CENTRO UNIVERSITARIO ASSIS GURGACZ MAIARA PIRES

EXAUSTÃO NO MOTOR DE COMBUSTÃO INTERNA

CENTRO UNIVERSITARIO ASSIS GURGACZ MAIARA PIRES

EXAUSTÃO NO MOTOR DE COMBUSTÃO INTERNA

Trabalho apresentado à disciplina de TCC II como requisito parcial para obtenção da aprovação semestral no Curso de Engenharia Mecânica pelo Centro Universitário Assis Gurgacz.

Professor Orientador: Eliseu Avelino Zanella Junior.

FACULDADE ASSIS GURGACZ - FAG MAIARA PIRES

EXAUSTÃO NO MOTOR DE COMBUSTÃO INTERNA

Trabalho apresentado no Curso de Engenharia Mecânica, da FAG, como requisito parcial para obtenção do título de Bacharel em Engenharia Mecânica, sob orientação do Professor (a) Eliseu Avelino Zanella Junior.

BANCA EXAMINADORA

Professor. Me. Eliseu Avelino Zanella Junior Faculdade Assis Gurgacz FAG

Engenheiro Mecânico

Professor. MSc. MBA Sergio Henrique Mota

Faculdade Assis Gurgacz – FAG Engenheiro Mecânico

Professor Esp. Ronaldo Tansini Faculdade Assis Gurgacz – FAG

Engenheiro Eletricista

AGRADECIMENTOS

Primeiramente agradeço a Deus que permitiu que o sonho da graduação se tornasse realidade, por todas as oportunidades que me deu longo da vida. Quero agradecer imensamente por toda orientação, não somente nestes anos como universitária, mas em todos os momentos. Ele foi e sempre será o maior mestre para mim.

Ao Centro Universitário Assis Gurgacz pelo acolhimento, por toda estrutura que me proporcionou durante o período de graduação e pela oportunidade de fazer o curso de graduação. Agradeço também à instituição por todo seu corpo docente, direção e administração.

Ao meu orientador, Prof^o. Me. Eliseu Avelino Zanella Junior pelo empenho dedicado à elaboração deste trabalho, no pouco tempo que lhe coube, por toda sua dedicação e incentivo.

A todos os professores por me proporcionarem o conhecimento, aqueles que se dedicaram a mim, não somente por terem me ensinado, mas por terem me feito aprender.

Aos meus pais, pelo amor, incentivo e apoio incondicional. Ao meu pai Almir que apesar de todas as dificuldades me fortaleceu e incentivou a crescer, pois se não fosse por ele, eu não teria a oportunidade de estar me graduando. À minha mãe Sandra que me incentivou nas horas difíceis, de desânimo e cansaço.

Ao meu avô Arquimedes e minha avó Iolanda, por todo carinho e orgulho que nunca deixaram de demonstrar, acreditando todos os dias num futuro brilhante para mim.

À toda família, que nos momentos de minha ausência dedicados ao estudo superior, sempre entenderam que o futuro é feito da dedicação no presente.

Aos verdadeiros amigos que fizeram parte da minha formação e que vão continuar presentes em minha vida.

E por fim, mas não menos importante, a todos que direta ou indire. fizeram parte da minha formação.

Meus sinceros agradecimentos.

RESUMO

O assunto do referido trabalho é sobre o sistema de exaustão no motor de combustão interna, com apresentação dos apontamentos no Centro Universitário Assis Gurgacz. O tema abordará sobre o dimensionamento do escapamento de um motor de combustão interna, ciclo Otto, aspirado, para carros de alta performance. O objetivo é verificar se há o dimensionamento correto para um coletor de escapamento, para motores de alta performance que trabalham com Ciclo Otto sem sobrealimentação. A metodologia consiste em buscar informações quem possam embasar os cálculos específicos para o dimensionamento correto do coletor de escape. Este trabalho é benéfico para a comunidade e merece ser estudado porque se houver um dimensionamento ideal para o coletor de escape para cada tipo de motor, haverão escapamentos nacionais para alta performance, sem que as pessoas do automobilismo Brasileiro precisem importar esse tipo de produto. Além disso, não existem muitos materiais disponíveis sobre esse tema publicados na língua portuguesa, então essa pesquisa torna-se valiosa para os próximos trabalhos de alunos brasileiros que queiram desenvolver motores de alta performance, pois se torna um meio prático de estudo por estar escrita na língua mãe do Brasil.

Palavras-chave: Coletor de Escapamento, Alta Performance, Dimensionamento.

ABSTRACT

The subject of the mentioned work is about the exhaust system in the internal combustion engine, with presentation of the notes in the Assis Gurgacz University Center. The theme will address the design of the exhaust of an internal combustion engine, Otto cycle, aspirated, for high performance cars. The goal is to check for the correct dimensioning for an exhaust manifold, for high performance engines that work with Otto Cycle without overfeeding. The methodology consists of searching for information who can base the specific calculations for the correct dimensioning of the exhaust manifold. This work is beneficial to the community and deserves to be studied because if there is an ideal design for the exhaust manifold for each type of engine, equipment will be national exhausts for high performance, without Brazilian automobile people needing to import this type of product. In addition, there are not many materials available on this subject published in the Portuguese language, so this research becomes valuable for the future work of Brazilian students who want to develop high-performance engines, since it becomes a practical study medium because it is written in the mother tongue of Brazil.

Keywords: Exhaust Collector, High Performance, Sizing.

LISTA DE IMAGENS

FIGURA 01: DISTORÇÃO DE ONDAS20
FIGURA 02: ILUSTRAÇÃO DE TESTE MONOCILINDRICO21
FIGURA 03: CATÁLOGO DO FABRICANTE DO COAMANDO DE VÁLVULAS
UTILIZADO31
FIGURA 04: TUBO PRIMÁRIO DO COLETOR DE ESCAPE VISTA INFERIOR38
FIGURA 05: TUBO PRIMÁRIO DO ESCAPE VISTA SUPERIOR38
FIGURA 06: TUBO PRIMÁRIO DO ESCAPE VISTA FRONTAL39
FIGURA 07: TUBO PRIMÁRIO DO ESCAPE VISTA ATERAL39
FIGURA 08: JUNÇÃO ENTRE COLETOR PRIMÁRIO E SECUNDÁRIO40
FIGURA 09: JUNÇÃO DO TUBO PRIMÁRIO COM O SECUNDÁRIO VISTA
FRONTAL41
FIGURA 10: TUBO SECUNDÁRIO DO COLETOR DE ESCAPE41

LISTA DE EQUAÇÕES

EQUAÇÃO 01: COMPRIMENTO DO PRIMÁRIO SEGUNDO BLAIR	22
EQUAÇÃO 02: COMPRIMENTO DO PRIMÁRIO SEGUNDO ROCHA	23
EQUAÇÃO 03: DIÂMETRO INTERNO DO PRIMÁRIO SEGUNDO ROCHA	24
EQUAÇÃO 04: COMPRIMENTO DO SECUNDÁRIO SEGUNDO BLAIR	24
EQUAÇÃO 05: RAZÃO ENTRE ÁREAS DO PRIMÁRIO E SECUNDÁI	RIO
SEGUNDO BLAIR	25
EQUAÇÃO 06: DIÂMETRO DO SECUNDÁRIO SEGUNDO BLAIR	25

LISTA DE TABELAS

TABELA 01: RESULTADOS DAS EQUAÇÕES DE ROCHA	30
TABELA 02: EQUAÇÕES PARA O CÁLCULO DO COMPRIMENTO DO PRIM	MÁRIO
SEGUNDO BLAIR	32
TABELA 03: EQUAÇÕES SEGUNDO BLAIR PARA CÁLCULO DO COMPRIM	1ENTO
DO SECUNDÁRIO	33
TABELA 04: EQUAÇÕES PARA CÁLCULO DO DIÂMETRO DO SECUNI	DÁRIO
SEGUNDO BLAIR	35
TABELA 05: EQUAÇÕES PARA CÁLCULO DO DIÂMETRO DO SECUNI	DÁRIO
SEGUNDO BLAIR E ROCHA	36

SUMÁRIO

1. CAPÍTULO 112
1.1. INTRODUÇÃO12
1.2. OBJETIVOS12
1.2.1. OBJETIVO GERAL12
1.2.2. OBJETIVOS ESPECÍFICOS
1.3. JUSTIFICATIVA13
1.4. DELIMITAÇÃO DA PESQUISA14
2. CAPÍTULO 215
2.1. REVISÃO BILBIOGÁFICA15
2.1.1. COLETOR DE ESCAPAMENTO15
2.1.1.2. COMPONENTES DE UM COLETOR DE ESCAPAMENTO PARA COMPETIÇÃO
2.1.1.2.1. PRIMÁRIO
2.1.1.2.2. SECUNDÁRIO16
2.1.2. FUNCIONANMENTO DE UM ESCAPAMENTO PARA ALTA PERFORMANCE
2.1.3. FENÔMENOS DAS ONDAS GERADAS EM MOTORES DE COMBUSTÃO INTERNA
2.1.3.1. TIPOS DE ONDAS18
2.1.3.2. VELOCIDADE DE PROPAGAÇÃO19
2.1.3.3. CARACTERÍSTICAS DOS GASES20
2.1.4. DIMENSIONAMENTO DO COLETOR DE ESCAPE21
2.1.4.1. EQUAÇÃO PARA O COMPRIMENTO DO PRIMÁRIO DO COLETOR DE ESCAPE
2.1.4.2. EQUAÇÃO PARA O DIMENSIOONAMENTO DO COMPRIMENTO DO SECUNDÁRIO DO COLETOR DE ESCAPE24

2.1.4.3. EQUAÇÃO PARA O DIMENSIONAMENTO DO DIÂMETRO DO TU SECUNDÁRIO	
3. CAPÍTULO 3	27
3.1. METODOLOGIA	27
3.1.1. MATERIAIS E MÉTODOS	28
4. CAPÍTULO 4	30
4.1. RESULTADOS E DISCUSSÕES	30
5. CONSIDERAÇÕES FINAIS	43
6. SUGESTÕES PARA TRABALHOS FUTUROS	44
REFERÊNCIAS	45
ANEXOS	47
ANEXO 01	48
ANEXO 02	54

1. CAPÍTULO 1

1.1. INTRODUÇÃO

O assunto do referido trabalho é sobre o sistema de exaustão no motor de combustão interna. O tema abordará sobre o dimensionamento do escapamento que trabalhará no ciclo Otto, num carro naturalmente aspirado, para carros de alta performance.

