

DIMENSIONAMENTO DE UM EDIFÍCIO EM ALVENARIA ESTRUTURAL

LUCAS DEOCLECIO BELLAVER¹; MARIA VÂNIA PERES²

¹Discente, Centro Universitário Assis Gurgacz, Cascavel-PR, lucasdeoclecio@live.com; ²Prof. Centro Universitário Assis Gurgacz, Cascavel-PR, mariavania@fag.edu.br.

RESUMO: O sistema construtivo em alvenaria estrutural está cada dia mais sendo utilizado no Brasil, produzindo edifícios de múltiplos pavimentos. Em função disso e visto que a uma carência de profissionais atuando nesta área na região de Cascavel-PR, este trabalho apresenta o dimensionamento de um edifício residencial de 12 pavimentos seguindo as recomendações da ABNT NBR 15961-1(2011). Tem como objetivo avaliar os carregamentos verticais e horizontais que atuam na estrutura, calculando a resistência necessária dos blocos no primeiro pavimento, além de fazer as verificações aos esforços de flexão, compressão, tração e cisalhamento. O resultado do somatório de todas as cargas verticais é igual a 254,77 Tf por pavimento, totalizando 3057,27 Tf de carga total vertical do edifício, fazendo necessário o emprego de blocos de 10 Mpa. Porém, ao avaliar os esforços de flexo-compressão, algumas paredes necessitam blocos de 16 Mpa. Devido ao carregamento horizontal, 18 paredes necessitam emprego de armadura para combater esforços de flexo-tração. O cisalhamento foi verificado e todas as paredes resistem.

PALAVRAS-CHAVE: Alvenaria estrutural. Blocos de Concreto. Dimensionamento.

SIZING OF A BUILDING IN STRUCTURAL MASONRY

ABSTRACT: The construction system in structural masonry is increasingly being used in Brazil, producing multi-storey buildings. Due to this, and seen, which is a lack of work in the region of Cascavel-PR, this work presents the design of a residential development of 12 floors following the recommendations of ABNT NBR 15961-1 (2011). The objective of this work is to evaluate the vertical and horizontal loadings acting on the structure, calculating the required strength of the blocks in the first floor, as well as verifying the bending, compression, traction and shear stresses. The result of the sum of all vertical loads is 254.77 Tf per floor, totaling 3057.27 Tf of total vertical load of the building, making it necessary to use blocks of 10 Mpa. However, when evaluating flexo-compression efforts, some walls require blocks of 16 Mpa. Due to horizontal loading, 18 walls require the use of armor to combat flexo-traction efforts. The shear has been checked and all the walls resist. **KEYWORDS:** Structural masonry. Concrete blocks. Sizing.

INTRODUÇÃO

A alvenaria é um sistema construtivo que tem sido utilizado desde o começo da humanidade, resistindo ao tempo e presentes até os dias atuais. Segundo Parsekian (2017), o estudo histórico da arquitetura e da construção civil é feito baseado nas construções de alvenaria, sendo que até meados do século 19, todas as construções eram feitas de alvenaria ou madeira.

Segundo Ramalho e Corrêa (2003), o principal conceito ao se estudar estruturas em alvenaria estrutural é a transmissão de ações através de tensões de compressão. Porém, existem tensões de tração atuando nas peças, entretanto essas tensões devem existir em pontos específicos e apresentar valores pouco elevados, pois acarreta na utilização de armadura.

Sendo assim, esse estudo pretende apresentar as análises e cálculos necessários para o dimensionamento de um edifico em alvenaria estrutural, e desenvolver um exemplo, aplicando os cálculos em planilhas no programa Excel de forma a facilitar a aplicação e análise dos resultados.

FUNDAMENTAÇÃO TEÓRICA

Segundo a NBR 15812-1 (ABNT, 2010), para que uma estrutura de alvenaria atenda aos requisitos de qualidade estrutural, ela deve ser projetada para resistir as ações sobre ela aplicadas, durante sua construção e sua vida útil. A estrutura deve estar apta a receber todas as influências ambientais que sobre ela possam ocorrer como também deve resistir a ações excepcionais sem apresentar danos desproporcionais as suas causas, como por exemplo, explosões e impactos.

Segundo Parsekian (2017), a resistência à compressão que a parede irá ter, depende do tipo de argamassa, do tipo de bloco, tipo de assentamento, qualidade da mão de obra e do nível de grauteamento. Para determinar a resistência é feito o ensaio de prisma, que é o corpo de prova da alvenaria estrutural, onde são assentados dois blocos sobrepostos com uma junta de argamassa. Esse ensaio determina o fpk (resistência característica a compressão do prisma) e existe uma correlação do fpk e fbk (resistência característica a compressão do bloco), além do fa que é a resistência da argamassa, a qual é apresentada na Tabela 1, com valores em MPa.

Tabela 1: Proposta relação prisma/bloco.

PROPOSTA DE P	ELAÇÃO PRISMA,	/BLOCO DE REFERÊN	CIA PARA PROJETO
fpk	fpk/fbk	fa	fbk
2,4	0,8	4,0	3,0
3,2	0,8	4,0	4,0
4,5	0,8	6,0	6,0
6,0	0,8	6,0	8,0
7,0	0,7	8,0	10,0
8,4	0,7	8,0	12,0
9,8	0,7	12,0	14,0
10,4	0,7	12,0	16,0
11,7	0,7	14,0	18,0
12,0	0,6	14,0	20,0
13,2	0,6	18,0	22,0
14,4	0,6	18,0	24,0

Fonte: Adaptado de Parsekian (2018).

Segundo Silva (1996), os carregamentos atuantes, esforços provenientes das lajes e reações destes carregamentos nas paredes, são determinados de maneira usual como em estruturas de concreto armado. Na análise estrutural se devem considerar os carregamentos verticais, como também os carregamentos horizontais que a edificação estará sujeita.

Ramalho e Corrêa (2003) estabelecem que as cargas a serem consideradas em uma edificação dependem de sua utilização e seu tipo. Geralmente para edifícios residenciais as cargas que devem ser consideradas são: ações das lajes; peso próprio das paredes.

As cargas atuantes nas lajes são divididas em dois grupos, permanentes e acidentais. No primeiro grupo estão inseridas as cargas provenientes do peso próprio da laje, contrapiso, revestimento e paredes não estruturais que podem estar sobre o elemento estrutural. Já o segundo grupo é definido pelas cargas de utilização da edificação (NBR 6120, ABNT 1980).

3 PROCEDIMENTOS METODOLÓGICOS

Os cálculos foram realizados utilizando a arquitetura de um edifício residencial de 12 pavimentos, a qual é mostrada na Figura 1, com área de 302 m², seguido do projeto de modulação na Figura 2.

SUITE BYC COZINIA COZI

Figura 1: Planta baixa projeto arquitetônico.

PX2A

PX2B

PX2C

PX4A

PX4B

PX5B

PX5B

PX5B

PX5B

PX1B

PX1BB

Figura 2: Modulação blocos primeira fiada.

Fonte: Autor (2018).

A modulação foi feita com blocos de concreto, família de bloco 14x39 e todas as paredes são estruturais. Foram necessários pequenos ajustes no tamanho dos cômodos, portas e janelas devido a modulação dos blocos. O peso da parede é 2,5 kN/m², sendo 1,8 kN/m² referente ao bloco de concreto e 0,7 kN/m² aos revestimentos internos e externos da parede.

O pé-direito é de 2,70 m e as lajes de espessura de 10 cm. Nos trechos sem abertura a carga é de 6,5 kN/m, já nos trechos com abertura de janela, todas com 1m de altura, a carga é de 4 kN/m. Com aberturas de porta, todas 2,10m, a carga é 1,25 kN/m.

Para cargas variáveis foram adotados os valores de sobrecarga prescritos na NBR 6120 (ABNT, 1980), como o edifício é residencial este valor é igual a 1,5 kN/m².

3.1 Resistência à compressão simples

O sistema alvenaria estrutural resiste bem aos esforços de compressão, sua resistência depende em grande escala do tipo de bloco, em menor escala da mão de obra e da argamassa utilizada. A compressão simples é a solicitação mais importante e com maior atuação em edifícios de alvenaria, ocorrendo em pilares e paredes.

Tem-se o cálculo da resistência à compressão característica (fpk) a partir da equação 1, onde: γf , γm : são coeficientes de ponderação das ações e resistências; Nk: força normal característica de compressão; fpk: resistência característica de compressão simples do prisma; A: área bruta da seção transversal; tef, hef: espessura e altura efetiva; $R=1-\left(\frac{hef}{40*tef}\right)^3$.

$$\frac{\gamma f * Nk}{A} \le \left\{ \frac{1.0 \ parede}{0.9 \ pilar} \right\} * \frac{0.7 \ fpk}{\gamma m} * R \tag{1}$$

3.2 Resistência à flexo-compressão e flexo-tração

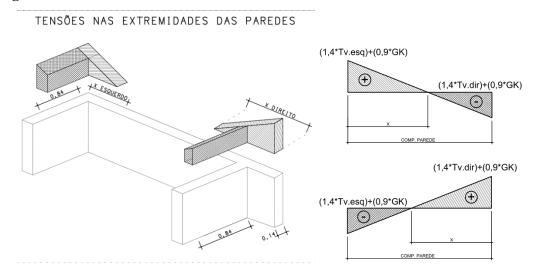
Além do carregamento vertical, as paredes estão sujeitas a carregamentos horizontais, provenientes geralmente de cargas de vento, gerando esforços de flexão, compressão, tração e cisalhamento.

É necessário verificar as máximas tensões de compressão e tração, para isso deve-se separar os carregamentos em permanentes e acidentais, e realizar combinações para obter as cargas críticas.

A verificação de tração máxima pode ser feita pela Equação 2, onde: γfq, γfg: coeficientes de ponderação das ações acidentais e permanentes, para edifícios geralmente adotase γfq=1.4 para ação do vento sendo considerada favorável, e γfg=0.9 para cargas permanentes favoráveis; ftk: resistência à tração na flexão, a qual tem relação direta com a resistência da argamassa, conforme Tabela 2.

$$\gamma fq * Q + \gamma fg * G \le \frac{ftk}{\gamma m}$$
 (2)

Tabela 2: Resistência à tração na flexão.


Direção da tração	Resistência média de compressão da argamassa (MPa)							
, ,	1,5 a 3,4	3,5 a 7,0	Acima de 7,0					
Normal à fiada - f_{tk}	0,1	0,2	0,25					
Paralela à fiada - f _{tk}	0,2	0,4	0,5					

Fonte: Adaptado da NBR 15961-1 (ABNT, 2011).

Se a inequação acima não for atendida, há necessidade de empregar armadura para resistir ao esforço. Neste caso calcula-se qual a força de tração necessária (Ft), multiplicando-se o diagrama das tensões de tração pela área da parede onde essas se distribuem (podendo ocupar as abas das paredes). Na Figura 3 exibe um modelo de como é feita a consideração das

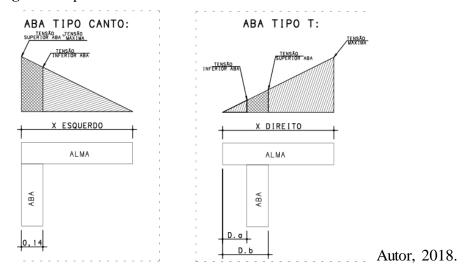

tensões na aba da parede, podendo ser do tipo "Canto" ou "T". As tensões nas abas são calculadas fazendo semelhança de triângulos e é necessário saber a distância que aba está até o comprimento "X" da região tracionada (D.a e D.b) para seções "T".

Figura 3: Tensões nas extremidades e cálculo de "X".

Fonte: Autor (2018).

Figura 4: Tipo de Aba.

