APLICAÇÃO DE PROBIÓTICOS NA AQUICULTURA

BLOEMER, Juliano¹ MADUREIRA, Eduardo Miguel Prata²

RESUMO

A aquicultura abrange a criação de peixes, moluscos e crustáceos. Tal atividade está em franca expansão no Brasil, visto que se trata de uma importante fonte de renda, com papel relevante na qualidade e segurança alimentar. Os seres aquáticos possuem uma relação muito intima com o ambiente em que vivem, portanto, as proliferações de doenças podem causar desequilíbrios na produção. O controle dessas doenças foi intensivamente realizado por antibióticos, os quais deixa resíduos na água, nos animais e, inclusive, nos consumidores finais, além de favorecer a aparição de bactérias mais resistentes. Diante desta problemática, surgem os probióticos para beneficiar a saúde dos hospedeiros, por melhorar o equilíbrio da microbiota no hospedeiro e/ou da comunidade microbiana do ambiente. Frente ao exposto, o objetivo deste trabalho consiste em apresentar e explorar o panorama produtivo e econômico da aquicultura brasileira, um breve relato de impactos adversos na aquicultura causados por doenças infecciosas, aspectos gerais e funcionais dos probióticos e, por fim, o efeito de probióticos com ênfase em tilápias. Para tanto, realizou-se a leitura crítico-analítica de um amplo acervo bibliográfico constituído de boletins técnicos e artigos científicos de alto impacto.

PALAVRAS-CHAVE: proteína animal, tilápia, bacteriocinas.

1. INTRODUÇÃO

O crescimento acelerado e contínuo da população mundial aliado a preocupação com a segurança alimentar e a busca pela sustentabilidade ambiental, têm exercido fortes pressões sobre os setores de produção de alimentos e, por isso, integram alguns dos principais desafios a serem enfrentados pelos países nas próximas décadas. Diante deste cenário, a proteína animal proveniente da aquicultura pode auxiliar no suprimento alimentar.

A aquicultura ou piscicultura consiste no cultivo antrópico de animais aquáticos, de água doce ou salgada, em um espaço confinado e controlado com o objetivo de exploração produtiva econômica e financeira. A atividade abrange a criação de peixes, moluscos e crustáceos. As expectativas apontam que a criação de pescados será o setor produtor de alimentos que mais crescerá no mundo, uma vez que a atividade é praticada em vários países e se trata de uma importante fonte de renda, com papel relevante na segurança alimentar (FAO, 2011).

No Brasil, a aquicultura está em franca expansão. Segundo o relatório da Organização das Nações Unidas para Agricultura e Alimentação (FAO), o país aumentará 104% na produção de pescados até 2025. Desde o ano de 2007, as principais espécies de peixes cultivadas no Brasil

Graduando do curso de Medicina Veterinária do Centro Universitário Assis Gurgacz – PR. julianobloemer@gmail.com

² Mestre em Desenvolvimento Regional e Agronegócios. Professor dos Cursos de Graduação e Especialização do Centro Universitário FAG.

apresentaram altas taxas de crescimento. Os números da criação de peixes apontaram para uma nova realidade da piscicultura. Entre as espécies cultivadas no Brasil, a tilápia se destaca substancialmente. De 2010 a 2011, a produção de tilápias apresentaram 65% de crescimento. Devido a sua fácil adaptação a vários ambientes, atualmente, a criação de tilápias representa 41% da piscicultura nacional. Logicamente, para manter essas expectativas, existe a necessidade de avanços tecnológicos e científicos ao setor (FAO, 2011).

A criação de pescados para fins econômicos, necessita de recursos hídricos para o seu desenvolvimento. Os seres aquáticos possuem uma relação muito intima com o ambiente em que vivem. Deste modo, a proliferação de doenças ou quaisquer desequilíbrios na produção podem levar efeitos adversos no ambiente e graves perdas econômicas para o setor. Nos últimos anos, o uso de antibióticos na aquicultura foi a estratégia usada para o controle de doenças, melhoria do crescimento e eficiência da conversão alimentar. Entretanto, o crescente emprego desses fármacos tem auxiliado na criação de patógenos resistentes a estes antibióticos (VIEIRA e PEREIRA, 2016). Além disso, residuais desses antibióticos permanecem na proteína do peixe, podendo surtir efeito no consumidor final, bem como, elimina biota benéfica do ambiente aquático (AZEVEDO *et al*, 2016).