Nessa pesquisa pode ser desvendado o mistério de um dimensionamento correto para um coletor de escape, visto que o assunto não é tão difundido entre os brasileiros e não há muitos materiais disponíveis para estudo voltados para esse ramo, principalmente publicações na língua portuguesa.

1.2. OBJETIVOS

1.2.1. OBJETIVO GERAL

Verificar se há o dimensionamento ideal para um coletor de escapamento, para motores de alta performance que trabalham com Ciclo Otto sem sobrealimentação.

1.2.2. OBJETIVOS ESPECÍFICOS

Calcular um coletor de escapamento ideal, levando em conta as particularidades do motor.

Testar, com ensaios dinamométricos a melhoria na eficiência com diferentes coletores para as mesmas condições de operação do motor em questão e avaliar se há um ganho de potência nos vários experimentos realizados.

Simular as perdas de carga em diferentes comprimentos e diâmetros para que o sistema de exaustão tenha o melhor desempenho possível.

Apresentar o comprimento exato do tubo primário que sai do cabeçote, do tubo secundário que levará os gases até a atmosfera.

1.3. JUSTIFICATIVA

Nikolaus August Otto, foi um comerciante alemão interessado pelo ramo das ciências nascido no município de Holzhausen an der Haide em 10 de Junho de 1832, faleceu na cidade de Colônia em 26 de Janeiro de 1891 aos cinqüenta e oito anos de idade.

Segundo o Rocha (2009), Otto criou o motor de combustão interna, um mecanismo de biela e manivela que cruzou os séculos impulsionando as formas de tração mecânica. No ano de 1860 a surgiu o conceito de construir uma máquina utilizando o benzeno como combustível, mas apenas em 1866 a idéia foi concretizada.

Esse motor teve muitas vantagens em relação ao movido a vapor. Uma delas foi o inicio da utilização da gasolina como combustível, aumentando assim sua potência e torque.

Além de mais leves e compactos os motores Otto são versáteis, desta maneira ganharam o mercado em diversas aplicações como embarcações, ônibus, caminhões, máquinas agrícolas, na indústria e até mesmo na aviação.

O cerne do motor de ciclo Otto consiste em quatro processos (tempos) simples: admissão, compressão, expansão e exaustão. Com o passar dos anos houve a evolução dos motores, passando por modificações em seus sistemas auxiliares, melhorando a eficiência, emissão de gases, adaptando melhor ao estilo de vida dos cidadãos de cada época, sempre visando atender as necessidades dos consumidores, entretanto o princípio de funcionamento é o mesmo que Nikolaus criou no primeiro experimento.

De todo conjunto de um motor de combustão interna que trabalha no ciclo Otto, este trabalho será voltado para o dimensionamento do sistema de exaustão de carros naturalmente aspirados, voltados à alta performance.

Segundo Bernasconi (2012), o sistema de escape começa com a válvula de exaustão no cabeçote, dentro do motor, passa pelo coletor de escape, catalisador, abafador e silencioso. Seu funcionamento, assim como na admissão, precisa de área adequada (tamanho de dutos) para o deslocamento de um determinado

volume, medido em pés cúbicos por minuto (cfm) de gases, além de curvas bem projetadas para seu percurso.

Para melhorar o rendimento de um motor, seja turbo ou aspirado, as modificações se iniciam no coletor de admissão, passam pelo cabeçote e vão até os gases serem lançados na atmosfera. Então, é focado nesse desenvolvimento que inicia-se essa pesquisa.

Num âmbito social, a relevância deste trabalho é voltada principalmente aos entusiastas do automobilismo. Tendo como base os atletas das competições tanto de circuito como de arrancada brasileiros. Nesse ramo, segundo Hernandes (2016), o Brasil apresenta uma deficiência no dimensionamento dos coletores de escape, estando atrasado em relação a países como a Argentina, que tem um amplo desenvolvimento em cima do assunto.

1.4. DELIMITAÇÃO DA PESQUISA

Este trabalho será voltado especificamente para o dimensionamento do coletor de escape para um carro da linha VW AP 8v 1.6, com aspiração natural.

Os testes serão realizados num motor que utiliza etanol como combustível, sendo que o veículo é preparado para corridas de circuito.

Apesar dos testes serem feitos nesse motor em específico, os cálculos apresentados dão base para dimensionar um veículo naturalmente aspirado de qualquer categoria do automobilismo, independente do seu número de cilindros.

A restrição está no combustível utilizado. Carros a diesel, por exemplo, não se encaixam nesse padrão, até porque não fazem parte da classe dos motores de Ciclo Otto.

2. CAPÍTULO 2

2.1. REVISÃO BIBLIOGRÁFICA

2.1.1. COLETOR DE ESCAPAMENTO

Trata-se do mecanismo responsável pela exaustão num motor de combustão interna. O objetivo do escape é remover tantas partículas de gás quanto possível durante o curso de escape. O manuseio adequado das ondas de pressão no escapamento pode nos ajudar nesse sentido, e até mesmo nos ajuda a "sobrecarregar" um motor naturalmente aspirado. Reiss, 2015(apud ROMAN, 2014).

Segundo Reiss (2015), o sistema de escapamento é um conjunto de tubos e silenciadores que tem funções como:

- Diminuir os ruídos produzidos pelo motor, mantendo os níveis dentro das especificações legislativas;
- Conduzir os gases nocivos para longe da cabine, evitando a inalação pelos passageiros;
- Controlar a contrapressão dos gases, através das curvas, volume e vazão para obter o melhor rendimento do motor;
- Auxiliar na redução de consumo de combustível.

Porém, como esse trabalho é voltado para motores de alta performance, não há preocupações com emissões, silenciamento ou economia como nos carros de rua originais de fábrica. Um coletor de escape para um veículo de competição é construído única e exclusivamente com o objetivo de ganho de potência.

2.1.1.2. Componentes de um coletor de escapamento para competição

Segundo Reiss (2015), no caso de um coletor de escapamento para motores de alta performance, como já citado anteriormente, não há a preocupação com nível de emissões, ruídos ou consumo de combustível. Então alguns elementos podem ser facilmente retirados do sistema de escapamento com o objetivo de aumentar a potência. Dentre os componentes retirados estão:

- Catalisador;
- Silencioso intermediário;
- Silencioso traseiro

Um sistema de escapamento para alta performance compõe-se apenas de:

2.1.1.2.1. Primário:

Segundo Reiss (2015), vai da saída dos dutos do cabeçote até a primeira junção. Que pode sair com quatro tubos (no caso de motores de quatro cilindros), juntar-se em dois tubos e por fim na segunda junção converter-se em apenas um tubo (no caso de configuração 4x2x1). Já na configuração 4x1, o coletor inicia-se com quatro tubos até a primeira junção e converte-se em apenas um tubo final. Para motores seis cilindros o princípio é o mesmo, porém com configurações 6x2x1, 6x3x1, ou 6x1.

2.1.1.2.2. Secundário:

Inicia-se a partir da primeira junção dos tubos do coletor de escape. Como explicado acima, pode ser composto de dois tubos e se converter em um, (4x2x1), ou composto de um tubo apenas (4x1), para motores de quatro cilindros. Este último tubo que levará os gases até a atmosfera, sem nenhum catalisador, filtro ou silenciador, de acordo com. Os coletores de escapamento podem ser de ferro fundido ou aço inoxidável, a depender de sua aplicação, (HOFFMANN, 2018).

2.1.2. FUNCIONAMENTO DE UM ESCAPAMENTO PARA ALTA PERFORMANCE

Os gases resultantes da combustão estão contidos dentro do cilindro em temperatura e pressão bastante altas. Quando a válvula se abre, um pulso supersônico percorre todo o duto e arrasta consigo a massa de gases que tem velocidade muito menor, mas que ainda assim carrega uma quantidade enorme de energia. Então se ajustar o comprimento e o diâmetro do coletor para aproveitar estas características de escoamento, tem-se ganhos significativos de eficiência volumétrica, (PASSOS, 2015)

De acordo com Passos (2015), para entender a necessidade de uma construção ideal do coletor de escape, é necessário compreender o efeito de arraste no sistema de escapamento. Esse fenômeno é baseado na primeira lei de Newton, onde um corpo tende a permanecer como está, conhecido como inércia. Segundo Passos (2015), neste caso o gás de combustão, e a massa que inicia ou cessa um movimento tende a se manter parada ou em movimento.

Esta inércia é a responsável por grande parte do vácuo gerado pelos gases no instante em que eles deixam o cilindro. E esse vácuo suga a mistura que está no coletor de admissão no momento em que ocorre o cruzamento do comando de válvulas, chamado de *overlap* (breve momento em que a válvula de admissão começa abrir e a de escape ainda não está completamente fechada), (PASSOS, 2015).

Segundo Passos (2015), olhando por esse ângulo, quanto maior a velocidade de saída dos gases maior será a inércia desses gases e consequentemente maior será o vácuo formado. Porém deve-se ficar atento aos extremos, pois altas velocidades geram turbulência criando certas limitações ao fluxo. Aumentando a resistência crescem também as perdas, pois o motor gasta mais energia para conseguir eliminar os gases de combustão.

Segundo Roman (2017), a chave no design e ajuste do escape é entender e trabalhar com a dinâmica da onda de pressão, que é influenciada por vários fatores. Infelizmente, o ajuste de onda em um motor de combustão interna não segue as mesmas teorias clássicas que são encontradas em tubos de órgão ou outros instrumentos acústicos similares.

2.1.3. FENÔMENOS DAS ONDAS GERADAS EM MOTORES DE COMBUSTÃO INTERNA

Segundo Blair (1999, página 153), Os processos de fluxo de gases de um motor são instáveis. Denomina-se instável aquele fluxo em que a pressão, a temperatura e a velocidade das partículas de gás em um duto são variáveis com o tempo. No caso do sistema de exaustão, o comportamento do fluxo dos gases se dá porque a pressão do cilindro cai com a abertura rápida da válvula (ou válvulas) de

escape. Isso gera uma pressão no tubo de escape que muda com o tempo. Ou seja, trabalha-se com variáveis que tem infinitas mudanças durante o ciclo do motor Otto.