A partir daí, calcula-se a área de aço pela Equação 3, onde: As: área de aço; fyd: resistência de escoamento do aço; Ft: força de tração.

$$As = \frac{Ft}{0.5*fyd} \tag{3}$$

Para verificar a tensão máxima de compressão deve-se fazer a separação das cargas de compressão simples e flexão, considerando redução das ações acidentais simultâneas. Deve-se verificar as Equações 4 e 5:

$$\frac{\gamma fq * \psi 0 * Qacidental + \gamma fg * G}{R} + \frac{\gamma fq * Qvento}{1.5} \le \frac{fk}{\gamma m}$$
(4)

$$\frac{\gamma fq * Qacidental + \gamma fg * G}{R} + \frac{\gamma fq * \psi 0 * Qvento}{1.5} \le \frac{fk}{\gamma m}$$
 (5)

Para o caso de edifícios e todas as cargas desfavoráveis tem-se: fk = 0.7.fpk; $\psi 0 = 0.5$ (acidental); 0.6(vento); $\gamma fq = \gamma fg = 1.4$; $\gamma m = 2.0$.

Substituindo nas equações 4 e 4, tem-se 6 e 7:

$$\frac{0.7*\text{Qacidental} + 1.4G}{R} + \frac{1.4*\text{Qvento}}{1.5} \le \frac{0.7*\text{fpk}}{2.0}$$
 (6)

$$\frac{1.4*\text{Qacidental} + 1.4G}{R} + \frac{0.84*\text{Qvento}}{1.5} \le \frac{0.7*\text{fpk}}{2.0}$$
 (7)

3.3 Resistência ao cisalhamento

No sistema de alvenaria estrutural, as paredes de alvenaria obedecem ao critério de resistência de Coulomb, $\tau = \tau_0 + \mu.6$. A parcela de resistência da alvenaria está relacionada com o traço da argamassa utilizada, o qual influencia a aderência inicial (τ_0), e do nível de précompressão ($\mu.6$), com coeficiente de atrito $\mu=0.5$. Segundo o projeto de norma de blocos cerâmicos o valor de resistência característica ao cisalhamento (t_0) é apresentado na Tabela 3.

Tabela 3: Valores característicos de resistência ao cisalhamento – fvk (MPa)

	Resistência méd	ia de compressão da a	argamassa (MPa)
	1,5 a 3,4	3,5 a 7,0	Acima de 7,0
f_{vk}	$0,10 + 0,5\sigma \le 1,0$	$0,15 + 0,5\sigma \le 1,4$	$0.35 + 0.5\sigma \le 1.7$

Fonte: Adaptado da NBR 15961-1 (ABNT, 2011).

O valor do nível de pré-compressão (6) deve ser calculado apenas com as cargas permanentes e minoradas com o coeficiente de redução 0,9, Onde a junta vertical for preenchida posteriormente recomenda-se reduzir em 50% o valor de aderência inicial.

A verificação de cisalhamento é atendida quando a relação da Equação 8 se cumprir, onde: τk: é a tensão característica de cisalhamento, obtido pela Equação 9; Vk: é a força

horizontal; b.d: é a área bruta da alma da parede (se a alvenaria for em seção L, T, ou outro tipo de flange, apenas a área da alma deve ser considerada).

$$\gamma f * \tau k \le \frac{f v k}{\gamma m} \tag{8}$$

$$\tau \mathbf{k} = \frac{\mathbf{v}\mathbf{k}}{\mathbf{h} * \mathbf{d}} \tag{9}$$

Caso as verificações não forem atendidas, há a possibilidade de armar a alvenaria ao cisalhamento. A armadura de cisalhamento é obtida pela Equação 10.

$$\mathbf{Asw} = \frac{(\mathbf{Vd} - \mathbf{Va}) \cdot \mathbf{s}}{\mathbf{0.5} \cdot \mathbf{fyd} \cdot \mathbf{d}} \tag{10}$$

Sendo a armadura de cisalhamento verificada a partir da equação 11.

Asw min =
$$0.05\% * b * s$$
 (11)

A parcela de cisalhamento resistida pela alvenaria é obtida pela equação 12, onde: Va: parcela do cisalhamento resistido pela alvenaria; s: espaçamento da armadura.

$$Va = fvd * b * d \tag{12}$$

3.4 Carregamento horizontal: Vento e Desaprumo

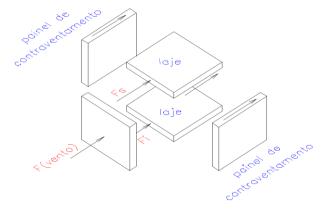
A NBR 6123 (ABNT, 1988) determina que a força do vento sobre uma edificação pode ser obtida pela Equação 12, onde: Ca: coeficiente de arrasto; q: pressão dinâmica; A: área da projeção ortogonal da edificação sobre um plano perpendicular à direção do vento.

$$Fa = Ca * q * A \tag{12}$$

A pressão dinâmica é definida pela equação 13 e a velocidade característica pela equação 14, onde: Vo: velocidade básica do vento; S1: fator que relaciona as características topográficas da região; S2: fator que está vinculado a rugosidade do terreno e as dimensões da edificação e sua altura em relação ao terreno; S3: fator que é baseado nos conceitos estáticos, e considera a importância da segurança de uma edificação.

$$q = 0.613 * Vk^2 \tag{13}$$

$$Vk = Vo * S1 * S2 * S3$$
 (14)

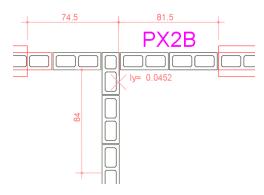

Segundo Parsekian (2017), pode-se determinar a força de desaprumo de um edifício multiplicando a carga total do pavimento pelo ângulo de desaprumo. O ângulo de desaprumo deve ser determinado em cada pavimento e pode ser determinado segundo a norma alemã DIN 1053, pela Equação 15, onde: ϕ = ângulo de desaprumo; h= altura da edificação em metros, com limite ϕ não superior a 1/40H.

$$\phi = \frac{1}{100} \cdot h^{0.5} \tag{15}$$

3.5 Propriedades de contraventamento

Segundo Accetti (1998), as paredes que resistem a ação do vento são as dispostas perpendicularmente a ele, as quais passam as ações para as lajes. As lajes por sua vez, são consideradas diafragmas rígidos, ou seja, não possuem deformações axiais e distribuem as ações para as paredes de contraventamento. As paredes de contraventamento estão dispostas paralelamente a ação do vento, e, portanto, como os ventos atuam nas duas direções principais, tem-se painéis de contraventamento nos dois sentidos, formando assim uma estrutura rígida. A Figura 5 ilustra como as ações são distribuídas pela estrutura.

Figura 5: Distribuição das ações do vento entre painéis de contraventamento.


Fonte: Accetti (1998).

Para cálculo da rigidez foram consideradas as paredes mais as abas das paredes amarradas a essas, com comprimento igual a 6 vezes a espessura (6x0,14m= 0,84m). Nas paredes amarradas que possuem aberturas, o comprimento da aba se limita ao começo da abertura, não invadindo os lintéis.

Na Figura 6, está apresentado um exemplo de como obter a inércia da parede PX2B, que tem parcela na resistência contra as cargas horizontais no eixo X, sendo considerado a aba da parede perpendicular a ela (84 cm). A parede PX2B está limitada por duas aberturas ao seu entorno.

Também é indicada a distância entre o centro de gravidade da parede mais aba, e sua distância até as extremidades no eixo de atuação da carga horizontal. Esse valor é importante para calcular as tensões que cada lado da parede estará sujeito.

Figura 6: Inércia e distância CG as extremidades da parede PX2B.

Fonte: Autor (2018)

4 RESULTADOS E DISCUSSÃO

4.1 Cálculos e verificações

Dentro das cargas verticais de um edifício residencial têm-se as cargas permanentes e as variáveis. O carregamento de uma parede é composto pelo seu peso próprio, carga das aberturas adjacentes a ela, e pela carga da laje que ela está recebendo. Na Tabela 4, é apresentado o comprimento (L) de cada parede, e os resultados das cargas devido ao peso próprio de cada parede.

Tabela 4: Carga devido ao peso próprio das paredes estruturais.

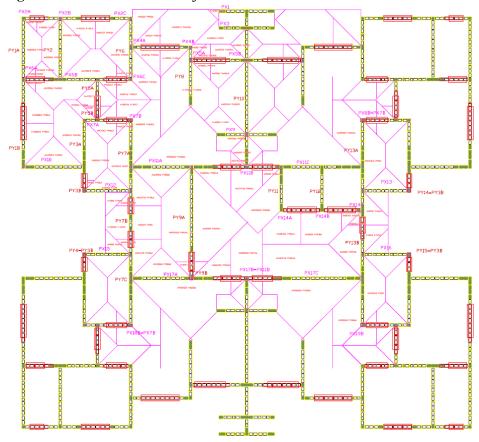
		_		•		_	_							
				C	ARGA DEVI	OO AO PE	SO PRÓP	RIO DAS PA	REDES (K	n)				
PAREDE	L(m)	PP par.	PAREDE	L(m)	PP par.	PAREDE	L(m)	PP par.	PAREDE	L(m)	PP par.	PAREDE	L(m)	PP par.
PX1	2,34	15,2	РХ7В	0,17	1,1	PX16	1,95	12,7	PY5B	0,16	1,0	PY14	0,13	0,8
PX2A	0,28	1,8	PX8B	0,17	1,1	PX17A	3,76	24,4	PY6	2,55	16,6	PY15	0,13	0,8
PX2B	1,56	10,1	P X 9	2,54	16,5	PX17B	0,47	3,1	PY7A	3,23	21,0			
PX2C	0,88	5,7	PX10	2,55	16,6	PX17C	3,76	24,4	PY7B	0,71	4,6			
P X 3	2,34	15,2	PX11A	3,76	24,4	PX18B	0,17	1,1	PY7C	3,23	21,0			
PX4A	0,43	2,8	PX11B	0,47	3,1	PX19B	0,17	1,1	PY8	2,42	15,7			
PX4B	0,48	3,1	PX11C	3,76	24,4	PY1A	3,68	23,9	PY9A	3,57	23,2			
PX5A	0,18	1,2	PX12	1,95	12,7	PY1B	1,13	7,3	PY9B	0,29	1,9	1		
PX5B	1,76	11,4	PX13	1,95	12,7	PY2	2,41	15,7	PY10	6,50	42,3			
PX6A	0,13	0,8	PX14A	0,28	1,8	PY3A	2,23	14,5	PY11	1,80	11,7			
PX6B	2,58	16,8	PX14B	0,46	3,0	PY3B	0,13	0,8	PY12	1,80	11,7			
PX6C	0,17	1,1	PX14C	0,28	1,8	PY4	0,13	0,8	PY13A	4,03	26,2			
PX7A	0.92	6.0	PX15	1.95	12.7	PY5A	0.68	4.4	PY13B	3.83	24.9			

A carga proveniente das aberturas é dividida entre as duas paredes adjacentes a ela. Na Tabela 5, é apresentado o comprimento (L) das aberturas, e a carga resultante do seu peso próprio dividido entre dois nos locais onde a abertura é comum a duas paredes. "L abert 1" e "L abert 2" são respectivamente as aberturas localizadas a esquerda e a direita das paredes.

Tabela 5: Carga devido as aberturas adjacentes as paredes.