Diante desses efeitos indesejáveis, emergiu a estratégia de efetuar a suplementação dietética dos animais contemplando alimentos probióticos, prebióticos ou mesmo simbióticos, isto é, alimentos são capazes de estimular o sistema imunológico dos animais por meio da incitação ao desenvolvimento dos microrganismos benéficos e supressão do crescimento dos patogênicos. Como resultado, se obtém saúde e contribuição para a maximização da produção com foco na sustentabilidade dos ambientes aquáticos (PANDIYAN *et al*, 2013).

Prebióticos são compostos fibrosos não digeríveis por enzimas, sais e ácidos produzidos pelo organismo, mas seletivamente fermentados pelos microrganismos do trato gastrintestinal, de modo a estimular seletivamente o crescimento e atividade de uma ou mais bactérias benéficas, melhorando a saúde do seu hospedeiro (GIBSON e ROBERFROID, 1995). Probióticos são microrganismos vivos adjuntos que, quando administrados em quantidades apropriadas, conferem benefício à saúde dos hospedeiros, por melhorar o equilíbrio da microbiota no hospedeiro ou a comunidade microbiana do ambiente, assegurando o aumento: do uso alimentar ou valor nutricional, da resposta do hospedeiro sobre a doença, ou pelo aumento da qualidade do ambiente (VERSCHUERE *et al*, 2000). Os simbióticos são a mistura de prebióticos e probióticos que fornece o benefício de ambos, principalmente em razão dos efeitos sinergísticos (GIBSON e ROBERFROID, 1995).

O emprego desses suplementos alimentares se justifica, sobretudo na aquicultura, pelo fato das larvas que eclodem no ambiente aquático ainda não possuírem o trato intestinal completamente desenvolvido, tornando-as, portanto, vulneráveis a contaminações de patógenos presentes no ambiente. Desse modo, o emprego desses suplementos alimentares também auxilia na proteção neste primeiro estágio da vida desses animais (RIBEIRO *et al*, 2008).

Diante do exposto, o objetivo deste trabalho consiste em apresentar uma ampla fundamentação teórica acerca da utilização de probióticos na aquicultura, bem como explorar os efeitos de probióticos com ênfase em tilápias.

2. FUNDAMENTAÇÃO TEÓRICA

2.1 PANORAMA PRODUTIVO E ECONÔMICO DA AQUICULTURA BRASILEIRA

Em 2014, o Brasil ocupou a 13ª posição no *ranking* dos países que mais produziram pescado provenientes da aquicultura, apresentando pouco mais de meio milhão de toneladas. Neste contexto, a China é o maior país produtor do mundo, com mais de 45 milhões de toneladas ao ano (Figura 1). Na América Latina, considerando somente a aquicultura, o Brasil encontrase como segundo maior produtor, ficando atrás apenas do Chile, principalmente pela indústria do salmão (FAO, 2016).

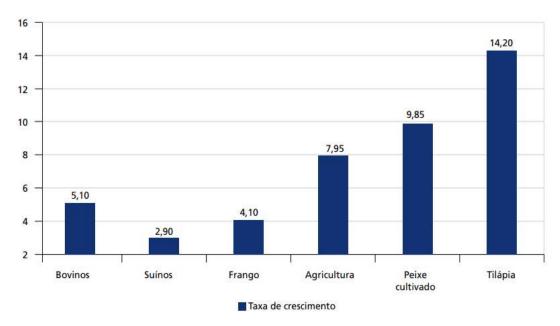
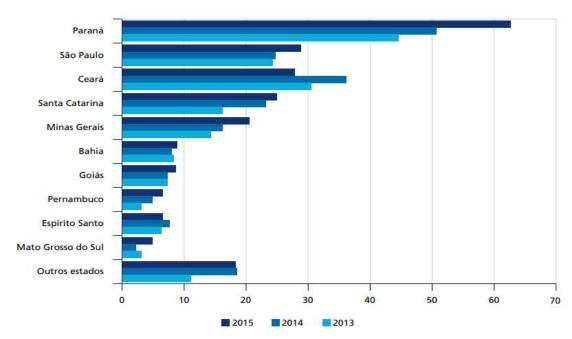