2.1.3.1. Tipos de ondas

As experiências com ondas sonoras ajudam a entender a natureza fundamental do fluxo das ondas de amplitude muito maior encontradas em dutos de motores. Ondas de pressão e ondas sonoras dividem-se em dois tipos: compressão ou ondas de expansão, BLAIR (1999, página 155).

Para entender melhor a diferença entre as propagações de onda, pode-se fazer o seguinte experimento: Ficar a vários metros de distância de uma pessoa. Ela produz uma exalação aguda, por exemplo, diz "boo" um pouco alto. Ela faz isso reduzindo sua pressão pulmonar acima da pressão atmosférica devido a uma redução muscular do volume do pulmão. A onda de pressão de compressão produzida sai de sua boca e é propagada na velocidade do som até o ouvido. A velocidade do som envolvida é de 350 m/s. As partículas de gás que compõem o barulho deixando a boca dessa pessoa têm uma velocidade muito menor, em torno de 1 m / s. Entretanto, a velocidade da partícula de gás está na mesma direção que a propagação da onda de pressão de compressão, ou seja, em direção ao ouvido, BLAIR(1999, página 156).

Comparando este experimento com outro teste: Imagine que a mesma pessoa agora produza uma inalação aguda, como "uhh". Isso ela consegue, expandindo o volume do pulmão para que a pressão do pulmão caia abaixo da pressão atmosférica. O som resultante que se ouve é causado pela onda de pressão de expansão que sai da boca e se propaga em direção ao ouvido na velocidade acústica local. A direção da propagação é a mesma que a da onda de compressão citada anteriormente, e a velocidade de propagação é idêntica. No entanto, como as partículas de gás entraram na boca da pessoa com a criação dessa onda de expansão, a velocidade da partícula de gás está na direção oposta à propagação da onda de expansão, BLAIR(1999, página 158).

Desse modo, pode-se explicar que quando a válvula de escape se abre, as ondas caem na categoria de ondas de compressão. Já ondas geradas pela queda na pressão do cilindro durante abertura da válvula de admissão são ondas de expansão. As ondas de compressão são chamadas de: pulsos de exaustão, pulsos

de compressão ou ondas de batimento. As ondas de expansão denominam-se: pulsos de sucção, pulsos sub atmosféricos, ondas de rarefação ou pulsos de entrada, BLAIR(1999, página 158).

2.1.3.2. Velocidade de propagação

Segundo Blair (1999, página 161), a velocidade de propagação em qualquer ponto de uma onda é como a de uma pequena onda acústica movendo-se à velocidade acústica local, mas em cima de partículas gasosas que já estão se movendo. Deste modo, a velocidade de propagação absoluta de qualquer ponto em uma onda é a soma da velocidade acústica local e a velocidade local das partículas gasosas.

O valor da velocidade de propagação é uma função da pressão da onda e da temperatura da onda em qualquer ponto nessa onda de pressão. Deve-se evidenciar que, como todos os pontos em uma onda estão se propagando em velocidades diferentes, a onda deve mudar de forma em sua passagem ao longo de qualquer duto, BLAIR (1999, página 167).

Ainda de acordo com a teoria de Blair (1999, página 167), na onda de compressão ilustrada na Figura 01(a), é importante ressaltar que a frente e a cauda da onda se deslocam à uma velocidade 53 m/s mais lenta que a velocidade de pico da onda, então sempre haverá a tendência do pico da onda se aproximar da frente da onda e se afastar da cauda da onda. Isso é conhecido como *steep-fronting*.

O curioso é que o pico da onda poderia, em teoria, tentar passar a frente da onda, que é o que acontece com uma onda de água no mar quando ela se eleva, o chamado *cresting*. Porém, no fluxo de gás, na prática o *cresting* é impossível e a realidade é que uma onda de choque seria formada, BLAIR (1999, página 167).

Já para a onda de expansão, mostrada na Figura 01(b), é o inverso, onde o pico está viajando 64,6 m/s mais lento do que a frente e a cauda da onda. Assim, qualquer forma de choque ocorrendo será na cauda de uma onda, e qualquer distorção de onda será onde a cauda da onda tenta ultrapassar o pico, BLAIR (1999, página 168).

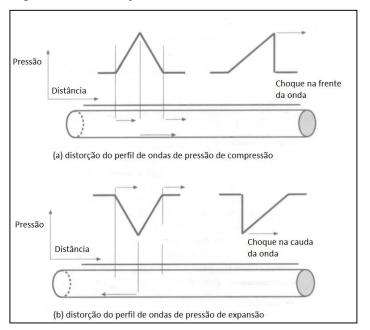


Figura 01: Distorção de ondas.

Fonte: Design and Simulation of Four-Stroke Engines

2.1.3.3. Características dos Gases

Das misturas gasosas dos motores, tem-se que o ar em si é uma combinação basicamente de oxigênio e nitrogênio. O gás de escape é composto especialmente de monóxido de carbono, dióxido de carbono, vapor e nitrogênio. Além disso, as propriedades dos gases são funções complexas da temperatura, BLAIR (1999, página 161).

Segundo Blair (1999, página 168), observa-se que a propagação de ondas de pressão e a taxa de fluxo de massa que induzem gases depende das suas propriedades, particularmente da constante dos gases e calores específicos. O valor da constante de gás depende da composição do gás. O valor da razão entre os calores específicos depende tanto da composição do gás quanto da temperatura. Essas informações podem ser encontradas em muitos textos padrão sobre termodinâmica para facilitar os ensaios e medições que virem ser feitos.

Para que haja uma combustão estequiométrica ideal deve-se analisar as propriedades do gás de exaustão. Mesmo na combustão estequiométrica ideal, em tese haveria um pouco de monóxido de carbono e traços de oxigênio e hidrogênio. Se a mistura fosse mais rica do que a estequiométrica ideal, então os gases na

exaustão conteriam maiores quantidades de monóxido de carbono e um resquício de hidrogênio, porém com pouco oxigênio. Se a mistura fosse mais pobre que a estequiométrica ideal, o gás de exaustão teria menos quantidades de monóxido de carbono e hidrogênio, mas apresentaria maior quantidade de oxigênio. A questão é que as propriedades dos gases de escape, não dependem somente da temperatura, mas também do processo de combustão que as criou. BLAIR (1999, página 173).

2.1.4. DIMENSIONAMENTO DO COLETOR DE ESCAPE

Segundo Blair (1999, página 671), para investigar o sistema de exaustão, um mecanismo de teste monocilíndrico é empregado com duto de admissão e exaustão, conforme a Figura 02. O comprimento total do duto de entrada é o mesmo que no motor de quatro cilindros, então pode ser usado para os ensaios dessa pesquisa. O sistema de exaustão é composto para ele inicia-se num duto que tem um diâmetro constante de 44,2 mm. Como na figura a seguir:

INTAKE
Ø45.4

EXHAUST

Figura 02: Ilustração do teste monocilíndrico.

Fonte: Design and Simulation of Four-Stroke Engines.

22

2.1.4.1. Equação para o comprimento do primário do coletor de escape

Verificou-se que através de equações comumente utilizadas nos cálculos de coletores de escape, haviam algumas variáveis que exigiam um valor de entrada para o cálculo, porém, essas incógnitas eram exatamente quais as pesquisas necessitavam encontrar os valores para prosseguir com os estudos.

Para facilitar os cálculos, Blair, através de testes e ensaios, descobriu de maneira empírica, uma forma de livrar-se das variáveis de entrada que eram difíceis de conseguir sem simulações e propôs uma nova equação com um fator de correção, que garantiu a integralidade do cálculo, sem comprometer sua estrutura, ou resultado final.

Para ele, é possível deduzir uma fórmula para ajustar o comprimento de acordo com a equação (1):

$$Let = \frac{Cet\sqrt{(Tex+273)}}{N} \quad (1)$$

Onde:

Let: comprimento total do tubo, (mm);

Cet: fator de correção obtido através do experimento;

N: velocidade do motor, (rpm);

Tex: temperatura no coletor de escape, (°C).

Como resultados de experimentos, Blair(1999, página 683), ele almejava encontrar um fator que pudesse corrigir as equações encontradas, pois percebeu que os resultados provenientes das fórmulas sem o fator de ajuste, não eram corretos e não condiziam com a prática no que dizia respeito à temperatura de exaustão.

Seus livros de pesquisa apresentavam equações nas quais ofereciam a temperatura dos gases de escape em torno de 140°C, ele sabia que isso não era possível, pois essa temperatura é muito baixa para um sistema que acabou de sair de um processo de combustão à uma pressão relativamente alta de dentro do cilindro. Então baseando-se nas temperaturas corretas de exaustão (dados obtidos

através de equipamentos termopar ou termômetros a laser) que são acima de 500°C, Blair(1999) desenvolver um fator de correção que foi adaptando e fazendo iterações com diversos cálculos, até atingir um valor constante que pudesse ser utilizado em nas equações propostas por ele para o dimensionamento do comprimento do primário.

A proposta de Blair(1999) sobre o fator de correção, também surgiu da dificuldade que ele estava tendo em mensurar algumas grandezas dentro do coletor de escape. Por ser um sistema muito complexo, existem fenômenos que não conseguem ter seu comportamento previsto dentro do tudo de escapamento, como as ondas, onde enquanto uma onda positiva está indo numa direção do coletor, uma onde negativa está voltando na direção oposta, criando uma superposição de ondas. Porém, não é possível saber quando ocorrem esses fenômenos, por ser um sistema em constante mudança, sendo que cada milímetro do coletor de escape está sujeito ao fenômeno da superposição de ondas, alterações de pressão e temperatura de gases, apenas sabe-se que esses fenômenos ocorrem.

Então, também de forma empírica, através de muitos experimentos e testes, finalmente Blair(1999) chega a um valor de ajuste para suas equações, que pode alterar o valor dos cálculos e aproximar o máximo possível da realidade no dimensiomento do comprimento do primário do escape.

Blair(1999), conseguiu descobrir que o valor de ajuste para os cálculos era de Cet é igual a 2,058 x 10⁵, assim podendo corrigir o cálculo para o comprimento do coletor.