	CARGA DEVIDO AS ABERTURAS ADJACENTES AS PAREDES												
PAREDE	L ABERT 1	Labert 2	PP aber (Kn)	PAREDE	L ABERT 1	Labert 2	PP aber. (Kn)						
PX1	_	_	_	PX17A	_	0,86	0,54						
PX2A	_	0,60	1,20	PX17B	0,86	0,86	1,08						
PX2B	0,60	1,20	3,60	PX17C	0,86	_	0,54						
PX2C	1,20	_	2,40	PX18B	0,86	_	0,54						
PX3	_	_	_	PX19B	0,86	_	0,54						
PX4A	0,00	1,60	1,00	PY1A	1,40	_	2,80						
PX4B	1,60	_	1,00	PY1B	_	1,40	2,80						
PX5A	0,00	1,30	0,81	PY2	_	_	_						
PX5B	1,30	1,30	1,63	PY3A	0,72		1,44						
PX6A	_	0,76	0,48	PY3B	_	0,72	1,44						
PX6B	0,76	0,86	1,01	PY4	_	0,72	1,44						
PX6C	0,86	_	0,54	PY5A	0,86	_	0,54						
PX7A	0,00	0,86	0,54	PY5B	_	0,86	0,54						
PX7B	0,86	_	0,54	PY6	_	_	_						
PX8B	0,86	_	0,54	PY7A	0,69	_	1,38						
PX9	_	_	_	PY7B	0,69	0,69	2,76						
PX10	_	_	_	PY7C		0,69	1,38						
PX11A	_	0,86	0,54	PY8	_	_	_						
PX11B	0,86	0,86	1,08	PY9A	0,80	_	0,50						
PX11C	0,86	_	0,54	PY9B		0,80	0,50						
PX12	_	_	_	PY10	_	_	_						
PX13	_	_	_	PY11	_	_	_						
PX14A	_	1,20	0,75	PY12	_	_	_						
PX14B	1,20	1,20	1,50	PY13A	0,69	_	1,38						
PX14C		1,20	0,75	PY13B	<u> </u>	0,69	1,38						
PX15	_	_	_	PY14	_	0,72	1,44						
PX16	_	_	_	PY15	_	0,72	1,44						

Fonte: Autor (2018).


Para compor o carregamento das lajes é utilizada a teoria das charneiras plásticas e a distribuição das áreas de influência é mostrada na Figura 7.

As áreas de influência são feitas apenas em parte do edifício, pois este é simétrico, não havendo necessidade de se repetir em todo. Na Tabela 6 é exposta a área de laje que solicitará cada parede estrutural, bem como a carga total desta e as parcelas de cargas permanentes (70%) e acidentais (30%).

Tabela 6: Cargas provenientes das lajes.

				CARGA PROVENIEN	ITE DAS LAJES				
PAREDE	ÁREA LAJE (Cm²)	Carga laje (Kn)	Carga Acid. laje (Kn)	Carga perm. laje (Kn)	PAREDE	ÁREA LAJE (Cm²)	Carga laje (Kn)	Carga Acid. laje (Kn)	Carga perm. laje (Kn)
PX1	2079,4	1,04	0,31	0,73	PX17A	80429	40,21	12,06	28,15
PX2A	1275,1	0,64	0,19	0,45	PX17B	29464	14,73	4,42	10,31
PX2B	13365,2	6,68	2,00	4,68	PX17C	100240,7	50,12	15,04	35,08
PX2C	9670,3	4,84	1,45	3,38	PX18B	9691,4	4,85	1,45	3,39
PX3	20768,6	10,38	3,12	7,27	PX19B	9691,4	4,85	1,45	3,39
PX4A	13340,1	6,67	2,00	4,67	PY1A	25918,6	12,96	3,89	9,07
PX4B	36287,9	18,14	5,44	12,70	PY1B	13887,6	6,94	2,08	4,86
PX5A	5587,7	2,79	0,84	1,96	PY2	26540,3	13,27	3,98	9,29
PX5B	32665,4	16,33	4,90	11,43	РҮЗА	38301,4	19,15	5,75	13,41
PX6A	1936	0,97	0,29	0,68	PY3B	630,1	0,32	0,09	0,22
PX6B	42397,8	21,20	6,36	14,84	PY4	630,1	0,32	0,09	0,22
PX6C	9691,8	4,85	1,45	3,39	PY5A	9464	4,73	1,42	3,31
PX7A	13709,3	6,85	2,06	4,80	PY5B	2704	1,35	0,41	0,95
PX7B	9691,4	4,85	1,45	3,39	PY6	40872,7	20,44	6,13	14,31
PX8B	9691,4	4,85	1,45	3,39	PY7A	50883	25,44	7,63	17,81
PX9	30112	15,06	4,52	10,54	PY7B	12019,6	6,01	1,80	4,21
PX10	14520,3	7,26	2,18	5,08	PY7C	50883	25,44	7,63	17,81
PX11A	80429,3	40,21	12,06	28,15	PY8	47560,4	23,78	7,13	16,65
PX11B	21318	10,66	3,20	7,46	PY9A	86892,8	43,45	13,03	30,41
PX11C	56218,9	28,11	8,43	19,68	PY9B	3782	1,89	0,57	1,32
PX12	13190,2	6,60	1,98	4,62	PY10	55630,8	27,82	8,34	19,47
PX13	13190,2	6,60	1,98	4,62	PY11	24389,8	12,19	3,66	8,54
PX14A	19272,6	9,64	2,89	6,75	PY12	_	_	-	_
PX14B	21509	10,75	3,23	7,53	PY13A	49495,6	24,75	7,42	17,32
PX14C	3240,1	1,62	0,49	1,13	PY13B	62775,5	31,39	9,42	21,97
PX15	13190,2	6,60	1,98	4,62	PY14	630,1	0,32	0,09	0,22
PX16	13190,2	6,60	1,98	4,62	PY15	630,1	0,32	0,09	0,22

Figura 7: Áreas de influencia lajes.

Fonte: Autor (2018).

A Tabela 7 é apresentada os valores das cargas verticais permanentes e acidentais atuando nas paredes do edifício.

 Tabela 7: Carga vertical por parede.

CARGA VERTICAL POR PAREDE EM VALORES CARACTERÍSTICOS (KN)											
PAREDE	Total perm.	Total acid.	PAREDE	Total perm.	Total acid.						
PAREDE	(Kn)	(Kn)	PAREDE	(Kn)	(Kn)						
PX1	15,9	0,31	PX17A	53,1	12,06						
PX2A	3,5	0,19	PX17B	14,4	4,42						
PX2B	18,4	2,00	PX17C	60,0	15,04						
PX2C	11,5	1,45	PX18B	5,0	1,45						
PX3	22,5	3,12	PX19B	5,0	1,45						
PX4A	8,5	2,00	PY1A	35,8	3,89						
PX4B	16,8	5,44	PY1B	15,0	2,08						
PX5A	3,9	0,84	PY2	25,0	3,98						
PX5B	24,5	4,90	PY3A	29,3	5,75						
PX6A	2,0	0,29	PY3B	2,5	0,09						
PX6B	32,6	6,36	PY4	2,5	0,09						
PX6C	5,1	1,45	PY5A	8,3	1,42						
PX7A	11,3	2,06	PY5B	2,5	0,41						
PX7B	5,0	1,45	PY6	30,9	6,13						
PX8B	5,0	1,45	PY7A	40,2	7,63						
PX9	27,0	4,52	PY7B	11,6	1,80						
PX10	21,7	2,18	PY7C	40,2	7,63						
PX11A	53,1	12,06	PY8	32,4	7,13						
PX11B	11,6	3,20	PY9A	54,1	13,03						
PX11C	44,6	8,43	PY9B	3,7	0,57						
PX12	17,3	1,98	PY10	61,7	8,34						
PX13	17,3	1,98	PY11	20,2	3,66						
PX14A	9,3	2,89	PY12	11,7	0,00						
PX14B	12,0	3,23	PY13A	44,9	7,42						
PX14C	3,7	0,49	PY13B	48,2	9,42						
PX15	17,3	1,98	PY14	2,5	0,09						
PX16	17,3	1,98	PY15	2,5	0,09						

Como o edifício é simétrico, as paredes que são iguais não foram inseridas nas tabelas acima. Para avaliar as cargas destas, a Tabela 8, mostra o número de repetições que cada uma apresenta e a carga vertical referente as mesmas.

Tabela 8: Cargas vertical por parede x repetições.

CA	CARGA VERTICAL POR PAREDE X REPETIÇÕES EM VALORES CARACTERÍSTICOS (KN)													
PAREDE	REPETIÇÕES	Total perm. (Kn)	Total acid. (Kn)	PAREDE	REPETIÇÕES	Total perm. (Kn)	Total acid. (Kn)							
PX1	2	31,88	0,62	PX17A	1	53,10	12,06							
PX2A	4	13,87	0,77	PX17B	1	14,44	4,42							
PX2B	4	73,67	8,02	PX17C	1	60,03	15,04							
PX2C	4	46,02	5,80	PX18B	1	5,05	1,45							
PX3	2	44,96	6,23	PX19B	1	5,05	1,45							
PX4A	4	33,86	8,00	PY1A	4	143,17	15,55							
PX4B	4	67,28	21,77	PY1B	4	60,02	8,33							
PX5A	2	7,88	1,68	PY2	4	99,82	15,92							
PX5B	1	24,50	4,90	PY3A	4	117,36	22,98							
PX6A	4	7,99	1,16	PY3B	1	2,51	0,09							
PX6B	4	130,43	25,44	PY4	1	2,51	0,09							
PX6C	4	20,22	5,82	PY5A	4	33,08	5,68							
PX7A	4	45,19	8,23	PY5B	4	10,10	1,62							
PX7B	1	5,05	1,45	PY6	4	123,52	24,52							
PX8B	1	5,05	1,45	PY7A	1	40,18	7,63							
PX9	2	54,10	9,03	PY7B	1	11,58	1,80							
PX10	4	86,63	8,71	PY7C	1	40,18	7,63							
PX11A	1	53,10	12,06	PY8	4	129,50	28,54							
PX11B	1	11,59	3,20	PY9A	1	54,12	13,03							
PX11C	1	44,62	8,43	PY9B	1	3,71	0,57							
PX12	1	17,29	1,98	PY10	2	123,44	16,69							
PX13	1	17,29	1,98	PY11	1	20,24	3,66							
PX14A	1	9,32	2,89	PY12	1	11,70	0,00							
PX14B	1	12,02	3,23	PY13A	1	44,90	7,42							
PX14C	1	3,70	0,49	PY13B	1	48,25	9,42							
PX15	1	17,29	1,98	PY14	1	2,51	0,09							
PX16	1	17,29	1,98	PY15	1	2,51	0,09							

Fonte: Autor (2018).

O resultado do somatório de todas as cargas verticais permanentes da Tabela 8 é igual a 216,46 Tf, e das cargas acidentais é 38,31 Tf, totalizando 254,77 Tf por pavimento "Tipo". O edificio é composto por 12 pavimentos "Tipo", resultando em uma carga total de 3057,27 Tf.

A distribuição das cargas verticais segue o critério de distribuição por grupos isolados de paredes. Neste critério, os grupos são separados pelas aberturas, e a resultante das cargas verticais é feita para cada nível do edifício, somando as cargas de cada parede pertencente ao grupo e dividindo pelo somatório dos comprimentos, obtendo assim um carregamento distribuído por grupo. É suposto que o carregamento do grupo é distribuído uniformemente pelas paredes. Na Figura 8 é indicada a divisão dos grupos de paredes.

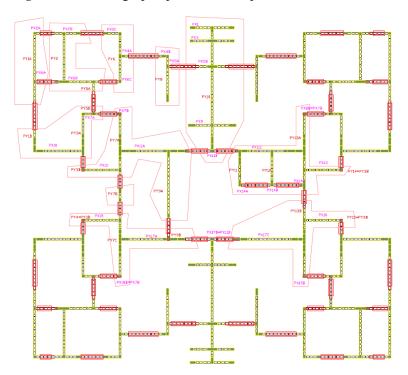


Figura 8: Divisão grupos pavimento "Tipo".

Fonte: Autor (2018).

O pavimento foi dividido em 11 grupos e definidos na Tabela 9, a qual apresenta o comprimento equivalente do grupo e a carga total permanente e acidental de cada um.

Tabela 9: Divisão grupos pavimento "Tipo".