Estados Unidos 0,425 Coreia do Sul 0,480 Brasil 0,561 Japão 0,657 **Filipinas** 0,788 Tailândia 0,934 Myanmar 0,962 Egito 1,137 Chile 1,214 Noruega 1,332 Bangladesh Vietnã 3,397 Indonésia 4,253 Índia 4,882 China 0 10 20 30 40 50 Produção

Figura 1 – Maiores produtores mundiais de pescado oriundo da aquicultura (2014), em milhões de toneladas.

Fonte: FAO (2016).

A criação de pescados possivelmente despontará pelo mundo como um setor produtor de alimentos com índices de crescimento progressivo, uma vez que é praticada em vários países e é uma importante fonte de renda e de proteína animal. No Brasil, a aquicultura está em franca expansão. Segundo Kubitza (2015), apesar de o Brasil ser um grande produtor de frango, bovinos e suínos, a aquicultura foi o setor de carnes que apresentou maior incremento percentual em produção entre 2004 e 2014, com crescimento anual médio de quase 8%, superando as taxas de bovinos, frango e suínos (Figura 2).

Figura 2 – Crescimento médio anual da produção de carnes no Brasil (2004-2014), em %.



Fonte: Kubitza (2015).

Uma expressiva variedade de espécies (com maior destaque para tilápia, tambaqui e seus híbridos, além de espécies tradicionais como as carpas e o pirarucu) tem corroborado para o crescimento da piscicultura nacional. A tilápia tem sido amplamente explorada na produção brasileira em função das boas condições de adaptação a diferentes ambientes. Atualmente é a principal espécie aquícola no país (KUBITZA, 2015).

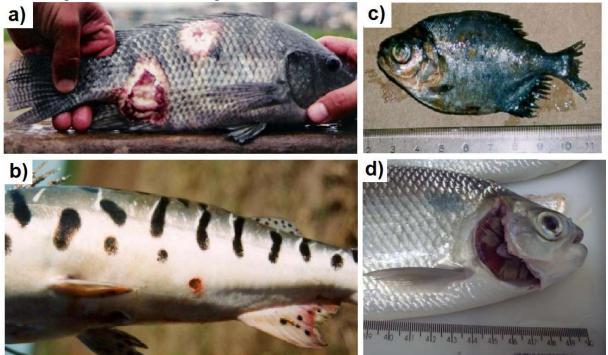
O crescimento brasileiro da produção de tilápias verificado nas últimas décadas, levou o país à posição de quarto maior produtor mundial de tal peixe, correspondendo por 4% da produção mundial (5,3 milhões de toneladas). Somente em 2014, o setor movimentou US\$ 8,8 bilhões. A maior representatividade produtiva de tilápias, concentram-se na região Sul (Figura 3), em função principalmente da agroindústria moderna e tecnificada. A produção mundial dessa espécie é liderada pela China, seguida pelo Egito e pela Indonésia.

Figura 3 – Dez maiores estados produtores de tilápia no Brasil (2013-2015), em 1 mil toneladas.

Fonte: Instituto Brasileiro de Geografia e Estatística (2016).

2.2 IMPACTOS ADVERSOS NA AQUICULTURA CAUSADOS POR DOENÇAS INFECCIOSAS

A criação de pescados para fins econômicos, necessita de recursos hídricos para o seu desenvolvimento. Os seres aquáticos possuem uma relação muito intima com o ambiente em que vivem, portanto, a proliferação de doenças ou quaisquer desequilíbrios na produção podem levar efeitos adversos no ambiente e graves perdas econômicas para o setor.