Já de acordo com ROCHA (2011, p. 09 apud BELL, 1980), existem algumas equações para que se chegue a um dimensionamento do coletor de escape.

Para o comprimento tubo principal do coletor, tem-se a equação (2):

$$L = \frac{21590 \text{ (Ave+180)}}{N} - 76.2 \quad (2)$$

Onde:

L: comprimento do tubo principal do coletor de escape, (mm).

Ave: abertura da válvula de escape antes do ponto morto inferior. (°APMI).

N: rotação do motor escolhida para cálculo,(rpm).

Para o diâmetro interno do tubo principal do coletor de escape, tem-se a equação (3):

$$Di = \sqrt{\frac{cc}{(0,03937.L)}} \cdot 53,34 (3)$$

Onde:

Di: diâmetro interno do tubo principal do coletor, (mm).

cc: cilindrada do motor. (cm3);

L: comprimento do tubo principal do coletor de escape, (mm).

Baseando-se nas equações de Rocha (2011), verifica-se que o comprimento do tubo principal é inversamente proporcional à velocidade de rotação do motor, ou seja, quanto maior a rotação, mais curto será o tubo e vice versa.

Quanto mais alta a velocidade do motor, menor será a permanência de abertura das válvulas, então a onda de pressão criada tem um tempo menor para ser expulsa, isso justifica o porquê do tubo ser mais curto quanto maior for a rotação do motor.

2.1.4.2. Equações para dimensionamento do comprimento do secundário do coletor de escape

Assim como Blair (1999) chegou nas equações para o tubo principal do coletor de escape, da mesma forma o fez para as equações do tubo secundário, de maneira empírica. Através de testes, estudos e ensaios ele percebeu que havia um fator de correção necessário na utilização das equações existentes, que não estavam condizentes com os valores obtidos na prática.

Depois de análises e comparações feitas com inúmeras interações em seus cálculos para coletores de escape, Blair (1999, página 690) propõe a utilização do fator de ajuste Ctp para o dimensionamento do comprimento do secundário para a seguinte equação (4):

$$\mathsf{Ltp} = \frac{\mathit{Ctp} \sqrt{(\mathit{Tex} + 273)}}{\mathit{Ncy} \cdot \mathit{N}} \ (4)$$

Onde:

Ltp: comprimento total do tudo secundário, (mm).

Ctp: fator de correção obtido de maneira experimental.

Tex: temperatura de exaustão, (°C).

Ncy: número de cilindros.

N: rotação do motor, (rpm).

O valor obtido para a constante Ctp é igual a 9.0×10^5 , como é apenas um fator de ajuste, ele é adimensional.

2.1.4.3. Equações para dimensionamento do diâmetro do tubo secundário

Segundo Blair (1999), existe uma relação entre a saída do primário e o início do secundário, a razão entre as áreas é de 6 e o diâmetro do primário deve ser 44,2 mm. Ele chegou nesse valor fazendo simulações com inúmeros diâmetros, e assim como nos fatores de correção, quando o valor passou a se tornar constante ele adotou como regra. Desta forma ele propôs a seguinte equação (5):

Ccoll =
$$\frac{(Ncy-1) Dep^2 + Dtp^2}{Dep^2}$$
 = 6 (5)

Onde:

Ccoll: constante da razão entre a área do primário em relação ao secundário.

Ncy: número de cilindros.

Dep: diâmetro do tubo do primário, (mm).

Dtp: diâmetro do tubo do secundário, (mm).

Rearranjando a equação, para descobrir o diâmetro do secundário tem-se a equação (6):

$$Dtp = \sqrt{Dep^2 \cdot (Ccoll - (Ncy - 1))}$$
 (6)

Com base nas equações para dimensionar o diâmetro de ROCHA (2011, apud BELL, 1980) e essa razão estabelecida por Blair (1999), também é possível descrever então prever o diâmetro do secundário fazendo um apanhado com os estudo dos dois autores.

3. CAPÍTULO 3

3.1. METODOLOGIA

A pesquisa bibliográfica é feita com a finalidade de levantar um conhecimento disponível sobre teorias, a fim de analisar, produzir ou explicar um objeto sendo investigado. A pesquisa bibliográfica visa então analisar as principais teorias de um tema, e pode ser realizada com diferentes finalidades, segundo TYBEL, apud (CHIARA, KAIMEN, et al., 2008).

Este trabalho consiste em uma revisão bibliográfica, que se baseia na coleta de dados a partir de artigos, textos e livros com estilo científico. Esses resultados serão usados no estudo como forma de citações, servindo como base para o desenvolvimento e apresentação dos resultados do assunto em questão.

A sua função tem uma abordagem onde apresenta os resultados de modo estruturado, com ajuda de tabelas, gráficos, e softwares onde as respostas fiquem objetivas e claras na comparação entre um coletor de escape corretamente calculado e um conformado sem cálculo específico.

Esse trabalho, baseado em dados, cálculos e ensaios, apresentará ao final se a pesquisa mostrou êxito em seu objetivo.

Essa pesquisa começa a partir da necessidade em que o Brasil tem em relação ao dimensionamento ideal de um sistema de exaustão para motores de alto desempenho, que auxilie no ganho de potência e não num dimensionamento grosseiro como tem-se visto no setor do automobilismo nacional. Então este trabalho serve para dimensionar corretamente o sistema de exaustão de gases quentes de um motor de combustão interna.

Dentre os inúmeros modelos, o coletor de escape analisado, calculado e testado, será do modelo 4x1 para motores naturalmente aspirados com quatro cilindros, que trabalham no regime do Ciclo Otto.

Com os resultados das equações em mãos é hora de colocar em prática e construir o coletor de escape. Chega-se o momento de verificar a compra de materiais para a construção do escape nas medidas necessárias.

Depois que o material estiver em mãos deve ser levado a um profissional da área de metal mecânica que tenha equipamentos de conformação para transformar os tubos e dobras em um coletor de escape.

Depois que tiver o coletor de escape em mãos deverão ser feitos os ensaios em um dinamômetro de rolo para aferir se as dimensões encontradas vão resultar em ganho de potência com relação a um coletor usado atualmente que também será ensaiado no mesmo equipamento de medição.

Depois das medições no dinamômetro, os gráficos do motor gerados pelo equipamento serão analisados, assim podendo verificar se a pesquisa mostrou resultados positivos e cumpriu seu objetivo, de apresentar um dimensionamento ideal para cada tipo de motor sem sobrealimentação.

3.1.1. Materiais e Métodos

O primeiro passo para a pesquisa será coletar alguns dados do motor que receberá o sistema de exaustão. As informações serão:

- 1. Modelo do coletor de escape: nesse caso será utilizado o 4x1.
- 2. Número de cilindros:
- 3. Volume do motor;
- 4. Material escolhido: inox, devido à sua alta dissipação de calor, ser um metal inoxidável e apresentar maior durabilidade do equipamento.
- 5. Faixa de potência do motor: deve-se saber esse dado para que o escape seja calculado de acordo com a rotação em que o motor tenha mais eficiência, serão dados obtidos com mecânicos da área.
- 6. Rotação a ser utilizada para o cálculo: como dito anteriormente, esse dado irá definir a qual rotação o escape terá melhor eficiência e com isso o coletor será dimensionado.
- O comando de válvulas usado no motor: para saber a abertura das válvulas, sendo que para um dos cálculos os dados exigidos são em graus (°).
- 8. Temperatura dos gases na saída do escape.
- 9. Combustível a ser utilizado no motor.

Com esses dados passa-se para a segunda fase, onde as informações coletadas serão enviadas a uma planilha de Excel desenvolvida pela acadêmica para dar início aos cálculos para dimensionamento do coletor de escape, baseandose nas equações de Blair (1999) e ROCHA (2011, apud BELL, 1980).

Com relação a custos, como já dito anteriormente, os dados coletados são de propriedade da empresa Stumpf Preparações, que cederá seus materiais e custeará toda pesquisa, sendo um incentivo aos acadêmicos para novas pesquisas de desenvolvimento no ramos de motores de combustão interna, então:

- Ensaios dinamométricos para obtenção de relatórios do motor a ser estudado serão cedidos pelo dono da empresa e do equipamento, o mecânico de carros de alta performance Muriel Jacobsen Stumpf, referência no automobilismo nacional.
- 2. Com relação à deslocamento o custo será insignificante, visto que absolutamente todos os experimentos necessários serão feitos na empresa em que a aluna trabalha.
- 3. Conformação do coletor de escape completo: conforme orçamento disponibilizado pela empresa Gerey Escapamentos, o custo para produzir o coletor de escape ficará em torno de R\$ 4000,00 que são referentes à mão de obra e material para conformação.

O período de análises e ensaios até o fim da pesquisa está compreendido entre três meses, que será o tempo disponibilizado pela empresa para o meio acadêmico.

Sendo os resultados favoráveis à pesquisa, pode-se fabricar novos coletores de escapamento para carros de circuito e arrancada avançando assim o nível dos coletores de escape para competição produzidos no Brasil, visto que estes serão produzidos com embasamento teórico, cálculos e simulações que moldam sua estrutura.

4. CAPÍTULO 4

4. 1. RESULTADOS E DISCUSSÕES

Os dados coletados para aplicar nas equações foram fornecidos pela empresa Stumpf Preparações, através de relatórios dos gráficos de desempenho de seus motores. Para o cálculo, foi utilizado como material de estudo um motor VW AP 8V, 1.6, um motor de quatro cilindros que compõe um carro para corridas de circuito, relativamente longas que utiliza como combustível o etanol.

Os dados utilizados, são de propriedade da empresa Stumpf Preparações, que mantém seus registros guardados e gentilmente cedeu as informações que eram necessárias para a conclusão dessa pesquisa. Entretanto, infelizmente não foi possível anexar os relatórios dos motores da equipe para exemplificar a origem dos dados coletados.

Pelas equações baseadas na tese de ROCHA (2011 pg 09, apud, BELL 1980), para o comprimento e diâmetro do coletor, obtiveram-se os seguintes resultados:

Tabela 01: Resultados da equação segundo ROCHA(2011 pg 09 apud, BELL 1980).