	TABELA COMPOSIÇÃO GRUPOS			
GRUPO	PAREDES	L(m)	G total (Kn)	Q total (Kn)
1	PX1-PX3-PX5B-PX9-PY10-PX11B	16,0	163,28	24,39
2	PX2A-PX6A-PY1A	4,1	41,26	4,37
3	PX2B-PX6B-PY2-PY5A	7,2	84,25	13,77
4	PX2C-PX4A-PX6C-PY6	4,0	55,90	11,04
5	PX4B-PX5A-PY8	3,1	53,14	13,42
6	PY1B-PX10-PX7A-PY5B-PY3A	7,0	79,82	12,47
7	PX7B-PX11A-PX12-PY3B-PY7A-PY9A	12,8	172,2	36,3
8	PY7B	0,7	11,6	1,8
9	PX8B-PX11C-PX14A-PX14B-PX14C-PX13-PY11-PY12-PY13A-PY14	14,7	171,3	29,6
10	PY4-PX15-PX17A-PX18B-PY7C-PY9B	9,5	121,8	23,8
11	PX17C-PX16-PX19B-PY13B-PY15	9,8	133,1	28,0

Dividindo a carga total de cada grupo pelo seu comprimento equivalente, obtém-se o carregamento distribuído por grupo por pavimento, o qual é usado para calcular o fpk e consequentemente o fbk necessário para resistir à esforços de compressão simples. A Tabela 10 indica o carregamento por grupo relativo a cada pavimento do edifício.

Tabela 10: Carga distribuída por pavimento.

			CARGA	DISTRIBL	IIDA POR	GRUPO F	OR PAVI	MENTOS	(Kn/m)			
GRUPO	1	.2	1	1	1	.0	9	•	8	3	7	7
GROPO	G	Q	G	Q	G	Q	G	Q	G	Q	G	Q
1	10,2	1,5	20,5	3,1	30,7	4,6	40,9	6,1	51,2	7,6	61,4	9,2
2	10,1	1,1	20,2	2,1	30,3	3,2	40,3	4,3	50,4	5,3	60,5	6,4
ε	11,7	1,9	23,3	3,8	35,0	5,7	46,6	7,6	58,3	9,5	69,9	11,4
4	13,9	2,7	27,7	5,5	41,6	8,2	55,4	10,9	69,3	13,7	83,2	16,4
5	17,3	4,4	34,5	8,7	51,8	13,1	69,0	17,4	86,3	21,8	103,5	26,1
6	11,4	1,8	22,8	3,6	34,3	5,4	45,7	7,1	57,1	8,9	68,5	10,7
7	13,4	2,8	26,9	5,7	40,3	8,5	53,8	11,3	67,2	14,2	80,7	17,0
8	16,3	2,5	32,6	5,1	48,9	7,6	65,2	10,2	81,6	12,7	97,9	15,2
9	11,7	2,0	23,4	4,0	35,1	6,1	46,8	8,1	58,4	10,1	70,1	12,1
10	12,8	2,5	25,6	5,0	38,4	7,5	51,2	10,0	63,9	12,5	76,7	15,0
11	13,5	2,8	27,1	5,7	40,6	8,5	54,1	11,4	67,7	14,2	81,2	17,1
GRUPO	(5		5	4	1	3			2	1	
GKUPU	G	Q	G	Q	G	Q	G	Q	G	Q	G	Q
1	71,7	10,7	81,9	12,2	92,1	13,8	102,4	15,3	112,6	16,8	122,8	18,3
2	70,6	7,5	80,7	8,5	90,8	9,6	100,9	10,7	111,0	11,8	121,0	12,8
3	81,6	13,3	93,2	15,2	104,9	17,1	116,6	19,0	128,2	20,9	139,9	22,9
4	97,0	19,2	110,9	21,9	124,8	24,6	138,6	27,4	152,5	30,1	166,3	32,8
5	120,8	30,5	138,0	34,8	155,3	39,2	172,5	43,6	189,8	47,9	207,0	52,3
6	80,0	12,5	91,4	14,3	102,8	16,1	114,2	17,8	125,7	19,6	137,1	21,4
7	94,1	19,8	107,6	22,6	121,0	25,5	134,5	28,3	147,9	31,1	161,4	34,0
8	114,2	17,8	130,5	20,3	146,8	22,9	163,1	25,4	179,4	27,9	195,7	30,5
9	81,8	14,2	93,5	16,2	105,2	18,2	116,9	20,2	128,6	22,2	140,3	24,3
10	89,5	17,5	102,3	20,0	115,1	22,5	127,9	25,0	140,7	27,5	153,5	30,0
11	94,7	19,9	108,3	22,8	121,8	25,6	135,3	28,4	148,9	31,3	162,4	34,1

Fonte: Autor (2018).

Com os resultados da Tabela 10 é possível calcular o coeficiente redutor devido à esbeltez da parede (R) e a resistência de cálculo a compressão (fpk).

O coeficiente redutor devido a esbeltez da parede (R) é igual a 0,899 e os valores de fpk são mostrados na Tabela 11.

Tabela 11: Fpk necessário por pavimento.

			FPK NECESSÁRIO POR PAVIMENTO (KPa)													
GRUPO	12	11	10	9	8	7	6	5	4	3	2	1				
1	373,5	747,1	1120,6	1494,2	1867,7	2241,3	2614,8	2988,4	3361,9	3735,5	4109,0	4482,6				
2	354,2	708,3	1062,5	1416,7	1770,8	2125,0	2479,2	2833,3	3187,5	3541,7	3895,8	4250,0				
3	430,5	861,1	1291,6	1722,1	2152,7	2583,2	3013,7	3444,3	3874,8	4305,3	4735,9	5166,4				
4	527,0	1053,9	1580,9	2107,9	2634,8	3161,8	3688,8	4215,7	4742,7	5269,7	5796,6	6323,6				
5	686,0	1372,0	2058,0	2744,0	3430,0	4116,1	4802,1	5488,1	6174,1	6860,1	7546,1	8232,1				
6	419,4	838,7	1258,1	1677,5	2096,9	2516,2	2935,6	3355,0	3774,4	4193,7	4613,1	5032,5				
7	516,9	1033,7	1550,6	2067,5	2584,4	3101,2	3618,1	4135,0	4651,9	5168,7	5685,6	6202,5				
8	598,5	1197,1	1795,6	2394,1	2992,6	3591,2	4189,7	4788,2	5386,7	5985,3	6583,8	7182,3				
9	435,4	870,7	1306,1	1741,4	2176,8	2612,1	3047,5	3482,9	3918,2	4353,6	4788,9	5224,3				
10	485,3	970,6	1455,9	1941,2	2426,5	2911,8	3397,0	3882,3	4367,6	4852,9	5338,2	5823,5				
11	519,9	1039,9	1559,8	2079,8	2599,7	3119,7	3639,6	4159,6	4679,5	5199,5	5719,4	6239,4				

Fonte: Autor (2018).

As ações laterais a serem consideradas são a força do vento e desaprumo. O edifício foi dividido em duas direções principais para análise dos esforços, X e Y. Para cálculo da força do vento foi adotado os seguintes parâmetros: Vo = 40 m/s; S1 = 1; S3 = 1; Coeficiente de arrasto

(Ca) vento X = 1,19; Coeficiente de arrasto (Ca) vento Y = 1,23; Área da projeção ortogonal da edificação perpendicular ao eixo $X = 2,7m.17,19m = 46,413m^2$; Área da projeção ortogonal da edificação perpendicular ao eixo $Y = 2,7m.18,84m = 50,868m^2$; Para determinar S2 foi considerado classe A, categoria IV;

A Tabela 12 indica os resultados do cálculo da força do vento nas direções X e Y por pavimento.

Tabela 12: Força do vento por pavimento.

		v	ENTO EM Y					VI	ENTO EM X		
z(m)	S2	Vk (m/s)	q (Kn/m²)	ÁREA (m²)	Fa (Kn)	z(m)	52	Vk (m/s)	q (Kn/m²)	ÁREA (m²)	Fa (Kn)
2,7	0,73	29,40	0,53	50,87	33,15	2,7	0,73	29,40	0,53	46,41	29,26
5,4	0,80	31,95	0,63	50,87	39,15	5,4	0,80	31,95	0,63	46,41	34,56
8,1	0,84	33,54	0,69	50,87	43,15	8,1	0,84	33,54	0,69	46,41	38,09
10,8	0,87	34,72	0,74	50,87	46,23	10,8	0,87	34,72	0,74	46,41	40,81
13,5	0,89	35,66	0,78	50,87	48,78	13,5	0,89	35,66	0,78	46,41	43,06
16,2	0,91	36,45	0,81	50,87	50,96	16,2	0,91	36,45	0,81	46,41	44,98
18,9	0,93	37,13	0,85	50,87	52,88	18,9	0,93	37,13	0,85	46,41	46,68
21,6	0,94	37,73	0,87	50,87	54,60	21,6	0,94	37,73	0,87	46,41	48,20
24,3	0,96	38,27	0,90	50,87	56,17	24,3	0,96	38,27	0,90	46,41	49,58
16,2	0,91	36,45	0,81	50,87	50,96	16,2	0,91	36,45	0,81	46,41	44,98
29,7	0,98	39,20	0,94	50,87	58,94	29,7	0,98	39,20	0,94	46,41	52,03
32,4	0,99	39,61	0,96	50,87	60,18	32,4	0,99	39,61	0,96	46,41	53,12

Fonte: Autor (2018).

A força de desaprumo foi calculada multiplicando o ângulo de desaprumo, igual a 0,00176 rad, pela carga total de um pavimento, igual a 2547,7 kN, obtendo 4,48 kN. O limite do ângulo de desaprumo é igual a 0,0007716, que multiplicado pela carga total de um pavimento resulta em 1,97 kN de força de desaprumo.

Na Tabela 13 apresenta os valores da força total, força acumulada e os valores de momentos fletores ao longo dos pavimentos de todo edifício para vento em X e Y.

Tabela 13: Força acumulada e momento fletor por pavimento.

FORÇA A	FORÇA ACUMULADA (VENTO + DESAPRUMO) E MOMENTO FLETOR POR PAVIMENTO											
		Vent	:o X									
PAVIMENTO	F. vento (Kn)	F. desaprumo (Kn)	F. total (Kn)	F. acumulada	M (KN.m)							
12	53,12	1,97	55,09	55,09	148,74							
11	52,03	1,97	53,99	109,08	443,27							
10	44,98	1,97	46,95	156,03	864,55							
9	49,58	1,97	51,55	207,58	1425,01							
8	48,20	1,97	50,16	257,74	2120,92							
7	46,68	1,97	48,64	306,39	2948,16							
6	44,98	1,97	46,95	353,33	3902,16							
5	43,06	1,97	45,02	398,36	4977,73							
4	40,81	1,97	42,78	441,14	6168,79							
3	38,09	1,97	40,05	481,19	6873,03							
2	34,56	1,97	36,52	517,71	8282,71							
1	29,26	1,97	31,23	548,94	9840,92							
		Vent	:o Y	•								
PAVIMENTO	F. vento (Kn)	F. desaprumo (Kn)	F. total (Kn)	F. acumulada	M (KN.m)							
12	60,18	1,97	62,15	62,15	167,80							
11	58,94	1,97	60,90	123,05	500,03							
10	50,96	1,97	52,92	175,97	975,16							
9	56,17	1,97	58,13	234,10	1607,24							
8	54,60	1,97	56,57	290,67	2392,05							
7	52,88	1,97	54,84	345,52	3324,94							
6	50,96	1,97	52,92	398,44	4400,73							
5	48,78	1,97	50,74	449,18	5613,52							
4	46,23	1,97	48,20	497,38	6956,44							
3	43,15	1,97	45,11	542,49	7749,99							
2	39,15	1,97	41,11	583,61	9339,16							
1	33,15	1,97	35,11	618,72	11095,88							

Os esforços laterais são distribuídos de forma proporcional a rigidez de cada parede de contraventamento. Cada painel recebe uma parcela de carga relativa a rigidez dele em relação a de todos os painéis na mesma direção.

Na Tabela 14, é apresentado as propriedades de contraventamento das paredes do edifício, separadas nas direções X e Y. As paredes simétricas não foram nomeadas, porém para cálculo da rigidez de cada parede é necessário contabilizar as mesmas.

Tabela 14: Propriedades de contraventamento.