Dentre os vários quadros clínicos atribuídos a causas infecciosas capazes de surtir efeito adverso na aquicultura, destacam-se os sintomas: vermelhidão ventral, podridão da cauda e barbatana, lesão hemorrágica sobre a superfície do corpo, hidropisia (acúmulo anormal de fluído nas cavidades naturais do corpo), podridão das guelras, mancha branca e síndrome ulcerativa epizoótica. Todos esses sintomas podem estar associados ou ser severamente agravados por bactérias, fungos, vírus e parasitas em geral que acometem à aquicultura e acarretam perdas de produção, impacto na subsistência e impacto comercial. O uso de probióticos certamente poderiam auxiliar na mitigação desses quadros clínicos dos animais (GARZA *et al*, 2018).

Segundo Arthur e Subsainghe (2002) *apud* Garza *et al* (2018), em meados de 1988-89, a síndrome de ulcerativa epizoótica, causou perdas econômicas estimadas em US\$ 3,38 milhões durante o primeiro surto e US\$ 2,24 milhões durante o segundo surto em Bangladesh, pois houve queda na demanda e oferta de pescado em cerca de 64,5%, com queda nos preços de 50 a 75% nos distritos afetados. Além disso, como os patógenos podem determinar a estrutura da

comunidade aquática e regular a abundância do hospedeiro, provavelmente esses surtos podem ter causado impactos na biodiversidade de local.

A Figura 4 apresenta alguns impactos em peixes cultivados em aquiculturas no Brasil causados por doenças bacterianas (bacteriocinas).

Figura 4 — Impactos causados por bacterioses em peixes cultivados na aquicultura. a) *Edwardsiella tarda* causando necrose no tecido muscular da tilápia e b) no pintado/surubin; c) Columnariose em tambaqui (*Colossoma macropomum*) e em d) matrinxã (*Brycon amazonicus*) causando perdas de nadadeiras e guelra.

Fonte: Costa (2009).

Medidas preventivas visando reduzir as chances de ocorrência das doenças infecciosas apresentadas acima, como a utilização de probióticos, podem ser uma estratégia inteligente em substituição gradativa de usos exacerbados de antibióticos.

2.3 PROBIÓTICOS: ASPECTOS GERAIS E FUNCIONAIS

A criação de larvas, pós-larvas, formas jovens de peixes, moluscos, crustáceos e rãs foram estudadas quando submetidas a experimentos com probiótico na aquicultura. Os gêneros das bactérias *Streptococcus*, *Pediococcus*, *Lactobacillus*, *Bacillus*, *Enterococcuse* as leveduras

Saccharomyces têm sido amplamente utilizados na piscicultura em água doce e os resultados têm demonstrado sucesso (TACHIBANA et al, 2011).

Na maioria das vezes, a seleção de bactérias probióticas tem sido um processo empírico baseado em evidências científicas limitadas. Muitas das falhas na pesquisa com probióticos podem ser atribuídas à seleção de microrganismos inapropriados. As etapas de seleção precisam ser adaptadas para diferentes espécies, bem como para os ambientes dos hospedeiros. É essencial entender os mecanismos de ação probiótica e definir critérios de seleção para probióticos potenciais. Os critérios gerais de seleção são determinados principalmente por considerações de biossegurança: i) métodos de produção e processamento; ii) método de administração do probiótico; e iii) a localização no corpo onde se espera que os microrganismos estejam ativos (PANDIYAN *et al*, 2013).

