondem a 50 a 90% dos valores plasmáticos simultâneos, mesmo na ausência de meningites (ZERVOS & MEUNIER, 1993; BENNET, 1996).

A maior parte dos efeitos adversos observados com o fluconazol afeta o trato gastrointestinal. Podem ser observados náuseas e vômitos com doses superiores a 200 mg diários. Pacientes que recebem 800 mg diariamente requerem o uso de antieméticos que reduzem a biodisponibilidade do fármaco (BENNET, 1996) Ocasionalmente, é observada alopécia, principalmente em tratamentos prolongados com 400 mg diários de fluconazol (WEINROTH & TUAZON, 1993; PAPPAS et al., 1995). Foram relatados raros casos de óbito por insuficiência hepática (JACOBSON

et al., 1994) e por síndrome de Stevens Johnson, uma síndrome esfoliativa da pele (ZERVOS & MEUNIER, 1993). Em alguns pacientes, particularmente aqueles com enfermidades de base graves, tais como AIDS e câncer, foram observadas alterações nos resultados dos testes das funções hematológica e renal e, também, anormalidades hepáticas durante o tratamento com fluconazol (MUÑOZ, et al., 1991; WELLS & LEVER, 1992; COLLAZOS et al., 1994).

Na década de 1990, o fluconazol foi largamente utilizado no tratamento de todas as formas de candidíases, tornando-se o fármaco de primeira escolha no tratamento de pacientes HIV-positivos e HIV-negativos (PONS et al., 1997; LAINE et al., 1992). Entretanto, algumas limitações na terapia com fluconazol começaram a surgir, particularmente em pacientes com candidíases orofaríngeas nos quais embora houvesse a resolução de todos os sintomas, os microrganismos não eram completamente erradicados e a mucosa permanecia colonizada. Esforços foram feitos através de terapia de manutenção prolongada do fármaco, usando-se esquemas profiláticos de fluconazol na tentativa de prevenir doenças recorrentes (STEVENS et al., 1991).

Muitos esquemas terapêuticos basearam-se no uso de doses mínimas efetivas, de 50 mg de fluconazol administrados diariamente. Dentro de um curto período de tempo, surgiram casos de resistência ao fluconazol e candidíases mucosas refratárias, predominantemente orofaríngea e esofagiana (REX et al., 1995; MARTINS et al., 1997; MAENZA et al., 1997; FICHTENBAUM et al., 2000).

O controle de qualidade de produtos acabados da forma farmacêutica cápsula, tanto no processo industrial quanto magistral, é realizado em várias etapas, que incluem: aquisição da matéria prima e excipientes, pesagem, mistura e homogeneização, encapsulação e rotulagem. Nesse processo muitos erros podem ocorrer e o objetivo principal é que o profissional farmacêutico tente minimizar ao máximo essa possibilidade de erro (GIANOTTO et al., 2008). Um vez que no setor de manipulação nem toda a metodologia de produção é padronizada, a preocupação com a qualidade de medicamentos manipulados fez despertar a importância de um controle mais eficaz no desenvolvimento de formulações magistrais, buscando garantir as boas práticas de fabricação no processo (PRADO et al., 2006)

Objetivo

Analisar o teor de fluconazol em cápsulas industrial e magistrais de duas farmácias localizadas em Cascavel-PR. Com intuito de avaliar a qualidade do produto e compará-los.

Metodologia

O presente trabalho utilizou abordagem quantitativa em sua realização. Foram analisadas cápsulas de Fluconazol com 150mg da substância ativa, as amostras foram adquiridas em duas farmácias de manipulação e uma farmácia comercial na cidade de Cascavel-PR.

As amostras foram identificadas como A – medicamento industrial; B e C medicamento manipulado.

 Peso Médio: A determinação de peso médio nas amostras de Fluconazol cápsulas contendo 150mg de substância ativa, foram realizadas em balança analítica, através da pesagem de 10 cápsulas. Em seguida o valor da pesagem foi dividida pelo número de cápsulas utilizadas, encontrando assim o peso médio.

Equação:

Peso médio = peso cáps/ nº caps

- Desintegração: Foram analisadas 6 amostras de cada farmácia em equipamento de desintegração. Foi colocado um comprimido em cada um dos seis tubos da cesta, foi adicionado um disco a cada tudo e acionado o aparelho, utilizando água mantida a 37 °C como liquido de imersão.
- Uniformidade de doses: Foi pesado exatamente e individualmente, 10 cápsulas de fluconazol 150 mg de cada farmácia, As cápsulas foram abertas para retirado e pesagem do conteúdo. O involucro foi lavado e deixado por 30

minutos a temperatura ambiente, para evaporação completa do solvente, As cápsulas vazias foram pesadas e o peso do conteúdo de cada cápsula foi calculado, Estimando a quantidade de componente ativo em cada uma a partir do resultado do doseamento e do peso do conteúdo de cada cápsula.