		Vento	x			Vento Y						
PAREDE	ly	Xesq	Xdir	Rep.	IX Rep.	PAREDE	bx	Yesq	Ydir	Rep.	IX Rep.	
PX1	0,15	1,17	1,17	2	0,3	PY1A	0,712	1,96	1,79	4	2,848	
PX2A	0,00107	0,10	0,25	4	0,00428	PY1B	0,0398	0,38	0,82	4	0,1592	
PX2B	0,0452	0,75	0,82	4	0,1808	PY2	0,876	1,34	1,35	4	3,504	
PX2C	0,0204	0,67	0,29	4	0,0816	PY3A	0,367	1,19	1,11	4	1,468	
PX3	0,15	1,17	1,17	2	0,3	PY3B	0,000306	0,08	0,12	1	0,000306	
PX4A	0,0036	0,11	0,39	4	0,0144	PY4	0,000306	0,12	0,08	1	0,000306	
PX4B	0,0041	0,40	0,15	4	0,0164	PY5A	0,0111	0,56	0,19	4	0,0444	
PX5A	0,00059	0,08	0,17	2	0,00118	PY5B	0,000387	0,08	0,15	4	0,001548	
PX5B	0,064	0,88	0,88	1	0,064	PY6	0,405	1,58	1,11	4	1,62	
PX6A	0,0005	0,07	0,13	4	0,002	PY7A	0,646	1,39	1,91	1	0,646	
PX6B	0,32	1,30	1,28	4	1,28	PY7B	0,00417	0,36	0,36	1	0,00417	
PX6C	0,000427	0,16	0,08	4	0,001708	PY7C	0,646	1,91	1,39	1	0,646	
PX7A	0,0242	0,30	0,69	4	0,0968	PY8	0,251	1,43	1,06	4	1,004	
P×7B	0,000428	0,16	0,08	1	0,000428	PY9A	1,06	2,38	1,27	1	1,06	
PX8B	0,000428	0,08	0,16	1	0.000428	PY9B	0,00143	0,09	0,27	1	0,00143	
PX9	0,000420	1,27	1,27	2	0,384	PY10	8,53	3,87	2,78	2	17,06	
PX10	0,192	1,40	1,27	4	2,736	PY11	0,208	1,22	0,72	1	0,208	
PX11A	1,37	1,52	2,31	1	1,37	PY12	0,259	1,28	0,66	1	0,259	
PX11B	0,0014	0,24	0,24	1	0,0014	PY13A	1,04	1,89	2,21	1	1,04	
PX11C	1,67	2,18	1,65	1	1,67	PY13B	0,864	2,09	1,82	1	0,864	
PX12	0.214	1,35	0.74	1	0,214	PY14	0,000306	0,08	0,12	1	0,000306	
PX13	0,214	0.74	1,35	1	0,214	PY15	0,000306	0,12	0,08	1	0,000306	
PX14A	0,00107	0,10	0,25	1	0,00107					TOTAL=	32,44	
PX14B	0,00133	0,23	0,23	1	0,00133							
PX14C	0,00115	0,25	0,10	1	0,00115							
P×15	0,214	1,35	0,74	1	0,214							
PX16	0,214	0,74	1,35	1	0,214							
PX17A	1,26	1,40	2,43	1	1,26							
PX17B	0,0014	0,24	0,24	1	0,0014							
PX17C	1,21	2,48	1,35	1	1,21							
P×18B	0,000428	0,16	0.08	1	0.000428							
PX19B	0,000428	0,08	0,16	1	0,000428							
				TOTAL=	11,84							

Fonte: Autor (2018).

Multiplicando a carga acumulada por pavimento pela rigidez relativa a cada parede é possível obter a carga absorvida por cada parede do edifício. Nas Tabelas 15 e 16 são demostrados os valores de carga horizontal (vento + desaprumo) absorvido por cada parede do edifício em todas os pavimentos nas direções X e Y, respectivamente.

Tabela 15: Carga horizontal por parede por pavimento eixo X.

				FORÇ	A VENTO + D	ESAPRUMO	POR PARED	E VENTO X ((Kn)				
PAR	ly/Soma ly	12	11	10	9	8	7	6	5	4	3	2	1
PX1	0,01267	0,698	1,382	1,977	2,630	3,266	3,882	4,477	5,048	5,590	6,098	6,560	6,956
PX2A	0,00009	0,005	0,010	0,014	0,019	0,023	0,028	0,032	0,036	0,040	0,043	0,047	0,050
PX2B	0,00382	0,210	0,417	0,596	0,793	0,984	1,170	1,349	1,521	1,684	1,837	1,977	2,096
PX2C	0,00172	0,095	0,188	0,269	0,358	0,444	0,528	0,609	0,687	0,760	0,829	0,892	0,946
PX3	0,01267	0,698	1,382	1,977	2,630	3,266	3,882	4,477	5,048	5,590	6,098	6,560	6,956
PX4A	0,00030	0,017	0,033	0,047	0,063	0,078	0,093	0,107	0,121	0,134	0,146	0,157	0,167
PX4B	0,00035	0,019	0,038	0,054	0,072	0,089	0,106	0,122	0,138	0,153	0,167	0,179	0,190
PX5A	0,00005	0,003	0,005	0,008	0,010	0,013	0,015	0,018	0,020	0,022	0,024	0,026	0,027
PX5B	0,00541	0,298	0,590	0,844	1,122	1,394	1,657	1,910	2,154	2,385	2,602	2,799	2,968
PX6A	0,00004	0,002	0,005	0,007	0,009	0,011	0,013	0,015	0,017	0,019	0,020	0,022	0,023
PX6B	0,02703	1,489	2,949	4,218	5,612	6,968	8,283	9,552	10,769	11,925	13,008	13,996	14,840
PX6C	0,00004	0,002	0,004	0,006	0,007	0,009	0,011	0,013	0,014	0,016	0,017	0,019	0,020
PX7A	0,00204	0,113	0,223	0,319	0,424	0,527	0,626	0,722	0,814	0,902	0,984	1,058	1,122
PX7B	0,00004	0,002	0,004	0,006	0,008	0,009	0,011	0,013	0,014	0,016	0,017	0,019	0,020
PX8B	0,00004	0,002	0,004	0,006	0,008	0,009	0,011	0,013	0,014	0,016	0,017	0,019	0,020
PX9	0,01622	0,894	1,769	2,531	3,367	4,181	4,970	5,731	6,461	7,155	7,805	8,397	8,904
PX10	0,05778	3,183	6,303	9,016	11,995	14,893	17,704	20,417	23,019	25,490	27,805	29,915	31,720
PX11A	0,11574	6,376	12,625	18,059	24,024	29,830	35,460	40,894	46,105	51,055	55,691	59,918	63,532
PX11B	0,00012	0,007	0,013	0,018	0,025	0,030	0,036	0,042	0,047	0,052	0,057	0,061	0,065
PX11C	0,14108	7,772	15,389	22,013	29,285	36,362	43,225	49,849	56,200	62,236	67,886	73,039	77,445
PX12	0,01808	0,996	1,972	2,821	3,753	4,660	5,539	6,388	7,202	7,975	8,699	9,360	9,924
PX13	0,01808	0,996	1,972	2,821	3,753	4,660	5,539	6,388	7,202	7,975	8,699	9,360	9,924
PX14A	0,00009	0,005	0,010	0,014	0,019	0,023	0,028	0,032	0,036	0,040	0,043	0,047	0,050
PX14B	0,00011	0,006	0,012	0,018	0,023	0,029	0,034	0,040	0,045	0,050	0,054	0,058	0,062
PX14C	0,00010	0,005	0,011	0,015	0,020	0,025	0,030	0,034	0,039	0,043	0,047	0,050	0,053
PX15	0,01808	0,996	1,972	2,821	3,753	4,660	5,539	6,388	7,202	7,975	8,699	9,360	9,924
PX16	0,01808	0,996	1,972	2,821	3,753	4,660	5,539	6,388	7,202	7,975	8,699	9,360	9,924
PX17A	0,10644	5,864	11,611	16,609	22,095	27,435	32,613	37,610	42,403	46,956	51,220	55,107	58,431
PX17B	0,00012	0,007	0,013	0,018	0,025	0,030	0,036	0,042	0,047	0,052	0,057	0,061	0,065
PX17C	0,10222	5,631	11,150	15,950	21,219	26,346	31,319	36,118	40,720	45,093	49,187	52,921	56,113
PX18B	0,00004	0,002	0,004	0,006	0,008	0,009	0,011	0,013	0,014	0,016	0,017	0,019	0,020
PX19B	0,00004	0,002	0,004	0,006	0,008	0,009	0,011	0,013	0,014	0,016	0,017	0,019	0,020
SOMA	0,68	37,39	74,04	105,90	140,89	174,93	207,95	239,81	270,37	299,41	326,59	351,38	372,58

Tabela 16: Carga horizontal por parede por pavimento eixo Y.

	FORÇA VENTO + DESAPRUMO POR PAREDE VENTO Y (Kn)													
PAR	lx/Soma lx	12	11	10	9	8	7	6	5	4	3	2	1	
PY1A	0,02195	1,364	2,701	3,862	5,138	6,380	7,584	8,745	9,859	10,917	11,907	12,810	13,580	
PY1B	0,00123	0,076	0,151	0,216	0,287	0,357	0,424	0,489	0,551	0,610	0,666	0,716	0,759	
PY2	0,02700	1,678	3,323	4,752	6,322	7,849	9,330	10,760	12,130	13,432	14,650	15,760	16,708	
PY3A	0,01131	0,703	1,392	1,991	2,649	3,289	3,909	4,508	5,082	5,627	6,138	6,603	7,000	
PY3B	0,00001	0,001	0,001	0,002	0,002	0,003	0,003	0,004	0,004	0,005	0,005	0,006	0,006	
PY4	0,00001	0,001	0,001	0,002	0,002	0,003	0,003	0,004	0,004	0,005	0,005	0,006	0,006	
PY5A	0,00034	0,021	0,042	0,060	0,080	0,099	0,118	0,136	0,154	0,170	0,186	0,200	0,212	
PY5B	0,00001	0,001	0,001	0,002	0,003	0,003	0,004	0,005	0,005	0,006	0,006	0,007	0,007	
PY6	0,01248	0,776	1,536	2,197	2,923	3,629	4,314	4,975	5,608	6,210	6,773	7,286	7,725	
PY7A	0,01991	1,238	2,450	3,504	4,662	5,789	6,881	7,935	8,945	9,905	10,803	11,622	12,321	
PY7B	0,00013	0,008	0,016	0,023	0,030	0,037	0,044	0,051	0,058	0,064	0,070	0,075	0,080	
PY7C	0,01991	1,238	2,450	3,504	4,662	5,789	6,881	7,935	8,945	9,905	10,803	11,622	12,321	
PY8	0,00774	0,481	0,952	1,362	1,811	2,249	2,673	3,083	3,476	3,849	4,198	4,516	4,787	
PY9A	0,03268	2,031	4,021	5,750	7,650	9,498	11,290	13,020	14,678	16,253	17,727	19,070	20,218	
PY9B	0,00004	0,003	0,005	0,008	0,010	0,013	0,015	0,018	0,020	0,022	0,024	0,026	0,027	
PY10	0,26296	16,342	32,357	46,273	61,559	76,434	90,855	104,772	118,115	130,789	142,652	153,462	162,696	
PY11	0,00641	0,398	0,789	1,128	1,501	1,864	2,215	2,555	2,880	3,189	3,478	3,742	3,967	
PY12	0,00798	0,496	0,982	1,405	1,869	2,321	2,759	3,181	3,586	3,971	4,331	4,660	4,940	
PY13A	0,03206	1,992	3,945	5,642	7,505	9,319	11,077	12,774	14,401	15,946	17,392	18,711	19,836	
PY13B	0,02663	1,655	3,277	4,687	6,235	7,742	9,203	10,612	11,964	13,248	14,449	15,544	16,479	
PY14	0,00001	0,001	0,001	0,002	0,002	0,003	0,003	0,004	0,004	0,005	0,005	0,006	0,006	
PY15	0,00001	0,001	0,001	0,002	0,002	0,003	0,003	0,004	0,004	0,005	0,005	0,006	0,006	
SOMA	0,49	30,50	60,40	86,37	114,91	142,67	169,59	195,57	220,47	244,13	266,27	286,45	303,69	

Fonte: Autor (2018).