Segundo Oelschlaeger (2010), existem três modos gerais de ações probióticas, como segue:

- i) Os probióticos podem melhorar as defesas intestinais do hospedeiro, incluindo o sistema imune, e esse modo de ação é fundamental para a prevenção e terapia de doenças infecciosas, mas também para o tratamento da inflamação do trato digestivo ou partes dele.
- ii) Os probióticos também podem ter um efeito direto sobre outros organismos, comensais e/ou patogênicos, e esse princípio é, em muitos casos, de grande importância na prevenção, tratamento e restauração do equilíbrio microbiano no intestino.
- iii) Finalmente, os efeitos probióticos podem ser baseados em ações que afetam produtos microbianos, produtos hospedeiros e ingredientes alimentícios, e tais ações podem resultar na inativação de toxinas e na desintoxicação de componentes hospedeiros e de alimentos no intestino.

As bactérias dos gêneros *Lactobacilos* e *Bifidobactérias* são produtoras de ácido láctico têm sido amplamente utilizadas e pesquisadas por estar presente no intestino de peixes saudáveis. O interesse no ácido lático se deve ao fato de que eles são residentes naturais do trato gastrointestinal e possuem a capacidade de tolerar o ambiente ácido e biliar dessa região. Além disso, o ácido lático é produto da bioconversão da lactose, e ele propicia a redução do pH no trato gastrointestinal e previne naturalmente a colonização por diversas outras bactérias indesejáveis (SENOK *et al*, 2005).

Outros probióticos comumente estudados incluem a formação de esporos *Bacillus* sp. e leveduras. *Bacillus* sp. demonstrou possuir capacidade de adesão e de produção de bacteriocinas

(peptídeos antimicrobianos) e fornecer imunoestimulação. A vantagem dos esporos é que podem ser armazenados indefinidamente (CLADERA-OLIVERA *et al*, 2004).

Segundo Pandiyan *et al* (2013), microrganismos anaeróbios facultativos, Gramnegativos, prevalecem no trato digestivo de peixes e moluscos, embora anaeróbios simbióticos possam ser dominantes no intestino de alguns peixes tropicais herbívoros. *Vibrio* e *Pseudomonas* são os gêneros mais comuns em crustáceos, peixes marinhos e bivalves. *Aeromonas*, *Plesiomonas* e *Enterobacteriaceae* são dominantes em peixes de água doce.

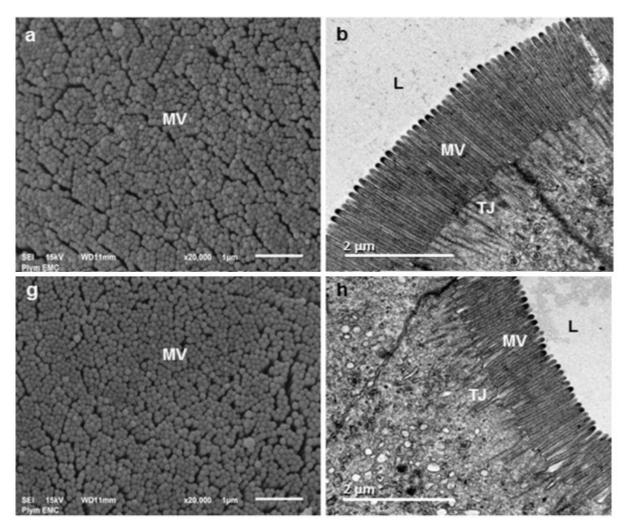
Algumas bactérias usadas como probióticos apresentam efeitos antivirais. Embora o mecanismo exato pelo qual essas bactérias exerçam seus efeitos não seja completamente conhecido, testes de laboratório indicam que a inativação de vírus pode ocorrer por substâncias químicas e biológicas, como extratos de algas marinhas e agentes extracelulares de bactérias. Cepas de *Pseudomonas* sp., *Vibrio* sp., *Aeromonas* sp. isoladas de incubadoras de salmonídeos, mostraram atividade antiviral contra o vírus da necrose hematopoiética infecciosa com mais de 50% de redução de placa (PANDIYAN *et al*, 2013).

2.4 EFEITO DE PROBIÓTICOS EM TILÁPIAS

Diversos pesquisadores realizaram estudos relacionados com o uso de probióticos na aquicultura, a fim de avaliar seus efeitos na espécie de interesse.