Doseamento: Pesaram-se 20 cápsulas de cada farmácia em balança analítica. Assim, transferiu-se quantidade do pó de cada farmácia equivalente a 0,1 g de fluconazol para balão volumétrico de 100 mL. Adicionaram-se em seguida 70 mL de ácido clorídrico 0,1 M. As soluções foram homogeneizadas. Completou-se o volume do balão com ácido clorídrico 0,1 M seguido de homogeneização e filtragem da mistura. Foi feita diluição do filtrado com ácido clorídrico 0,1 M, até concentração de 0,02 % (p/v). Uma solução padrão foi preparada nas mesmas condições da amostra.

Para determinar a concentração de fluconazol nas cápsulas, procedeu-se as leituras das absorbâncias das soluções padrão e amostras a 261 nm, utilizando-se aparelho espectrofotômetro. Foi calculado em porcentagem o teor de ativo presente nas cápsulas através dos valores das absorbâncias obtidas em relação ao padrão.

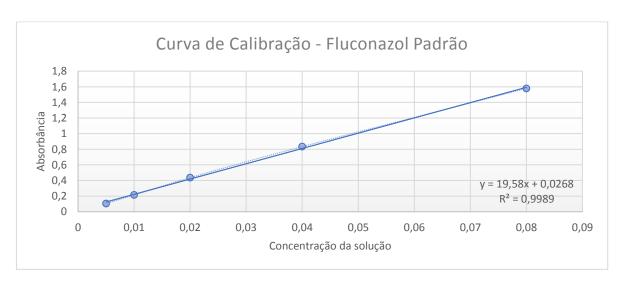
Equação:

$$y = 0.0012x - 0.0073$$

Resultados e Discussões

Peso médio:

Forma farmacêutica	Peso médio	Limite de variação
Cápsulas duras e moles, cápsulas vaginais	menos que 300 mg	± 10,0%
capsulas vagiliais	300 mg ou mais	± 7,5%


Cápsulas	A - mg	B - mg	C - mg
1	540,3	299,9	394,6
2	535,1	300,3	345,7
3	511,3	301,8	352
4	523,5	297,2	336,1
5	525,2	297,8	362,7
6	531,5	299,8	390,4
7	511,1	294,6	408,8
8	510	300,4	367,2
9	541,4	300,8	367,8
10	509,1	302	369,1
Peso médio	523,85	299,46	369,44
Limite de variação +/-	39,28875	29,946	27,708

As amostras A e B todas as cápsulas possuem peso uniforme e dentro do valor de aceitação. Para as amostras C temos duas cápsulas com valor fora da faixa aceitável, mas ainda é aprovada.

Desintegração:

Segundo a Farmacopeia Brasileira 5ª edição as cápsulas precisam desintegrar em até 30 minutos. A amostra A possui tempo de desintegração de 39.30 segundos. As amostras B e C desintegraram no tempo de 1:26.23 minutos, sendo assim, todas as amostras estão aprovadas.

Doseamento

Amostras	Absorbância	Concentração da Solução	Concentração de Fluconazol
A	0,417	0,0199	99,50%
В	0,399	0,019	95%
С	0,389	0,0925	92,50%

A Farmacopeia Brasileira 5ª edição determina que o fluconazol esteja com concentrações mínimas de 90% e no máximo 110% para cápsulas, sendo assim, todas as amostras estão dentro das concentrações determinadas, estão aprovadas.

• Uniformidade de doses

Cáps A	pó - mg	p.a. %	peso médio	X 1	(xi-xm)	(xi-xm)²
1	442,3	99,5	420,13	104,7505534	22,17	491,5089
2	429,2	99,5	420,13	101,6480613	9,07	82,2649
3	407,3	99,5	420,13	96,46145241	-12,83	164,6089
4	418,7	99,5	420,13	99,16133102	-1,43	2,0449
5	425,5	99,5	420,13	100,7717849	5,37	28,8369
6	424,5	99,5	420,13	100,5349535	4,37	19,0969
7	407	99,5	420,13	96,39040297	-13,13	172,3969
8	403,9	99,5	420,13	95,65622545	-16,23	263,4129
9	406,4	99,5	420,13	96,2483041	-13,73	188,5129
10	436,5	99,5	420,13	103,3769309	16,37	267,9769
Média				99,5	Σ	1680,661

DP	CV	Valor aceitável
S=√∑(xi-xm)2/n-1	CV=S/m	VA= ks
S=V1680,661/9	CV= 4,5551/99,5	VA= 2,4*4,5551
S= 4,5551	CV= 0,0458	VA= 10,9322