Para obter o momento fletor que atua em cada parede do edifício, basta multiplicar o momento fletor de cada pavimento (Tabela 13) pela rigidez de cada parede. As Tabelas 17 e 18 exibem os valores de momento fletores absorvidos por cada parede por pavimento no eixo X e Y, respectivamente.

Tabela 17: Momento fletor por parede por pavimento eixo X.

	MOMENTO FLETOR POR PAREDE VENTO X (Kn.m)												
PAR	ly/Soma ly	12	11	10	9	8	7	6	5	4	3	2	1
PX1	0,01267	1,88	5,62	10,96	18,06	26,88	37,36	49,45	63,08	78,17	87,09	104,96	124,70
PX2A	0,00009	0,01	0,04	0,08	0,13	0,19	0,27	0,35	0,45	0,56	0,62	0,75	0,89
PX2B	0,00382	0,57	1,69	3,30	5,44	8,10	11,26	14,90	19,01	23,56	26,24	31,63	37,58
PX2C	0,00172	0,26	0,76	1,49	2,46	3,66	5,08	6,72	8,58	10,63	11,84	14,27	16,96
PX3	0,01267	1,88	5,62	10,96	18,06	26,88	37,36	49,45	63,08	78,17	87,09	104,96	124,70
PX4A	0,00030	0,05	0,13	0,26	0,43	0,65	0,90	1,19	1,51	1,88	2,09	2,52	2,99
PX4B	0,00035	0,05	0,15	0,30	0,49	0,73	1,02	1,35	1,72	2,14	2,38	2,87	3,41
PX5A	0,00005	0,01	0,02	0,04	0,07	0,11	0,15	0,19	0,25	0,31	0,34	0,41	0,49
PX5B	0,00541	0,80	2,40	4,67	7,70	11,47	15,94	21,10	26,91	33,35	37,16	44,78	53,21
PX6A	0,00004	0,01	0,02	0,04	0,06	0,09	0,12	0,16	0,21	0,26	0,29	0,35	0,42
PX6B	0,02703	4,02	11,98	23,37	38,52	57,34	79,70	105,49	134,56	166,76	185,80	223,91	266,03
PX6C	0,00004	0,01	0,02	0,03	0,05	0,08	0,11	0,14	0,18	0,22	0,25	0,30	0,35
PX7A	0,00204	0,30	0,91	1,77	2,91	4,34	6,03	7,98	10,18	12,61	14,05	16,93	20,12
PX7B	0,00004	0,01	0,02	0,03	0,05	0,08	0,11	0,14	0,18	0,22	0,25	0,30	0,36
PX8B	0,00004	0,01	0,02	0,03	0,05	0,08	0,11	0,14	0,18	0,22	0,25	0,30	0,36
PX9	0,01622	2,41	7,19	14,02	23,11	34,40	47,82	63,29	80,74	100,06	111,48	134,35	159,62
PX10	0,05778	8,59	25,61	49,96	82,34	122,55	170,36	225,48	287,63	356,46	397,15	478,61	568,65
PX11A	0,11574	17,22	51,30	100,06	164,93	245,47	341,21	451,62	576,10	713,95	795,46	958,61	1138,95
PX11B	0,00012	0,02	0,05	0,10	0,17	0,25	0,35	0,46	0,59	0,73	0,81	0,98	1,16
PX11C	0,14108	20,98	62,54	121,97	201,04	299,22	415,93	550,52	702,26	870,30	969,65	1168,53	1388,36
PX12	0,01808	2,69	8,01	15,63	25,76	38,34	53,30	70,55	89,99	111,52	124,25	149,74	177,91
PX13	0,01808	2,69	8,01	15,63	25,76	38,34	53,30	70,55	89,99	111,52	124,25	149,74	177,91
PX14A	0,00009	0,01	0,04	0,08	0,13	0,19	0,27	0,35	0,45	0,56	0,62	0,75	0,89
PX14B	0,00011	0,02	0,05	0,10	0,16	0,24	0,33	0,44	0,56	0,69	0,77	0,93	1,11
PX14C	0,00010	0,01	0,04	0,08	0,14	0,21	0,29	0,38	0,48	0,60	0,67	0,80	0,96
PX15	0,01808	2,69	8,01	15,63	25,76	38,34	53,30	70,55	89,99	111,52	124,25	149,74	177,91
PX16	0,01808	2,69	8,01	15,63	25,76	38,34	53,30	70,55	89,99	111,52	124,25	149,74	177,91
PX17A	0,10644	15,83	47,18	92,03	151,68	225,76	313,81	415,36	529,85	656,63	731,59	881,64	1047,51
PX17B	0,00012	0,02	0,05	0,10	0,17	0,25	0,35	0,46	0,59	0,73	0,81	0,98	1,16
PX17C	0,10222	15,20	45,31	88,37	145,66	216,80	301,36	398,88	508,82	630,57	702,56	846,66	1005,94
PX18B	0,00004	0,01	0,02	0,03	0,05	0,08	0,11	0,14	0,18	0,22	0,25	0,30	0,36
PX19B	0,00004	0,01	0,02	0,03	0,05	0,08	0,11	0,14	0,18	0,22	0,25	0,30	0,36
SOMA	0,68	100,96	300,85	586,79	967,18	1439,50	2000,97	2648,47	3378,48	4186,88	4664,85	5621,63	6679,22

Tabela 18: Momento fletor por parede por pavimento eixo Y.

	MOMENTO FLETOR POR PAREDE VENTO Y (Kn.m)												
PAR	bx/Soma bx	12	11	10	9	8	7	6	5	4	3	2	1
PY1A	0,02195	3,683	10,975	21,404	35,277	52,503	72,979	96,591	123,211	152,686	170,104	204,984	243,543
PY1B	0,00123	0,206	0,613	1,196	1,972	2,935	4,079	5,399	6,887	8,535	9,509	11,458	13,614
PY2	0,02700	4,531	13,503	26,334	43,403	64,596	89,789	118,840	151,591	187,856	209,285	252,200	299,639
PY3A	0,01131	1,898	5,657	11,032	18,184	27,063	37,617	49,788	63,509	78,702	87,680	105,659	125,534
PY3B	0,00001	0,002	0,005	0,009	0,015	0,023	0,031	0,042	0,053	0,066	0,073	0,088	0,105
PY4	0,00001	0,002	0,005	0,009	0,015	0,023	0,031	0,042	0,053	0,066	0,073	0,088	0,105
PY5A	0,00034	0,057	0,171	0,334	0,550	0,819	1,138	1,506	1,921	2,380	2,652	3,196	3,797
PY5B	0,00001	0,002	0,006	0,012	0,019	0,029	0,040	0,053	0,067	0,083	0,092	0,111	0,132
PY6	0,01248	2,095	6,243	12,175	20,066	29,865	41,512	54,943	70,085	86,851	96,759	116,599	138,532
PY7A	0,01991	3,342	9,958	19,420	32,007	47,636	66,214	87,638	111,789	138,533	154,336	185,983	220,967
PY7B	0,00013	0,022	0,064	0,125	0,207	0,307	0,427	0,566	0,722	0,894	0,996	1,201	1,426
PY7C	0,01991	3,342	9,958	19,420	32,007	47,636	66,214	87,638	111,789	138,533	154,336	185,983	220,967
PY8	0,00774	1,298	3,869	7,545	12,436	18,509	25,727	34,051	43,435	53,826	59,966	72,263	85,856
PY9A	0,03268	5,483	16,339	31,865	52,519	78,165	108,648	143,802	183,432	227,314	253,245	305,173	362,577
PY9B	0,00004	0,007	0,022	0,043	0,071	0,105	0,147	0,194	0,247	0,307	0,342	0,412	0,489
PY10	0,26296	44,123	131,485	256,423	422,632	629,003	874,312	1157,195	1476,105	1829,234	2037,902	2455,782	2917,722
PY11	0,00641	1,076	3,206	6,253	10,306	15,338	21,320	28,218	35,994	44,605	49,693	59,883	71,147
PY12	0,00798	1,340	3,992	7,786	12,833	19,099	26,547	35,136	44,820	55,542	61,878	74,566	88,592
PY13A	0,03206	5,380	16,031	31,264	51,528	76,690	106,598	141,088	179,971	223,025	248,466	299,415	355,736
PY13B	0,02663	4,469	13,318	25,973	42,808	63,711	88,559	117,212	149,514	185,282	206,418	248,745	295,535
PY14	0,00001	0,002	0,005	0,009	0,015	0,023	0,031	0,042	0,053	0,066	0,073	0,088	0,105
PY15	0,00001	0,002	0,005	0,009	0,015	0,023	0,031	0,042	0,053	0,066	0,073	0,088	0,105
SOMA	0,49	82,36	245,43	478,64	788,89	1174,10	1631,99	2160,02	2755,30	3414,45	3803,95	4583,97	5446,22

Fonte: Autor (2018).

Nas Tabelas 19 e 20 são mostradas as tensões devidas ao momento causado pelas forças horizontais nas bordas das paredes (6v-esq, 6v-dir), tensões geradas pelas cargas permanentes e acidentais (6g, 6q), além das tensões de cisalhamento (τ), geradas pela força cortante correspondente ao vento e desaprumo nos eixos x e x, respectivamente.

Tabela 19: Tensões eixo X.

	TENSÕES EIXO X											
PAREDE	бv-esq	бv,dir	бд	ба	бд+бд	τ						
	(KN/m2)	(KN/m2)	(KN/m2)	(KN/m2)	(KN/m2)	(KN/m2)						
PX1	972,68	972,68	877,43	131,05	1008,48	21,23						
PX2A	83,14	207,84	864,59	91,57	956,16	1,01						
PX2B	619,36	677,55	999,10	163,24	1162,33	9,60						
PX2C	552,85	236,94	1188,12	234,56	1422,68	7,11						
PX3	972,68	972,68	877,43	131,05	1008,48	21,23						
PX4A	91,45	324,23	1188,12	234,56	1422,68	2,38						
PX4B	332,54	124,70	1478,71	373,34	1852,05	2,47						
PX5A	64,85	142,99	1478,71	373,34	1852,05	0,78						
PX5B	731,59	731,59	877,43	131,05	1008,48	12,05						
PX6A	60,69	105,58	864,59	91,57	956,16	0,83						
PX6B	1078,27	1064,13	999,10	163,24	1162,33	41,13						
PX6C	133,85	67,34	1188,12	234,56	1422,68	0,58						
PX7A	248,57	572,80	979,25	152,96	1132,21	8,11						
PX7B	133,85	67,34	1152,77	242,66	1395,43	0,59						
PX8B	67,34	133,85	1001,99	173,37	1175,36	0,59						
PX9	1055,82	1055,82	877,43	131,05	1008,48	25,04						
PX10	1163,90	1072,45	979,25	152,96	1132,21	84,23						
PX11A	1263,66	1917,93	1152,77	242,66	1395,43	118,58						
PX11B	195,37	195,37	877,43	131,05	1008,48	0,99						
PX11C	1810,69	1369,24	1001,99	173,37	1175,36	144,62						
PX12	1119,83	617,70	1152,77	242,66	1395,43	33,92						
PX13	617,70	1119,83	1001,99	173,37	1175,36	33,92						
PX14A	83,97	207,01	1001,99	173,37	1175,36	1,01						
PX14B	191,21	191,21	1001,99	173,37	1175,36	0,96						
PX14C	211,16	79,81	1001,99	173,37	1175,36	1,09						
PX15	1119,83	617,70	1096,13	214,05	1310,17	33,92						
PX16	617,70	1119,83	1159,94	243,80	1403,73	33,92						
PX17A	1163,06	2016,86	1096,13	214,05	1310,17	109,12						
PX17B	195,37	195,37	877,43	131,05	1008,48	0,99						
PX17C	2057,60	1122,33	1159,94	243,80	1403,73	104,79						
PX18B	133,85	67,34	1096,13	214,05	1310,17	0,59						
PX19B	67,34	133,85	1159,94	243,80	1403,73	0,59						

Tabela 20: Tensões eixo Y.