O uso do de probióticos (Lycogenn®) em tilápia vermelha da água do mar (O. mossambicus e O. niloticus) proporcionou aumento de peso muscular, o ganho de peso global, a taxa de crescimento específico e a conversão alimentar (CHIU e LIU, 2014).

Vários probióticos provaram ser promotores de crescimento. Por exemplo, o probiótico *E. faecium* aumentou o peso final e o ganho de peso diário da tilápia do Nilo (WANG *et al*, 2008).


Probiótico *Bacillus amyloliquefaciens* melhorou o crescimento, conversão alimentar e parâmetros imunológicos da tilápia do Nilo (EISSA e ABOU-ELGHEIT, 2014). O probiótico B. pumilus é um produto comercial (Organic Green ®) que quando administrados à tilápia do Nilo, melhoraram sua taxa de crescimento (ALY *et al*, 2008a).

A taxa de sobrevivência e o ganho de peso corporal da tilápia do Nilo aumentaram após a alimentação por um a dois meses com probiótico *B. subtilis* ou *L. acidophilus* (ALY *et al*, 2008b). A levedura *S. cerevisiae* produziu um melhor desempenho de crescimento e eficiência alimentar de tilápia do que uma combinação de probióticos o *Streptococcus faecium* e *Lactobacillus acidophilus* fez (LARA-FLORES *et al*, 2003).

A suplementação de probiótico BS (mistura de *B. subtilis* e *B. licheniformis* numa proporção de 1:1 p/p) em 3 g kg⁻¹ (BS3), 5 g kg⁻¹ (BS5), 7 g kg⁻¹ (BS7) e 10 g kg⁻¹ (BS10) em dietas com tilápia resultou em melhores índices de crescimento e aumentou efetivamente a resistência à infecção por *S. agalactiae* de tilápia. No entanto, a inclusão da dose de 10 g kg⁻¹ (BS10) pode ser considerada a mais efetiva para melhorar o crescimento e o estado imunológico dos peixes (ABARIKE *et al*, 2018).

Adeoye *et al* (2016) objetivaram avaliar os efeitos combinados de enzimas digestivas exógenas e probióticas no crescimento, morfologia intestinal e composição microbiana da tilápia do Nilo. Para isso, definiram os tratamentos controle (35% de proteína, 5% de lipídio), enzima (suplementação com fitase, protease e xilanase), probiótico (uma mistura de *Bacillus subtilis*, *Bacillus licheniformis* e *Bacillus pumilus*) e a combinação de enzima com probiótico. Os autores relatam que a suplementação de dietas de tilápias com uma combinação de enzimas e probiótico é capaz de melhorar o crescimento da tilápia e a histologia intestinal (Figura 5), sem efeito deletério sobre a saúde dos peixes ou a microbiota intestinal.

Figura 5 – Eletromicrografía de varredura (a e g) e de transmissão (b e h) do intestino médio de tilápias alimentadas com controle (a e b) e dietas compostas por enzimas e probióticos (g e h). As abreviaturas são lúmen L, junção apertada TJ e microvilosidades MV.

Fonte: Adeoye et al (2016).

Segundo Adeoye *et al* (2016), a melhoria na morfologia intestinal pode ser o resultado de mudanças complementares para atender às taxas aumentadas de digestão e absorção após a exposição às dietas. A tilápia alimentada com dieta suplementada com probiótico e enzimas apresentou maior razão de perímetro, microvilosidade (densidade) e maior diâmetro que se traduziu em aumento da área absortiva de enterócitos e posteriormente resultou no melhor desempenho de crescimento quando comparada à tilápia alimentada com dieta controle.

3. MATERIAL E MÉTODOS

Este artigo foi desenvolvido a partir de uma pesquisa bibliográfica exploratória sobre a utilização de probióticos na aquicultura. Para tanto, realizou-se a leitura crítico-analítica de boletins técnicos e artigos científicos de alto impacto a fim de explorar e apresentar o panorama

produtivo e econômico da aquicultura brasileira, um breve relato de impactos adversos na aquicultura causados por doenças infecciosas, aspectos gerais e funcionais dos probióticos e, por fim, o efeito de probióticos com ênfase em tilápias.