FQUAÇÕ	ES SEGUNDO RODRIG	O DA ROCHA GOMES					
		2711100111100111120					
CÁLCULO DO COMPRIMENTO DO PRIMÁRIO DO COLETOR DE ESCAPAMENTO							
Simbologia	Nomenclatura	Variáveis	UNIDADES				
L	COMPRIMENTO DO TUBO PRINCIPAL	810,5321429	mm				
Ave	ABERTURA DA VALVULA DE ESCAPE APMI	50	graus				
N	ROTAÇÃO	5600	rpm				
CÁLCULO DO DIÂME Simbologia	ETRO INTERNO DO PRI Nomenclatura	MÁRIO DO COLETOR DE Variáveis	ESCAPAMENTO UNIDADES				
Di	DIÂMETRO INTERNO DO TUBO PRINCIPAL	37,76984253	mm				
сс	CILINDRADA DO MOTOR	400	cm³				
L	COMPRIMENTO DO TUBO PRINCIPAL	810,5321429	rpm				
	LEGENDA COM						
	ENTRAR COM						
	RESULTADO FINAL						

Fonte: Autor.

- Para um motor com velocidade de rotação N igual a 5600 rpm rotação onde se precisa extrair a maior perfomance. Dado fornecido pelo chefe da equipe, Muriel Stumpf, que estabeleceu que o cálculo seja feito nessa rotação para seu carros de corrida, onde atingem a sua faixa de torque.
- Para um motor com 1600 cilindradas motor quatro cilindros (400 cilindradas unitárias, por cilindro);
- De acordo com o comando de válvulas utilizado, um comando Carlini WMP, com 284° de duração no came de admissão e 288° no de duração no came de escape, conseguimos identificar a abertura da válvula de escape antes do ponto morto inferior através de uma medição do comando de válvulas utilizando um software da empresa que afirma que Ave= 50° nesse comando de válvulas.

Figura 03: Catálogo do fabricante de comando de válvulas utilizado.

Classificação	Tipo e o de tucho	Cir. Base	Lobe Center		Permanência @ 0.10 [mm]	Levante [mm]	Folga [mm]
W 1.3 Hidráulico (35 mm)	34 mm	114°	ADM	270°	11.6	0.00	
		115°	ESC	274°	11.6	0.00	
WMP Hidráulico (35 mm)	22000	108°	ADM	284°	11.6	0.00	
	34 mm	108°	ESC	288°	11.6	0.00	

Fonte: Carlini Competizione.

Com essas informações, o resultado do cálculo diz que:

 O comprimento do coletor de escape deveria ser de 810,5321429 mm, enquanto o diâmetro principal do tubo deveria ser de 37,76984253 mm. Já no modelo de cálculo proposto por Blair(1999, página 683), para cálculo do comprimento do coletor, tem-se que:

Tabela 02: Equações para comprimento do primário, segundo Blair (1999, página 683).

EQUAÇÕES SEGUNDO GORDON BLAIR						
CÁLCULO DO COM	CAPAMENTO					
Simbologia	Nomenclatura	Variáveis	UNIDADES			
Let	COMPRIMENTO TOTAL DO TUBO	1044,631275	mm			
Cet	FATOR DE CORREÇÃO EMPIRICO	205800	adi			
Tex	TEMPERATURA DOS GASES DE EXASUSTÃO	535	°C			
N	N ROTAÇÃO		rpm			
	FATOR DE CORREÇÃO E					
Simbologia	Nomenclatura	Variáveis	UNIDADES			
Cet	FATOR DE CORREÇÃO EMPIRICO	2,058*10^5	adi			
	LEGENDA					
	ENTRAR COM DADOS					
	RESULTADO FINAL					

Fonte: Autor.

 Para um motor com velocidade de rotação N igual a 5600 rpm – rotação onde se precisa extrair a maior performance, onde se concentra a faixa de torque do motor em questão. Esse dado foi fornecido pelo chefe da equipe, Muriel Stumpf, que ao trabalhar em conjunto com essa pesquisa, estabeleceu que o cálculo fosse feito para seus motores nessa rotação.

- Para um sistema de combustão, cuja temperatura de exaustão dos gases Tex seja 535°C – dados também extraídos de relatórios da empresa, fornecidos pelo Sr. Muriel Stumpf para ajuda na pesquisa.
- Para um sistema de exaustão tendo com fator de correção Cet igual a 2,058 x 10⁵com BLAIR(1999);
- O resultado dos cálculos diz que o comprimento do coletor de escape deveria ser de Let igual a 1044,63127 mm.

Para o cálculo do comprimento do tubo secundário, segundo Blair(1999, página 690) tem-se que:

Tabela 03: Equações segundo Blair (1999, página 690) para cálculo do comprimento do secundário do coletor de escape.

EQUAÇÕES SEGUNDO GORDON BLAIR							
CÁLCULO DO COMPRIMENTO DO SECUNDÁRIO DO COLETOR DE ESCAPAMENTO							
Simbologia	Nomenclatura	Variáveis	UNIDADES				
Ltp	COMPRIMENTO TOTAL DO TUBO	1138,550409	mm				
Ctp	FATOR DE CORREÇÃO EMPIRICO	900000	adi				
Ncy	Ncy NÚMERO DE CILINDROS		adi				
N	ROTAÇÃO	5600	rpm				
Tex	TEMPERATURA DE EXAUSTÃO	530	°C				
	FATOR DE CORREÇÃO	EMPIRICO					
	Nomenclatura	Variáveis	UNIDADES				
	FATOR DE CORREÇÃO EMPIRICO	9*10^5	adi				
	LEGENDA						
	ENTRAR COM DADOS						
	RESULTADO FINAL						

Fonte: Autor.

 Para um motor com velocidade de rotação N igual a 5600 rpm – rotação onde se precisa extrair a maior performance, onde se concentra a faixa de torque do motor em questão. Esse dado foi fornecido pelo chefe da equipe, Muriel

- Stumpf, que ao trabalhar em conjunto com essa pesquisa, estabeleceu que o cálculo fosse feito para seus motores nessa rotação.
- Para um sistema de combustão, cuja temperatura de exaustão dos gases Tex seja 530°C dados também extraídos de relatórios da empresa, fornecidos pelo Sr. Muriel Stumpf para ajuda na pesquisa. Esse dado encontra-se também na literatura de Blair(1999), ou seja, verifica-se que o estudo dele tem uma face voltada diretamente para as aplicações práticas do desenvolvimento do coletor de escape.
- Para um sistema de exaustão tendo com fator de correção Ctp igual a 9,0 x 10⁵, de acordo com BLAIR (1999, página 691);
- O resultado dos cálculos diz que o comprimento do coletor de escape deveria ser de Ltp igual a 1138,550409 mm.

Para o cálculo do diâmetro do tubo secundário do coletor de escape baseando-se na pesquisa de Blair (1999), tem-se que:

Tabela 04: Equações para o cálculo do diâmetro do secundário segundo BLAIR(1999).

EQUAÇÕES SEGUNDO GORDON BLAIR						
CÁLCULO DO D	CÁLCULO DO DIÂMETRO DO SECUNDÁRIO DO COLETOI					
Simbologia	Nomenclatura	Variáveis	UNIDADES			
Dtp	DIÂMETRO DO SECUNDÁRIO	76,55664569	mm			
Dep	DIÂMETRO DO PRIMÁRIO	44,2	mm			
Ncy	NÚMERO DE CILINDROS	4	adi			
	RAZÃO ENTR	E ÁREAS				
Simbologia	Nomenclatura	Variáveis	UNIDADES			
Ccoll	RAZÃO ENTRE ÁREA DO PRIMÁRIO E SECUNDÁRIO	6	adi			
	LEGENDA					
	ENTRAR COM DADOS					
	RESULTADO FINAL					

Fonte: Autor.

- Para um motor com diâmetro do primário Dep igual a 44,2, como proposto por BLAIR(1999).
- Para um motor com número de cilindros Ncy igual a 4.
- Para um motor, cuja razão entre a área do tubo primário e a área do tubo secundário seja igual a 6.

O resultado dos cálculos diz que o diâmetro do tubo secundário do coletor de escape deveria ser Dtp igual a 76,55664569 mm.

Já para um cálculo do diâmetro do tubo secundário do coletor de escape, baseando-se na equação de Blair (1999, página 692) e tomando como base a

equação de ROCHA(2011 pg 09, apud BELL, 1980) que encontra o diâmetro do tubo primário, faz-se um apanhado das contribuições dos dois autores e tem-se que:

Tabela 05: Equações para o cálculo do diâmetro do tubo secundário segundo Blair(1999) e Rocha(2011).

EQUAÇÕES SEGUNDO GORDON BLAIR E RODRIGO ROCHA						
CÁLCULO DO DI	O DIÂMETRO DO SECUNDÁRIO DO COLETOR DE ESCAPA					
Simbologia	Nomenclatura	Variáveis	UNIDADES			
Dtp	DIÂMETRO DO SECUNDÁRIO	65,41928626	mm			
Dep	DIÂMETRO DO PRIMÁRIO	37,76984253	adi			
Ncy	NÚMERO DE CILINDROS	4	adi			
	RAZÃO ENTRE ÁI	REAS				
Simbologia	Nomenclatura	Variáveis	UNIDADES			
Ccoll	RAZÃO ENTRE ÁREA DO PRIMÁRIO E SECUNDÁRIO	6	adi			
	LEGENDA					
	ENTRAR COM DADOS					
	RESULTADO FINAL					

Fonte: Autor.

- Para um motor com diâmetro do primário Dep igual a 37,76984253, como resultado da equação para diâmetro do primário de ROCHA(2011,pg 09, apud BELL, 1980).
- Para um motor com número de cilindros Ncy igual a 4.
- Para um motor, cuja razão entre a área do tubo primário e a área do tubo secundário seja igual a 6, como proposto por BLAIR (1999, página 692).

O resultado dos cálculos diz que o diâmetro do tubo secundário do coletor de escape deveria ser Dtp igual a 65,41928626 mm.

Dessa maneira, pode-se observar que ao comparar os dois modelos de cálculo, percebe-se que enquanto o modelo de ROCHA (2011, apud BELL, 1980), apresenta medidas mais singelas, Blair(1999) traz valores maiores.

Baseando-se na experiência da equipe Stumpf Preparações, parceira dessa pesquisa, que tem inúmeros anos de mercado e testes realizados, percebe-se que as medidas do coletor de escape de ROCHA (2011, apud BELL, 1980), se encaixam melhor para o projeto no que diz respeito ao tubo principal do coletor (primário).