	TENSÕES EIXO Y											
PAREDE	бv-esq	бv,diг	бд	бq	бд+бд	τ						
	(Kn/m²)	(Kn/m²)	(Kn/m²)	(Kn/m²)	(Kn/m²)	(Kn/m²)						
PY1A	669,74	612,96	864,59	91,57	956,16	25,87						
PY1B	130,66	279,80	979,25	152,96	1132,21	4,52						
PY2	459,38	460,75	999,10	163,24	1162,33	44,37						
PY3A	408,41	378,31	979,25	152,96	1132,21	21,74						
PY3B	26,00	42,41	1152,77	242,66	1395,43	0,21						
PY4	42,41	26,00	1096,13	214,05	1310,17	0,21						
PY5A	191,55	64,99	999,10	163,24	1162,33	2,02						
PY5B	27,36	51,31	979,25	152,96	1132,21	0,23						
PY6	540,10	380,02	1188,12	234,56	1422,68	20,51						
PY7A	476,82	651,96	1152,77	242,66	1395,43	26,67						
PY7B	121,43	121,43	1398,21	217,66	1615,87	0,80						
PY7C	651,96	476,82	1096,13	214,05	1310,17	26,67						
PY8	488,45	363,26	1478,71	373,34	1852,05	13,73						
PY9A	813,40	433,38	1152,77	242,66	1395,43	39,62						
PY9B	30,44	92,70	1096,13	214,05	1310,17	0,54						
PY10	1322,04	949,20	877,43	131,05	1008,48	175,02						
PY11	417,65	245,94	1001,99	173,37	1175,36	14,61						
PY12	438,17	225,41	1001,99	173,37	1175,36	18,19						
PY13A	647,51	754,91	1001,99	173,37	1175,36	34,56						
PY13B	713,18	620,83	1159,94	243,80	1403,73	30,18						
PY14	26,00	42,41	1001,99	173,37	1175,36	0,21						
PY15	42,41	26,00	1159,94	243,80	1403,73	0,21						

Fonte: Autor (2018).

A verificação da máxima de compressão pode ser feita pelas Equações 11 e 12 e os valores de fpk correspondentes ao eixo X e Y são apresentados nas Tabelas 21 e 22. Os resultados da equação 11 são representados por "i" e da equação 12 por "ii".

Tabela 21: Compressão máxima eixo X.

	TABELA VERIFICAÇÃO COMPRESSÃO MÁXIMA EIXO X											
PAREDE	i-esq	ii-esq	i-dir	ii-dir	Verficação							
PX1	6,8	6,0	6,8	6,0	ОК							
PX2A	4,3	4,4	4,6	4,6	ОК							
PX2B	6,5	6,2	6,6	6,3	ОК							
PX2C	7,3	7,2	6,4	6,7	ОК							
PX3	6,8	6,0	6,8	6,0	ОК							
PX4A	6,0	6,5	6,7	6,8	OK							
PX4B	8,3	8,8	7,7	8,4	NÃO OK							
PX5A	7,6	8,3	7,8	8,5	NÃO OK							
PX5B	6,1	5,7	6,1	5,7	ОК							
PX6A	4,2	4,3	4,3	4,4	OK							
PX6B	7,7	6,9	7,6	6,9	ОК							
PX6C	6,2	6,5	6,0	6,4	ОК							
PX7A	5,4	5,4	6,2	5,9	OK							
PX7B	6,0	6,4	5,8	6,3	ОК							
PX8B	5,0	5,3	5,2	5,4	ОК							
PX9	7,0	6,2	7,0	6,2	ОК							
PX10	7,8	6,9	7,5	6,7	ОК							
PX11A	9,0	8,2	10,8	9,3	NÃO OK							
PX11B	4,7	4,8	4,7	4,8	ОК							
PX11C	9,7	8,1	8,5	7,4	NÃO OK							
PX12	8,6	8,0	7,3	7,2	NÃO OK							
PX13	6,5	6,2	7,8	7,0	ОК							
PX14A	5,1	5,4	5,4	5,6	ОК							
PX14B	5,3	5,5	5,3	5,5	ОК							
PX14C	5,4	5,6	5,1	5,4	ОК							
PX15	8,3	7,6	7,0	6,8	NÃO OK							
PX16	7,3	7,2	8,7	8,0	NÃO OK							
PX17A	8,4	7,7	10,7	9,1	NÃO OK							
PX17B	4,7	4,8	4,7	4,8	ОК							
PX17C	11,2	9,5	8,7	8,0	NÃO OK							
PX18B	5,7	6,0	5,5	5,9	ОК							
PX19B	5,9	6,3	6,1	6,5	ОК							

Fonte: Autor (2018).

Tabela 22: Compressão máxima eixo Y.

TABELA	TABELA VERIFICAÇÃO COMPRESSÃO MÁXIMA EIXO Y											
PAREDE	i-esq	ii-esq	i-dir	ii-dir	Verficação							
PY1A	5,8	5,3	5,7	5,2	ОК							
PY1B	5,0	5,2	5,4	5,5	ОК							
PY2	6,0	5,9	6,0	5,9	ОК							
PY3A	5,8	5,7	5,7	5,6	ОК							
PY3B	5,7	6,2	5,8	6,3	ОК							
PY4	5,5	5,9	5,4	5,9	ОК							
PY5A	5,3	5,5	5,0	5,3	ОК							
PY5B	4,8	5,1	4,8	5,1	ОК							
PY6	7,2	7,2	6,8	6,9	ОК							
PY7A	6,9	7,0	7,4	7,2	ОК							
PY7B	7,0	7,4	7,0	7,4	ОК							
PY7C	7,1	6,9	6,6	6,6	ОК							
PY8	8,7	9,0	8,4	8,8	NÃO OK							
PY9A	7,8	7,5	6,8	6,9	ОК							
PY9B	5,4	5,9	5,6	6,0	ОК							
PY10	7,7	6,6	6,7	6,0	ОК							
PY11	5,9	5,9	5,5	5,6	ОК							
PY12	6,0	5,9	5,4	5,6	ОК							
PY13A	6,6	6,3	6,8	6,4	ОК							
PY13B	7,6	7,4	7,3	7,2	ОК							
PY14	4,9	5,3	5,0	5,3	ОК							
PY15	5,8	6,3	5,8	6,3	ОК							

A resistência de cisalhamento pode ser verificada pela Equação 13, sendo adotado argamassa de resistência entre 3,5 a 7,0 MPa. Os resultados da verificação são indicados nas Tabelas 23 e 24, correspondentes aos eixos X e Y, respectivamente.

Tabela 23: Verificação cisalhamento eixo X.

	TABEL	A VERIFICAÇÃ	O CISALHAM	ENTO PARE	DES EIXO X		
PAREDE	0.9 σg (Kn/m²)	fvk (Kn/m²)	fvd (Kn/m²)	t (Kn/m²)	td (Kn/m²)	td/fvd	Verificação
PX1	789,69	544,85	272,42	21,23	29,73	0,109	ОК
PX2A	778,13	539,07	269,53	1,01	1,42	0,005	ОК
PX2B	899,19	599,59	299,80	9,60	13,44	0,045	ОК
PX2C	1069,31	684,66	342,33	7,11	9,96	0,029	ОК
PX3	789,69	544,85	272,42	21,23	29,73	0,109	ОК
PX4A	1069,31	684,66	342,33	2,38	3,34	0,010	ОК
PX4B	1330,84	815,42	407,71	2,47	3,46	0,008	ОК
PX5A	1330,84	815,42	407,71	0,78	1,09	0,003	ОК
PX5B	789,69	544,85	272,42	12,05	16,86	0,062	ОК
PX6A	778,13	539,07	269,53	0,83	1,16	0,004	ОК
PX6B	899,19	599,59	299,80	41,13	57,59	0,192	ОК
PX6C	1069,31	684,66	342,33	0,58	0,82	0,002	ОК
PX7A	881,32	590,66	295,33	8,11	11,36	0,038	ОК
PX7B	1037,49	668,75	334,37	0,59	0,82	0,002	ОК
PX8B	901,79	600,90	300,45	0,59	0,82	0,003	ОК
PX9	789,69	544,85	272,42	25,04	35,05	0,129	ОК
PX10	881,32	590,66	295,33	84,23	117,92	0,399	ОК
PX11A	1037,49	668,75	334,37	118,58	166,01	0,496	ОК
PX11B	789,69	544,85	272,42	0,99	1,38	0,005	ОК
PX11C	901,79	600,90	300,45	144,62	202,47	0,674	ОК
PX12	1037,49	668,75	334,37	33,92	47,48	0,142	ОК
PX13	901,79	600,90	300,45	33,92	47,48	0,158	ОК
PX14A	901,79	600,90	300,45	1,01	1,42	0,005	ОК
PX14B	901,79	600,90	300,45	0,96	1,34	0,004	ОК
PX14C	901,79	600,90	300,45	1,09	1,52	0,005	ОК
PX15	986,51	643,26	321,63	33,92	47,48	0,148	ОК
PX16	1043,94	671,97	335,99	33,92	47,48	0,141	ОК
PX17A	986,51	643,26	321,63	109,12	152,76	0,475	ОК
PX17B	789,69	544,85	272,42	0,99	1,38	0,005	ОК
PX17C	1043,94	671,97	335,99	104,79	146,70	0,437	ОК
PX18B	986,51	643,26	321,63	0,59	0,82	0,003	ОК
PX19B	1043,94	671,97	335,99	0,59	0,82	0,002	ОК

Fonte: Autor (2018).

Tabela 24: Verificação cisalhamento eixo Y.

	TABELA VERIFICAÇÃO CISALHAMENTO PAREDES EIXO Y												
PAREDE	0.9 σg (Kn/m²)		fvd (Kn/m²)			td/fvd	Verificação						
PY1A	778,13	539,07	269,53	25,87	36,21	0,134	ОК						
PY1B	881,32	590,66	295,33	4,52	6,33	0,021	ОК						
PY2	899,19	599,59	299,80	44,37	62,11	0,207	ОК						
PY3A	881,32	590,66	295,33	21,74	30,43	0,103	ОК						
PY3B	1037,49	668,75	334,37	0,21	0,29	0,001	ОК						
PY4	986,51	643,26	321,63	0,21	0,29	0,001	ОК						
PY5A	899,19	599,59	299,80	2,02	2,82	0,009	ОК						
PY5B	881,32	590,66	295,33	0,23	0,32	0,001	ОК						
PY6	1069,31	684,66	342,33	20,51	28,72	0,084	ОК						
PY7A	1037,49	668,75	334,37	26,67	37,34	0,112	ОК						
PY7B	1258,39	779,20	389,60	0,80	1,12	0,003	ОК						
PY7C	986,51	643,26	321,63	26,67	37,34	0,116	ОК						
PY8	1330,84	815,42	407,71	13,73	19,23	0,047	ОК						
PY9A	1037,49	668,75	334,37	39,62	55,47	0,166	ОК						
PY9B	986,51	643,26	321,63	0,54	0,76	0,002	ОК						
PY10	789,69	544,85	272,42	175,02	245,02	0,899	ОК						
PY11	901,79	600,90	300,45	14,61	20,45	0,068	ОК						
PY12	901,79	600,90	300,45	18,19	25,46	0,085	ОК						
PY13A	901,79	600,90	300,45	34,56	48,38	0,161	ОК						
PY13B	1043,94	671,97	335,99	30,18	42,25	0,126	ОК						
PY14	901,79	600,90	300,45	0,21	0,29	0,001	ОК						
PY15	1043.94	671.97	335.99	0.21	0.29	0.001	ОК						

A verificação da tração máxima pode ser feita quando a Equação 7 for atendida. As Tabelas 25 e 26 exibem as tensões geradas pela força horizontal nas extremidades das paredes do eixo X e Y respectivamente, assim como o resultado da verificação se é necessário ou não o emprego de armadura para resistir aos esforços de tração. Como a argamassa tem resistência entre 3,5 a 7,0 MPa, é adotado ftk=0,2 MPa (conforme Tabela 2).