4. CONSIDERAÇÕES FINAIS

A aquicultura é uma atividade atrativa e potencialmente capaz de suprir a crescente demanda por proteína animal voltada à alimentação humana do Brasil e do mundo.

Diversos impactos deletérios à atividade podem ser causados por doenças infecciosas, corroborando para queda de produção e prejuízos financeiros.

Esses impactos podem ser prevenidos com a utilização dos probióticos, visto que estes, podem aumentar imunidade do hospedeiro e controlar patógenos do ambiente, bem como neutralizar ou eliminar toxinas e inflamações.

Dentre os reflexos do uso de probióticos, destacam-se a melhoria da saúde e tecidos internos dos animais, estruturação da flora bacteriana benéfica, maior eficiência de conversão alimentar e absorção dos nutrientes, melhoria no crescimento e ganho de peso.

Portanto, o uso de probióticos é recomendável, podendo, inclusive, mitigar significativamente o uso compulsório de antibióticos ao longo do tempo.

REFERÊNCIAS

ABARIKE, E. D.; CAI, J.; LU, Y.; YU, H.; CHEN, L.; JIAN, J.; TANG, J.; JUN, J.; KUEBUTORNYE, F. K. A. Effects of a commercial probiotic BS containing *Bacillus subtilis* and *Bacillus licheniformis* on growth, immune response and disease resistance in Nile tilapia, *Oreochromis niloticus*. **Fish & Shellfish Immunology**, v. 82, p.229-238, 2018.

ADEOYE, A. A.; YOMLA, R.; JARAMILLO-TORRES, A.; RODILES, A.; MERRIFIELD, D. L.; DAVIES, S. J. Combined effects of exogenous enzymes and probiotic on Nile tilapia (*Oreochromis niloticus*) growth, intestinal morphology and microbiome. **Aquaculture**, v. 463, p. 61-70, 2016.

ALY, S. M.; ABDEL-GALIL, A. Y.; ABDEL-AZIZ, G. A.; MOHAMED, M. F. Studies on *Bacillus subtilis* and *Lactobacillus acidophilus*, as potential probiotics, on the immune response and resistance of tilapia nilotica (*Oreochromis niloticus*) to challenge infections. **Fish Shellfish Immunol.**, v. 25, p. 128-136, 2008a.