Já para o tubo secundário, será utilizado o cálculo de Blair (1999), que se preocupa em trazer o dimensionamento completo do tubo, chegando assim numa mescla de autores para encontrar o coletor de escape ideal.

Chegando ao resultado final, baseando-se nas equações de Blair (1999) e ROCHA (2011, apud BELL, 1980), tem-se que para um motor AP 8V, naturalmente aspirado com 4 cilindros, um exemplo correto de escape seria:

- Modelo 4x1;
- Comprimento do primário: 810,5 mm.
- Diâmetro do primário: 37,8 mm. − 1 ½" (diâmetro comercial)
- Comprimento do secundário: 1138,5 mm.
- Diâmetro do secundário: 65,5 mm. − 2 ½" (diâmetro comercial)
- Material: aço inox.

Depois de ter as medidas escolhidas comparando os dois autores, foi contatado novamente o profissional responsável pela conformação de escapes e liberado o orçamento para a confecção.

Depois de 7 dias, por ser um pedido de urgência (pois a confecção do escape geralmente demora mais tempo), a peça ficou pronta.

Figura 04: Tubo primário do coletor de escape vista inferior.

Fonte: Autor.

Figura 05: Tubo primário do coletor de escape vista superior.

Figura 06: Tubo primário do coletor de escape vista frontal.

Fonte: Autor.

Figura 07: Tubo primário do coletor de escape vista lateral.

Figura 08: Junção entre coletor primário e secundário.

Figura 09: Junção do tubo primário com o secundário vista frontal.

Fonte: Autor

Figura 10: Tubo secundário do coletor de escape.

Chegada a peça na empresa, ela foi montada imediatamente num dos carros de circuito para testes e o veículo foi encaminhado ao dinamômetro de rolo da empresa Injediesel Power Chip.

Antes disso, o coletor de escape para competições que estava montado no mesmo veículo também foi ensaiado no dinamômetro para que pudessem ser feitas as comparações com o escape dimensionado pela acadêmica.

O dinamômetro de rolo gera gráficos de potência automaticamente conforme o veículo vai sendo ensaiado, desta forma, como resultado final, apresenta-se que:

- O motor que foi ensaiado com o coletor de escape de competição comum resultou em 151,94 CV de potência, conforme anexo 01.
- O motor que foi ensaiado com o coletor de escape dimensionado pela aluna resultou em 159,46 CV de potência, conforme anexo 02.

Ou seja, o coletor de escape corretamente dimensionado resultou em um ganho de potência de 7,52 CV. E este ganho pode-se dizer que é apenas em função do coletor de escape, visto que os ensaios foram realizados no mesmo dia, nas mesmas condições climáticas e com o mesmo motor.

5. CONSIDERAÇÕES FINAIS

Ao analisar o trabalho em geral, na busca por ferramentas para estudo, percebeu-se que os materiais para pesquisa no ramo ainda são bem escassos. Por esse motivo, essa tese de conclusão de curso foi baseada em apenas dois autores do ramo.

Ao finalizar a pesquisa, percebeu-se que não há um cálculo exato para o dimensionamento do escape que possa ser descrito através de simples equações, pois os autores tem abordagens diferentes do assunto, visto que é um sistema que está em constante mudança em todos os pontos.

Porém, baseado no livro de Blair(1999) e na tese de ROCHA(2011, apud BELL, 1980) esse trabalho apresentou resultados positivos, onde foi capaz de encontrar comprimentos e diâmetros tanto para o primário quanto para o secundário. O trabalho também contribuiu para o meio do automobilismo apresentando resultados expressivos ao ser comparado com o coletor de escape usado atualmente.

Como é um tema pouco difundido no Brasil, o dimensionamento do coletor de escape mantém-se em segredo entre os preparadores mais experientes na área, que ao longo dos anos foram testando e encontrando maneiras de otimizar a performance do sistema de exaustão de seu carros, porém, não tem conhecimento para entender os fenômenos e equações que podem direcionar para um dimensionamento correto.

Além de trazer o dimensionamento do coletor de escape completo e da comprovação do ganho de potência do motor, esse trabalho torna-se valioso por ser uma publicação na língua portuguesa com estudo sobre o sistema de exaustão, visto que infelizmente não há material de pesquisa nessa língua e com isso pode ficar publicado para as próximas gerações que venham a estudar os sistemas de exaustão dos motores de combustão interna naturalmente aspirados, para carros de alto desempenho.

6. SUGESTÕES PARA TRABALHOS FUTUROS

Devido ao curto intervalo de tempo entre pesquisas e testes para realização da tese de conclusão de curso, infelizmente não foi possível realizar todas as experiências com os resultados obtidos através das equações.

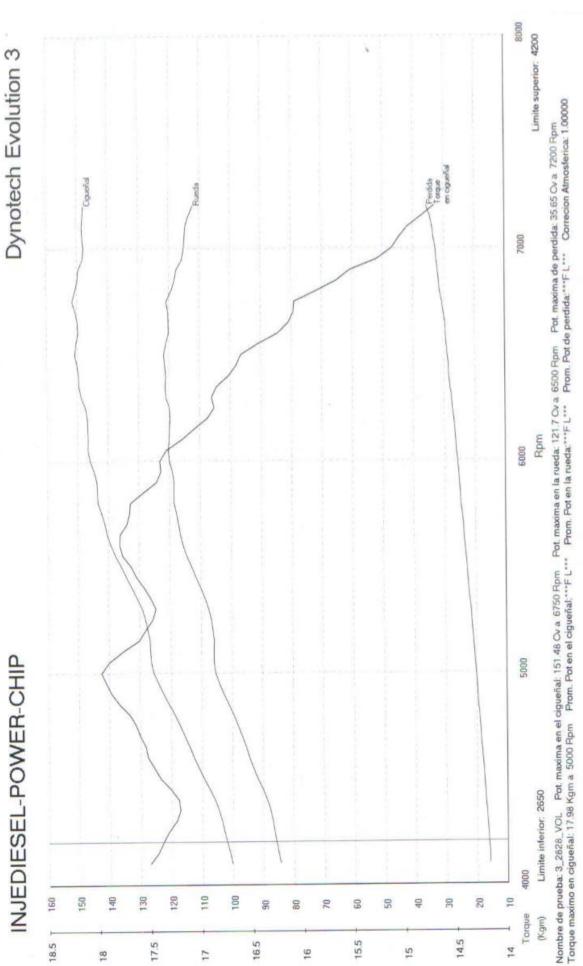
Nesse caso, fica como sugestão para próximas pesquisas, os testes para comprovação da eficiência do coletor de escape calculado, usando como base apenas as equações de Blair (1999) do início ao fim do coletor de escape para verificar a discrepância de suas dimensões, visto que são maiores em todos os pontos ao comparar com a pesquisa de ROCHA(2011, apud BELL 1980).

Fica aqui, também a sugestão de um trabalho sobre a comparação de materiais para construção de um coletor de escapamento, visto que atualmente temse peças de ferro fundido e aço inoxidável, dessa maneira poderia ser feito um comparativo nos benefícios e desvantagens de cada material ou ainda, propor um terceiro material que seja superior aos da atualidade, como por exemplo o titânio.

Além da análise de materiais para construção do coletor de escape, uma pesquisa interessante a se fazer em cima do tema dos sistemas de exaustão dos motores de combustão interna, é sobre o isolamento térmico dos mesmos. Tudo que se refere à tipos de materiais e revestimentos para otimização da performance em veículos para competição, ou poder comprovar se esses materiais realmente interferem do desempenho do veículo.

Também fica como sugestão a busca pela bibliografia do autor Graham Bell, que neste trabalho foi citado apenas com o termo "apud", devido à enorme dificuldade de encontrar a fonte original do estudo.

Independente do qual estudo, todas são sugestões para teses interdisciplinares, onde pelo menos a Termodiâmica, Transferência de Calor e Mecânica dos Materiais são disciplinas que estarão presentes no decorrer das pesquisas.


REFERÊNCIAS

- BERNASCONI, Eduardo Muito além do som 2012 Disponível em: http://revistafullpower.uol.com.br/muito-alem-do-som/ - acesso em: (19/08/2018 as 1h 02 min);
- BLAIR, Gordon P. Design and Simulation of Four-Stroke Engines. Edição ilustrada. Warrendale, Pa. EUA: Society of Automotive Engineers, 1999.
- CARLINI, Carlos José Confira os modelos e especificações técnicas dos Comandos de Válvula VW- Disponível em: https://www.carlinicompetizione.com.br/comandos-de-valvula/comandos-de-valvula-vw/- acesso em: 09/10/2018 as 06h35min).
- HERNANDES, Dalmo- Turismo Carretera: a maior categoria de corrida da Argentina é mesmo sensacional – 2016 – Disponível em: https://www.flatout.com.br/turismo-carretera-maior-categoria-de-corrida-da-argentina-e-mesmo-sensacional/ - acesso em 07/04/2018 15h 13min.
- HOFFMANN, Eduardo Como funciona o catalisador? 2018- Disponível em: http://motorsa.com.br/como-funciona-o-catalisador/ - acesso em: . (20/05/2018 as 19h 46min);
- PASSOS, Rodrigo Sistemas de escapes: coletores, dutos e emissões –
 2015- Disponível em: https://www.flatout.com.br/sistemas-de-escape-coletores-dutos-e-emissoes-parte-1/ -acesso em 20/05/2018 as 21h 30 min.
- REISS, Jason- Tech: Five Tips On Building A Set Of Bad-Ass Race Headers-2015- Disponível em: http://www.dragzine.com/news/tech-five-tips-on-buildinga-set-of-bad-ass-race-headers/ - acesso em 20/05/2018 as 17h 00min.
- ROCHA, Gionei- História do Motor a Combustão Interna ciclo "Otto" 2009 Disponível em: http://www.infomotor.com.br/site/2009/01/historia-do-motor-a-combustao-interna-ciclo-%E2%80%9Cotto%E2%80%9D/ acesso em 03/04/2018 21h 45min.