Cáps B	pó -mg	p.a. %	peso médio	X1	(xi-xm)	(xi-xm)²
1	238,6	95	237,44	95,46411725	1,16	1,3456
2	237	95	237,44	94,82395553	-0,44	0,1936
3	239,8	95	237,44	95,94423854	2,36	5,5696
4	234,9	95	237,44	93,98374326	-2,54	6,4516
5	236	95	237,44	94,42385445	-1,44	2,0736
6	240,5	95	237,44	96,2243093	3,06	9,3636
7	231,4	95	237,44	92,58338949	-6,04	36,4816
8	237,4	95	237,44	94,98399596	-0,04	0,0016
9	239,2	95	237,44	95,7041779	1,76	3,0976
10	239,6	95	237,44	95,86421833	2,16	4,6656
Média				95	Σ	69,244

DP	CV	Valor aceitável
S=√∑(xi-xm)2/n-1	CV=S/m	VA= ks
S= √69,244/9	CV=0,9642/95	VA= 2,4*0,9246
S= 0,9246	CV=0,0101	VA= 2,219

Cáps C	pó - mg	p.a. %	peso médo	X1	(xi-xm)	(xi-xm)²
1	315,1	92,5	289,94	100,5268331	25,16	633,0256
2	263,6	92,5	289,94	84,09670966	-26,34	693,7956
3	274,3	92,5	289,94	87,51034697	-15,64	244,6096
4	260,7	92,5	289,94	83,17151825	-29,24	854,9776
5	279,6	92,5	289,94	89,20121404	-10,34	106,9156
6	311,8	92,5	289,94	99,47402911	21,86	477,8596
7	332,8	92,5	289,94	106,1736911	42,86	1836,98
8	287	92,5	289,94	91,56204732	-2,94	8,6436
9	287,7	92,5	289,94	91,78536939	-2,24	5,0176
10	286,8	92,5	289,94	91,49824102	-3,14	9,8596
Média				92,5	Σ	4871,684

DP	cv	Valor aceitável
S=√∑(xi-xm)2/n-1	CV=S/M	VA= ks
S= √4871,684/9	CV= 7,7553/92,5	VA= 2,4*7,7553
S= 7,7553	CV= 0,0838	VA= 18,6127

Conforme as formulas da Farmacopeia Brasileira 5ª edição, foram calculas os valores aceitáveis para cada amostra, sendo elas: amostra A = 10,9322; amostra B = 2,219 e; amostra C = 18,6127, sendo assim, conforme os valores obtidos todas estão dentro dos valores de aceitação.

Conclusão

Mediante as condições experimentais empregadas neste trabalho, conclui-se que as cápsulas analisadas estão dentro dos limites farmacopeicos estabelecidos para os testes de peso médio, desintegração, uniformidade de doses e doseamento. Logo todas as capsulas podem ser comercializadas.

Conclui-se assim, o quanto o controle de qualidade dinâmico e atuante é importante tanto em farmácias de manipulação quanto em industrias, para assim, evitar desvios de qualidade e consequente comercialização de produtos nocivos à saúde da população.

Referências

BRASIL. **FARMACOPEIA Brasileira**, **5ª edição**. Brasília: Agência Nacional de

Vigilância Sanitária ANVISA; volume 2; 2010

CARVALHO, G. K.; COSTA, L. C, G.; ALVES, S. F.; NOGUEIRA, A. N.; et al. **Determinação do teor de fluconazol em cápsulas industriais e magistrais.** Revista Faculdade Montes Belos (FMB), v. 7, n° 2, p (47-56); 2014.

COELHO, H.; MATINATTI, A. N. F.; ARAÚJO, M. B.; BERGOLD, A. M.; BUENO, F.; et al. **Análise químico-farmacêutica do fluconazol e especialidade farmacêutica cápsula.** Revista Brasileira de Ciências Farmacêuticas, vol. 40; 2004.

MENDES, G. C.; SILVA, J. L.; LIMA, T. R.; BRUMANO, M. H. N.; et al. **Avaliacao da qualidade de capsulas de fluconazol.** Anais III SIMPAX – Volume 3 – n.1 – Viçosa-MG.

SILVA, E. P. O.; MARQUES, E. A. L.; MARTINOLLI, K.; BENASSI, S. M. M.; SANTOS, P. M.; BELTRAME, M., SAKANE, K. K.; RAFAEL J. A.; et al. **Avaliação da qualidade de formulações contendo fluconazol manipuladas em farmácias.** XIV Encontro Latino Americano de Iniciação Científica e X Encontro Latino Americano de Pós-Graduação – Universidade do Vale do Paraíba.