- ALY, S. M.; MOHAMED, M. F.; JOHN, G. Effect of probiotics on the survival, growth and challenge infection in Tilapia nilotica (*Oreochromis niloticus*). **Aquac. Res.**, v.39, p. 647-656, 2008b.
- AZEVEDO, R. V.; FOSSE FILHO, J. C.; PEREIRA, S. L.; CARDOSO, L. D.; VIDAL JÚNIOR, M. V.; ANDRADE, D. R. Suplementação com prebiótico, probiótico e simbiótico para juvenis de tambaqui a duas densidades de estocagem. **Pesq. agropec. bras.**, v.51, n.1, p.9-16, 2016.
- CHIU, K.-H.; LIU, W.-S. Dietary administration of the extract of Rhodobacter sphaeroides WL-APD911 enhances the growth performance and innate immune responses of seawater red tilapia (*Oreochromis mossambicus* × *Oreochromis niloticus*). **Aquaculture**, v. 418, p. 32-38, 2014.
- CLADERA-OLIVERA, F.; CARON, G. R.; BRANDELLI, A. Bacteriocin-like substance production by *Bacillus licheniformis* strain P40. **Lett Appl Microbiol**, v.38, p. 251 256, 2004.
- COSTA, A. B. Principais doenças bacterianas na piscicultura na Amazônia: impactos econômicos e profilaxia. **III Encontro de negócios da aquicultura da Amazônia ENAq**. Manaus Amazonas Brasil. 2009.
- EISSA, N.; ABOU-ELGHEIT, E. Dietary supplementation impacts of potential non-pathogenic isolates on growth performance, hematological parameters and disease resistance in Nile tilapia (*Oreochromis niloticus*). **J. Veterinary Adv.,** v. 4, p. 712-719, 2014.
- FAO FOOD AND AGRICULTURE ORGANIZATION. The state of world fisheries and aquaculture: opportunities and challenges. Rome: FAO, 2016. 243 p.
- GARZA, M.; MOHAN, C. V.; RAHMAN, M.; WIELANDD, B.; HÄSLER, B. The role of infectious disease impact in informing decision-making for animal health management in aquaculture systems in Bangladesh. **Preventive Veterinary Medicine**, 2018. (In Press).
- GIBSON, G. R.; ROBERFROID, M. B. Dietary Modulation of the Human Colonic Microbiota: Introducing the Concept of Prebiotics, **The Journal of Nutrition**, v. 125, p.1401–1412, 1995.
- IBGE INSTITUTO BRASILEIRO DE GEOGRAFIA E ESTATÍSTICA. **Pesquisa pecuária municipal.** Rio de Janeiro: IBGE, 2016. Disponível em: http://www.ibge.gov.br/estatistica/>.
- KUBITZA, F. A evolução da tilapicultura no Brasil: produção e mercado. Panorama da Aquicultura, Rio de Janeiro, v. 13, n. 76, 2015.
- LARA-FLORES, M.; OLVERA-NOVOA, M. A.; GUZMAN-MÉNDEZ, B. E.; LÓPEZ-MADRID, W. Use of the bacteria *Streptococcus faecium* and Lactobacillus acidophilus, and the yeast *Saccharomyces cerevisiae* as growth promoters in Nile tilapia (*Oreochromis niloticus*). **Aquaculture**, v.216, p. 193-201, 2003.
- OELSCHLARGER, T. A. Mechanisms of probiotic actions a review. Int J Med Microbiol, v.300, p. 57 62, 2010.

PANDIYAN, P.; BALARAMAN, D.; THIRUNAVUKKARASU, R.; GEORGE, E. G. J.; SUBARAMANIYAN, K.; MANIKKAM, S.; SADAYAPPAN, B. Probiotics in aquaculture. **Drug Invention Today**, v. 5, n. 1, p. 55-59, 2013.

RIBEIRO, P. A. P.; COSTA, L. S.; LOGATO, P. V. R. Probióticos na aquicultura. **Revista Eletrônica Nutritime**, v.6, p.837-846, 2008.

SENOK, A. C.; ISMAEEL, A. Y.; BOTTA, G. A. Probiotics: facts and myths. Clin Microbiol Infect, 11, 12, p. 958 – 966, 2005.

TACHIBANA, L.; DIAS, D. C.; ISHIKAWA, C. M.; CORRÊA, C. F.; LEONARDO, A. F. G.; RANZANI-PAIVA, M. J. T. Probiótico na alimentação da tilápia-do-Nilo (*Oreochromis niloticus* Linnaeus, 1758), durante a inversão sexual: desempenho zootécnico e recuperação da bactéria probiótica intestinal. **Bioikos**, v,25, p.25-31, 2011.

VERSCHUERE, L.; ROMBAUT, G.; SORGELOOS, P. & VERSTRAETE, W. Probiotic bacteria as biological control agentes in aquaculture. **Microbiology and Molecular Biology Reviews**, v.64, p.655-71, 2000.

VIEIRA, B. B.; PEREIRA, E. L. Potencial dos probióticos para o uso na aquicultura. **Revista da Universidade Vale do Rio Verde**, v. 14, p. 1223-1241, 2016.

WANG, Y.-B.; TIAN, Z.-Q.; YAO, J.-T.; LI, W. Effect of probiotics, *Enteroccus faecium*, on tilapia (*Oreochromis niloticus*) growth performance and immune response. **Aquaculture**, v. 277, p. 203-207, 2008.