- ROCHA, Rodrigo Gomes. Estudo de um método para projectar sistemas de escape de um motor de combustão interna a 4 tempos 2011. 79 folhas. Dissertação de Mestrado Faculdade de Engenharia Universidade do Porto (FEUP), Portugal,2011.-Disponível em: https://repositorio-aberto.up.pt/bitstream/10216/60412/1/000147136.pdf acesso em 19/08/2018 as 14h 05 min);
- ROMAN, Vincent Tópicos principais da análise de pressão 2014-Disponível em: http://www.burnsstainless.com/aetc2014.aspx - acesso em: (20/05/2018 as 00h 40 min);
- TYBEL, Douglas O que é pesquisa bibliográfica? Disponível em: https://guiadamonografia.com.br/pesquisa-bibliografica/ - acesso em: (12/06/2018 as 00h 02min);

ANEXOS

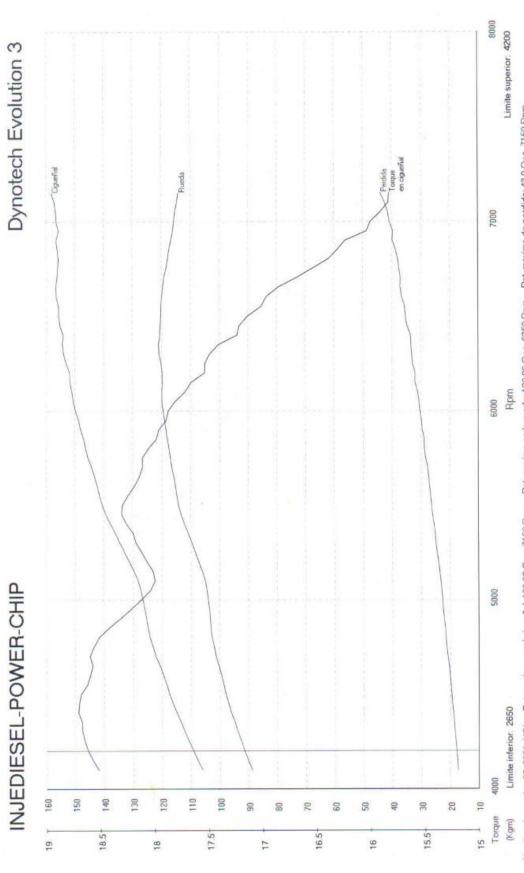
ANEXO 01: RESULTADOS DO ENSAIO EM DINAMÔMETRO DE ROLO DA EMPRESA INJEDIESEL POWER CHIP, COM O COLETOR DE ESCAPE ANTES USADO PELA EMPRESA STUMPF PREPARAÇÕES.

INJEDIESEL-POWER-CHIP

VOLKSVAGEN 2828 STD URIEL STD DTFQ SDT DTD STD STD	Pot promedio de perdida: *** L*** Pot maxima de perdida: 38.13 Cv a 7.
Marca Nro Patente Nº Motor Cliente Comando Variador de Avanço Injeção Marcha Escapamento Observaciones	Cv a 6500 Rpm
3_VOLKSVAGEN 2828_STD 1.096587 3.02 926 Hpa 62 % 21.6 grados C 19.9 grados C Inercial Total Entre 2650 y 4200 Rpm	Pot promedio en rueda: ***F L*** Pot maxima en rueda: 121.83 Cy a 6500 Rpm
Nombre de la Prueba Fecha y Hora Corrección atmosférica Relación Eje motor/freno Presión atmosferica Humedad Temperatura ambiente Temperatura en la boca del carburador Tipo de prueba Potencia promedio	Pot. Promedio en Cigueñal: ***F L*** Pot. maxima en Cigueñal: 151.94 CV a 6750 Rpm