Tabela 25: Verificação Tração eixo X.

VERIFICAÇÃO DA MÁXIMA TRAÇÃO NAS						
	BORDAS DAS PAREDES EIXO X					
PAREDE	бv-esq (MPA)	бv,dir (MPA)	Arm. Esq	Arm. Dir		
PX1	0,572	0,572	SIM	SIM		
PX2A	-0,662	-0,487	NÃO	NÃO		
PX2B	-0,032	0,049	NÃO	NÃO		
PX2C	-0,295	-0,738	NÃO	NÃO		
PX3	0,572	0,572	SIM	SIM		
PX4A	-0,941	-0,615	NÃO	NÃO		
PX4B	-0,865	-1,156	NÃO	NÃO		
PX5A	-1,240	-1,131	NÃO	NÃO		
PX5B	0,235	0,235	SIM	SIM		
PX6A	-0,693	-0,630	NÃO	NÃO		
PX6B	0,610	0,591	SIM	SIM		
PX6C	-0,882	-0,975	NÃO	NÃO		
PX7A	-0,533	-0,079	NÃO	NÃO		
PX7B	-0,850	-0,943	NÃO	NÃO		
PX8B	-0,808	-0,714	NÃO	NÃO		
PX9	0,688	0,688	SIM	SIM		
PX10	0,748	0,620	SIM	SIM		
PX11A	0,732	1,648	SIM	SIM		
PX11B	-0,516	-0,516	NÃO	NÃO		
PX11C	1,633	1,015	SIM	SIM		
PX12	0,530	-0,173	SIM	NÃO		
PX13	-0,037	0,666	NÃO	SIM		
PX14A	-0,784	-0,612	NÃO	NÃO		
PX14B	-0,634	-0,634	NÃO	NÃO		
PX14C	-0,606	-0,790	NÃO	NÃO		
PX15	0,581	-0,122	SIM	NÃO		
PX16	-0,179	0,524	NÃO	SIM		
PX17A	0,642	1,837	SIM	SIM		
PX17B	-0,516	-0,516	NÃO	NÃO		
PX17C	1,837	0,527	SIM	SIM		
PX18B	-0,799	-0,892	NÃO	NÃO		
PX19B	-0,950	-0,857	NÃO	NÃO		

Tabela 26: Verificação Tração eixo Y.

1	VERIFICAÇÃO DA MÁXIMA TRAÇÃO NAS				
	BORDAS D	AS PAREDES EI	XO Y		
PAREDE	бv-esq (MPA)	бv,dir (MPA)	Arm. Esq	Arm. Dir	
PY1A	0,160	0,080	SIM	NÃO	
PY1B	-0,698	-0,490	NÃO	NÃO	
PY2	-0,256	-0,254	NÃO	NÃO	
РҮЗА	-0,310	-0,352	NÃO	NÃO	
PY3B	-1,001	-0,978	NÃO	NÃO	
PY4=PY3B	-0,927	-0,950	NÃO	NÃO	
PY5A	-0,631	-0,808	NÃO	NÃO	
PY5B	-0,843	-0,809	NÃO	NÃO	
PY6	-0,313	-0,537	NÃO	NÃO	
PY7A	-0,370	-0,125	NÃO	NÃO	
PY7B	-1,088	-1,088	NÃO	NÃO	
PY7C	-0,074	-0,319	NÃO	NÃO	
PY8	-0,647	-0,822	NÃO	NÃO	
PY9A	0,101	-0,431	SIM	NÃO	
PY9B	-0,944	-0,857	NÃO	NÃO	
PY10	1,061	0,539	SIM	SIM	
PY11	-0,317	-0,557	NÃO	NÃO	
PY12	-0,288	-0,586	NÃO	NÃO	
PY13A	0,005	0,155	NÃO	SIM	
PY13B	-0,045	-0,175	NÃO	NÃO	
PY14=PY3B	-0,865	-0,842	NÃO	NÃO	
PY15=PY3B	-0,985	-1,008	NÃO	NÃO	

Fonte: Autor (2018)

Fonte: Autor (2018).

Para as paredes que têm necessidade de armadura foi realizado os cálculos da força de tração atuante na aba e alma. Os valores estão apresentados nas Tabelas 27 e 28, para o eixo Y e X.

Tabela 27: Força de Tração eixo Y.

TABELA FORÇA TRAÇÃO NA ALMA E ABA NA BORDA ESQUERDA PAREDES EIXO Y							
PAREDE	x-borda esq.	Tipo Aba	Se Aba for em T		FORÇA ALMA	FORÇA ABA	
PAREDE			D.a	D.b	(Kn)	(Kn)	
PY1A	0,33	_	_	_	3,65	_	
PY9A	0,21	_	_	_	1,47	_	
PY10	2.17	em T E Canto	0,68	0,80	161.13	133,50	
PY13A	_	_	_	_	_	_	
	TABELA FORÇA TRAÇÃO NA ALMA E ABA NA BORDA DIREITA PAREDES EIXO Y						
PAREDE	x-borda dir.	Tipo Aba	Se Aba for em T		FORÇA ALMA	FORÇA ABA	
PAREDE			D.a	D.b	(Kn)	(Kn)	
PY1A	_	_	_	_	_	_	
PY9A	_	_	_	_	_	_	
PY10	1,1	em T E Canto	0,26	0,4	41,6	156,9	
PY13A	0,32	Canto	_	_	3,46	1,7	

Tabela 28: Força de Tração eixo X.

TABELA FORÇA TRAÇÃO NA ALMA E ABA NA BORDA ESQUERDA PAREDES EIXO X						
PAREDE	x-borda esq.	Tipo Aba	Se Aba for em T		FORÇA ALMA	FORÇA ABA
PAREDE		тіро жыа	D.a	D.b	(Kn)	(Kn)
PX1	0,49	_	_	_	19,68	-
PX3	0,49	_	_	_	19,68	-
PX5B	0,20	_	_	_	3,31	-
PX6B	0,52	_	_	_	22,42	-
PX9	0,59	_	_	_	28,51	-
PX10	0,61	canto	_	_	31,91	77,87
PX11A	0,62	canto	_	_	31,59	152,55
PX11C	1,38	em T	1,095	0,95	157,48	142,56
PX12	0,43	canto	_	_	15,78	52,09
PX13	_	_	_	_	_	_
PX15	0,47	canto	_	_	18,96	58,09
PX16	_	_	_	_	_	_
PX17A	0,54	canto	_	-	24,32	65,71
PX17C	1,55	_	_	_	199,18	0,00
	TABELA FORÇ	A TRAÇÃO NA A	LMA E ABA NA BO	ORDA DIREITA	PAREDES EIXO X	
DARFRE		Tipo Aba	Se Aba for em T		FORÇA ALMA	FORÇA ABA
PAREDE	x-borda dir.		D.a	D.b	(Kn)	(Kn)
PX1	0,49	_	_	_	19,68	_
PX3	0,49	_	_	-	19,68	_
PX5B	0,20	_	_	_	3,31	-
PX6B	0,51	em T	0,34	0,2	20,99	36,90
PX9	0,59	_	_	_	28,51	_
PX10	0,51	canto	_	_	21,92	78,52
PX11A	1,39	em T	0,115	0,255	160,19	25,80
PX11C	0,86	canto	_	_	60,84	219,24
PX12	_	_	_	_	_	_
PX13	0,53	canto	_	_	24,89	68,05
PX15	_	_	_	_	_	_
PX16	0,42	canto	_	_	15,40	51,33
PX17A	1,55	em T	0,275	0,415	199,26	48,10
PX17C	0,44	canto	_	_	16,42	104,50

Fonte: Autor (2018).

Segundo a Equação 8 é realizado o cálculo da área de aço necessária e os valores são apresentados na Tabela 29.

Tabela 29: Área de aço para resistir à esforços de Tração no eixo X e Y.

TABELA ÁREAS DE AÇO PAREDES EIXO X					
PAREDE	As min. (Cm²)	As cal. (Cm²)			
	As IIIII. (CIII)	Borda Esq.	Borda. Dir.		
PX1	3,28	0,91	0,91		
PX3	3,28	0,91	0,91		
PX5B	2,46	0,15	0,15		
PX6B	3,61	1,03	2,66		
PX9	3,56	1,31	1,31		
PX10	3,57	5,05	4,62		
PX11A	5,26	8,47	8,60		
PX11C	5,26	13,80	12,88		
PX12	2,73	3,12	-		
PX13	2,73	ı	4,28		
PX15	2,73	3,54	_		
PX16	2,73	_	3,07		
PX17A	5,26	4,14	11,40		
PX17C	5,26	9,16	5,56		

5 CONSIDERAÇÕES FINAIS

Analisando a Tabela 11, conclui-se que o grupo mais solicitado é o 5, sendo necessário empregar blocos de fpk igual ou superior a 8,23 MPa para resistir a esforços de compressão simples, obtendo blocos com fbk= 10 MPa. Porém ao analisar a compressão máxima (Tabela 21 e 22), onde se considera carregamentos horizontais atuando na estrutura, as paredes PX4B, PX5A, PX11A, PX11C, PX12, PX15, PX16, PX17A, PX17C E PY8 não resistem com blocos de fpk 8,23 MPa, sendo a tensão mais crítica igual a 11,2 MPa na parede PX17C. Há necessidade de empregar blocos com fbk 16 MPa para resistir as solicitações de flexo-compressão.

Em virtude dos altos valores de tensão de tração (Tabela 25 e 26), 14 paredes na direção X e 4 na direção Y necessitam emprego de armadura para resistir aos esforços sobre ela impostos. As áreas de aço necessárias são os maiores valores entre a "As min" e "As cal", indicadas na Tabela 29.

Como pode ser avaliado nas Tabelas 23 e 24, a verificação de cisalhamento nas paredes está garantida para os dois eixos principais.

REFERÊNCIAS

ABNT – ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS, Forças devidas ao vento em edificações, NBR 6123, Rio de Janeiro, 1988.

ABNT – ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS, **Projeto de estruturas de concreto: Procedimento,** NBR 6118, Rio de Janeiro, 2014.

ABNT – ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS, Cargas para cálculo de estruturas de edificações, NBR 6120, Rio de Janeiro, 1980.

ABNT – ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS, **Alvenaria Estrutural** – **Blocos cerâmicos Parte 1: Projeto,** NBR 15812-1, Rio de Janeiro, 2010.

ABNT – ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS, **Alvenaria Estrutural – Blocos de concreto Parte 1: Projeto**, NBR 15961-1, Rio de Janeiro, 2011.

ABNT – ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS, **Argamassa para assentamento e revestimento de paredes e tetos – Requisitos,** NBR 13281, Rio de Janeiro, 2005.

ACCETTI, K. M. (1998). **Contribuições ao projeto estrutural de edifícios em alvenaria.** 261 p. Dissertação (Mestrado) – Escola de Engenharia de São Carlos, Universidade de São Paulo.

HENDRY, A. W.; SINHA, B.P.; DAVIES, S.R. **Design of Masonry Structures**. London: Taylor & Francis, 2004.

PARSEKIAN, G.A. **Projeto Estrutural de Edifícios em Alvenaria Estrutural.** Curso. São Paulo: ABECE, 2017.

RAMALHO, M.A.; CORRÊA, M. R. S. **Projeto de Edifícios de Alvenaria Estrutural.** São Paulo: Pini, 2003.

REBOREDO, A.R (2013). **Dimensionamento de um edifício em alvenaria estrutural de blocos de concreto: comentários sobre a NBR 15961-1 (2011).** 173 p. Dissertação (Conclusão de curso) — Universidade Federal de Santa Catarina.

SILVA, I. M. (1996). **Análise de edifícios de alvenaria estrutural sujeitos as ações do vento.** 80 p. Dissertação (Mestrado) – Escola de Engenharia de São Carlos, Universidade de São Paulo.