Pot, maxima de perdida: 38.13 Cv a 7225 Rpm

Tabla de valores


Velocidad
n) en motor(kgm)
21.74 Mex 14
-
17.97
_
_
15.61

2219 112,93 16.15 34.16 16.13 12.00 2210 112,48 16.13 34.16 16.13 17.2 119.69 2202 112,49 16.13 34.7 16.03 119.69 2202 111,20 16.19 34.7 16.03 119.69 2177 110,39 16.29 35.34 149.61 120.30 216 110,39 16.39 35.40 149.61 120.10 216 110,39 16.39 35.22 149.51 120.30 216 109.98 16.39 35.24 150.17 120.35 216 109.12 16.7 35.86 150.17 120.35 217 109.29 16.67 35.24 150.17 121.83 216 100.7 16.7 35.24 150.17 121.83 217 10.89 16.7 35.24 150.17 121.83 218 10.7 16.7 36.24 150.17	Aceleracion Rpm vehiculo	Rpm rodillo	Velocidad	torque	torque	Potencia	Potencia	Potencia
2219 112.93 16.15 34.16 15.13 120.60 220 112.48 16.13 34.17 150.35 119.63 220 112.07 16.13 34.17 150.35 119.63 2194 111.20 16.19 35.53 149.61 120.25 2195 110.39 16.39 35.54 149.61 120.13 2167 110.39 16.39 35.40 149.61 120.13 2168 110.39 16.39 35.41 149.61 120.13 2167 110.39 16.39 35.44 149.61 120.13 2167 110.39 16.39 35.44 149.61 120.13 2167 110.39 16.39 35.44 149.61 120.13 2167 110.39 16.39 35.44 149.61 120.13 2168 110.39 16.39 35.44 149.61 120.13 2169 110.39 16.39 36.72 16.31 120			(Km/h)	en motor(Kgm)	en rueda(Kgm)	en motor(CV)	en rueda(CV)	de perdida(Ov)
2210 112.48 16.13 34.17 150.35 119.69 2202 111.20 16.13 34.76 149.82 120.30 2202 111.20 16.14 35.34 149.82 120.30 2185 111.20 16.19 35.34 149.87 120.30 2187 110.80 16.29 35.54 149.81 120.30 2161 109.98 16.40 35.72 150.17 120.30 2162 109.98 16.40 35.72 16.01 120.31 2162 109.98 16.40 35.22 150.17 120.30 2162 109.98 16.40 35.22 150.17 121.83 217 109.25 16.70 35.24 16.01 121.83 217 109.25 16.70 35.21 149.40 121.83 218 100.26 16.70 35.21 149.40 121.18 219 100.26 16.70 37.21 149.20 121.8		92219	112.93	16.15	34.16	151.13	120.60	30.53
2202 112.07 1613 34.76 148.82 12.03 2194 111.66 16.24 35.31 150.27 120.25 2185 111.20 16.29 35.54 149.61 120.25 2187 110.80 16.29 35.42 149.61 120.10 2168 110.39 16.63 35.72 160.17 120.25 2162 110.30 16.61 35.84 150.17 120.33 2162 110.31 16.71 35.84 150.17 120.33 2163 110.32 16.75 36.86 150.17 121.88 2164 110.31 16.75 36.84 150.17 121.88 2165 110.24 16.75 36.86 150.17 121.88 2173 110.24 16.75 36.27 150.28 121.18 2184 110.24 16.75 36.27 150.28 121.18 2185 110.24 16.75 36.27 149.64 1		2210	112.48	16.13	34.17	150.35	119.69	30.66
2194 111 66 1624 35.31 150.27 120.25 2195 111 20 16.19 35.53 149.23 119.85 2197 110.39 16.39 35.40 149.61 120.17 2161 109.98 16.39 35.40 149.61 120.17 2152 109.98 16.40 35.72 150.17 120.75 2152 109.52 16.60 35.84 150.17 120.75 2152 109.52 16.60 35.84 150.17 121.83 2172 108.71 35.08 150.17 121.83 2172 107.84 16.70 36.89 151.12 121.83 2172 107.84 16.70 36.80 151.12 121.83 2173 107.84 16.70 36.80 151.18 120.18 2173 107.84 16.70 37.21 149.64 121.18 2173 107.84 16.70 37.23 148.34 121.18		2202	112.07	1613	34.76	149.82	120.30	29.52
2185 11120 16.19 35.53 149.23 119.85 2177 110.80 16.29 35.54 149.61 120.10 2169 110.80 16.29 35.54 149.61 120.10 2160 10.952 16.60 35.84 150.71 120.10 2161 10.952 16.60 35.84 150.71 120.71 2162 10.972 16.67 35.84 150.71 120.73 217 10.87 16.67 36.84 150.71 121.68 217 10.87 16.77 36.84 150.71 121.68 218 10.87 16.76 36.74 149.23 121.68 219 10.89 16.76 36.74 149.23 121.68 210 10.70 16.70 36.74 149.23 121.68 210 10.70 16.70 37.21 149.29 121.69 210 10.70 16.87 37.23 148.34 121.18		2194	111.66	16.24	35.31	150.27	120.25	30.02
110.80 16.29 35.54 149.61 120.10 110.39 16.39 35.40 149.61 120.11 110.90 16.48 35.72 150.71 120.31 109.12 16.71 35.84 150.71 121.59 108.71 16.67 35.84 150.71 121.59 108.71 16.67 36.24 150.26 121.59 107.24 16.76 36.24 149.29 120.83 107.44 16.76 36.24 149.29 120.83 107.44 16.79 37.31 149.43 121.12 106.57 16.97 37.31 149.43 121.13 106.57 16.94 37.23 149.89 120.31 106.76 16.94 37.23 149.89 120.31 106.76 16.94 37.23 149.89 120.31 107.31 17.03 38.09 146.56 119.76 103.62 17.21 38.04 146.83 120.04 101.49 17.21 38.04 146.81 120.04 101.40 17.21 38.04 146.36 120.43 101.53 17.47 38.73 143.89 118.57 100.65 17.40 39.46 145.31 118.32 100.65 17.65 39.65 143.73 118.87 100.67 17.75 39.73 143.33 118.67 100.67 17.75 39.45 143.89 118.67 100.67 17.75 39.65 143.87 118.87 100.67 17.75 39.57 143.33 118.67 100.67 17.75 39.65 143.87 118.67 100.67 17.75 39.65 143.87 118.67 100.67 17.75 39.57 143.93 118.67 100.67 17.75 39.57 143.93 118.67 100.67 17.75 39.57 143.93 118.67 100.67 17.75 39.57 143.93 118.67 100.67 17.75 39.57 143.93 118.67 100.67 17.75 39.57 143.93 118.67 100.67 17.75 39.57 143.93 118.67 100.67 17.75 39.57 143.90 117.65 100.67 17.75 39.57 143.90 117.65 100.67 17.75 39.57 143.90 117.65 100.68 17.75 39.57 143.90 117.65 100.68 17.75 39.57 143.90 117.65 100.68 17.75 39.57 143.90 117.65 100.68 17.75 39.57 143.90 144.90 117.75 39.57 143.90 144.90 117.75 39.57 143.90 144.90 117.75 39.57 143.90 144.90 117.75 39.57 143.90 144.90 117.75 39.57 143.90 144.90 117.75 39.57 143.90 144.90 117.75 39.57 143.9		2185	111.20	16.19	35.53	149.23	119,85	29.39
110.39 16.39 35.40 149.91 120.31 1109.38 16.48 35.72 150.17 120.75 1109.52 16.60 35.84 150.17 121.83 Mox 1109.72 16.67 35.84 150.17 121.83 1108.72 16.67 36.84 150.17 121.83 1108.73 16.75 36.84 150.17 121.83 1108.74 16.75 36.84 150.12 121.59 107.84 16.75 36.84 150.12 121.59 107.84 16.70 37.21 149.64 121.19 105.75 16.87 37.21 149.64 121.19 105.76 16.97 37.23 148.99 120.91 105.76 16.97 37.23 148.99 120.91 106.16 16.94 37.53 144.96 120.10 106.26 16.94 37.53 144.96 120.30 105.36 16.94 37.53 146.28 1		2177	110.80	16.29	35.54	149.61	120.10	29.51
109.98 16.48 35.72 150.17 120.75 109.52 16.60 35.84 150.71 121.83 Max 109.12 16.71 35.86 150.71 121.89 108.72 16.75 36.98 150.17 121.89 108.73 16.75 36.98 150.17 121.89 107.84 16.70 36.54 160.28 121.83 107.84 16.70 36.54 149.29 121.83 107.93 16.87 37.21 149.43 121.13 108.76 16.97 37.21 149.43 121.13 108.76 16.97 37.23 148.99 120.91 108.76 16.97 37.23 148.99 120.91 108.76 16.97 37.23 148.89 120.09 108.97 37.53 148.89 120.09 104.89 16.97 37.75 146.50 119.76 107.81 17.71 38.09 146.50 120.08		2169	110.39	16.39	35.40	149.91	120.31	29.60
109.52 16.60 35.84 150.71 121.83 Max 109.12 16.71 35.86 151.12 121.68 108.71 16.71 35.86 150.17 121.59 108.25 16.70 36.24 160.17 121.59 107.44 16.70 36.24 149.29 120.83 107.44 16.78 37.21 149.43 121.53 106.57 16.87 37.23 149.43 121.12 106.57 16.89 37.23 149.43 121.13 106.76 16.94 37.23 149.89 120.91 106.76 16.94 37.23 148.48 120.31 106.76 16.94 37.53 146.48 120.31 107.81 17.03 38.09 146.48 120.34 107.82 17.03 38.09 146.28 119.76 107.81 17.13 38.42 146.28 120.04 107.82 17.74 38.84 146.58 120.43<		2161	109.98	16.48	35.72	150.17	120.75	29.42
109.12 16,71 35.86 151.12 121.68 108.71 16,75 36.08 150.17 121.59 108.25 16,75 36.28 150.17 121.58 107.84 16,76 36.24 150.28 121.58 107.44 16,78 37.01 149.64 121.19 107.03 16,87 37.21 149.64 121.19 106.57 16,87 37.21 149.64 121.19 106.57 16,87 37.23 148.39 120.81 106.76 16,94 37.23 148.39 120.91 106.76 16,94 37.53 148.39 120.93 106.76 16,94 37.53 148.39 120.38 106.76 16,94 37.53 146.36 120.38 106.89 16,92 37.53 146.36 120.08 107.80 17.16 38.09 146.81 120.08 107.81 17.73 38.73 146.83 120.43		2152	109.52	16.60	35.84	150.71	121.83 Max	28.88
108.71 16.87 36.08 150.17 121.59 107.84 16.70 36.27 150.28 121.58 107.84 16.70 36.27 150.28 121.58 107.03 16.70 37.11 149.29 121.58 107.03 16.87 37.21 149.29 121.03 106.16 16.97 37.23 148.39 121.03 106.16 16.94 37.29 148.48 121.03 106.36 16.94 37.53 148.48 120.38 106.37 16.94 37.53 148.48 120.38 104.89 16.92 37.53 148.48 120.33 104.89 16.92 37.53 146.50 119.70 104.89 16.92 37.53 146.50 119.70 104.89 16.92 37.75 146.50 119.70 103.62 17.03 38.04 146.51 120.08 102.81 17.15 38.04 146.51 120.04		2144	109.12	16.71	35.86	151.12	121.68	29.44
108.25 16.76 36.27 150.28 121.58 107.84 16.70 36.54 149.43 121.12 107.84 16.70 35.54 149.43 121.12 107.44 16.70 37.21 149.43 121.12 106.57 16.87 37.21 149.43 121.12 106.16 16.97 37.23 148.49 120.91 105.76 16.94 37.29 148.49 121.03 105.76 16.94 37.29 148.49 120.31 106.85 16.92 37.75 146.60 120.91 104.89 16.92 37.75 146.50 119.70 104.89 16.92 37.75 146.50 119.70 103.62 17.03 38.04 146.50 119.70 102.81 17.16 38.04 146.36 120.43 101.53 17.21 38.05 146.36 120.43 101.54 17.35 38.94 146.36 120.43		2136	108.71	16.67	36.08	150.17	121.59	28.58
107.84 16.70 36.54 149.29 120.83 107.44 16.78 37.01 149.43 121.12 107.03 16.87 37.23 149.43 121.12 106.16 16.87 37.23 148.64 121.19 106.16 16.97 37.23 148.64 121.93 105.35 16.94 37.23 146.40 121.03 106.16 16.94 37.53 147.89 120.38 104.89 16.92 37.53 147.89 120.38 104.89 16.92 37.55 146.50 120.38 104.99 17.04 38.04 146.50 120.04 102.81 17.10 38.04 146.83 120.06 102.81 17.13 38.04 146.83 120.06 102.81 17.21 38.04 146.36 120.43 101.53 17.74 38.94 146.36 120.43 100.56 17.41 39.48 144.06 118.42		2127	10825	16.75	36.27	150.28	121.58	28.71
107.44 16.78 37.01 149.43 121.12 107.03 16.87 37.11 149.64 121.19 106.57 16.87 37.23 148.99 121.19 106.16 16.97 37.23 148.99 121.03 106.76 16.94 37.29 148.99 121.03 106.76 16.94 37.53 148.99 120.38 106.76 16.94 37.53 146.99 120.38 104.89 16.92 37.59 146.50 120.38 104.99 17.04 38.10 146.59 120.04 103.21 17.10 38.09 146.89 120.08 102.40 17.21 38.09 146.36 120.08 102.81 17.21 38.09 146.36 120.08 101.53 17.27 38.73 146.36 120.03 101.54 17.35 38.99 146.36 120.43 100.56 17.43 38.74 146.36 120.43		2119	107.84	16.70	36.54	149.29	120.83	28.46
107.03 16.87 37.11 149.64 121.19 106.57 16.87 37.23 148.39 120.81 106.57 16.94 37.23 148.39 120.81 106.76 16.94 37.29 148.39 120.93 105.36 16.94 37.53 147.89 120.38 106.37 16.92 37.53 147.89 120.38 104.99 16.92 37.55 146.96 120.38 104.49 16.92 37.75 146.96 120.14 103.21 17.10 38.09 146.81 120.08 102.40 17.21 38.09 146.81 120.08 102.40 17.21 38.09 146.41 120.08 102.40 17.21 38.09 146.41 120.08 101.53 17.35 38.42 146.58 120.43 101.51 17.35 38.73 146.36 120.03 101.52 17.43 38.74 146.58 120.43		2111	107.44	16.78	37.01	149.43	121.12	28.31
106.57 16.87 37.23 148.99 120.91 106.16 16.94 37.23 148.32 121.03 106.36 16.94 37.29 148.48 121.03 106.36 16.94 37.53 148.48 120.38 106.36 16.92 37.53 148.65 119.76 104.99 16.92 37.75 146.50 119.40 103.62 17.04 38.10 146.26 119.40 103.62 17.03 38.09 146.28 120.14 102.81 17.16 38.04 146.28 120.06 102.81 17.16 38.04 146.41 120.06 102.81 17.16 38.04 146.58 120.06 101.32 17.35 38.42 146.58 120.43 101.53 17.35 38.64 146.36 120.43 101.54 17.35 38.94 146.58 120.43 100.56 17.41 38.94 144.06 118.47		2103	107.03	16.87	37.11	149.64	121.19	28.45
106.16 16.97 37.37 149.32 121.56 105.76 16.94 37.29 148.48 121.03 105.36 16.94 37.29 148.48 121.03 105.36 16.92 37.75 147.89 120.38 104.08 16.92 37.75 146.50 119.76 103.62 17.03 38.09 146.20 119.60 102.81 17.16 38.04 146.28 120.06 102.81 17.19 37.99 146.41 120.08 102.81 17.19 37.99 146.41 120.08 101.94 17.21 38.04 146.36 120.43 101.53 17.39 38.42 146.36 120.43 101.6 17.51 38.73 146.36 120.43 100.26 17.50 38.94 146.36 120.43 100.26 17.51 38.94 146.36 118.65 99.45 17.46 39.48 144.06 118.52		2094	106.57	16.87	37.23	148.99	120.91	28.08
105.76 16.94 37.29 148.46 121.03 105.35 16.94 37.53 147.89 120.38 104.89 16.92 37.59 147.15 119.76 104.89 16.92 37.59 146.50 119.76 104.08 17.04 38.10 146.26 119.40 103.21 17.10 38.09 146.28 120.06 102.40 17.21 38.09 146.28 120.06 102.40 17.21 38.04 146.03 119.74 102.40 17.21 38.04 146.03 119.74 101.3 17.35 38.43 146.36 120.08 101.5 17.47 38.73 146.36 120.43 100.67 17.43 38.93 145.36 120.43 100.57 17.40 38.94 146.36 118.47 99.45 17.41 39.48 146.36 118.47 98.59 17.46 39.48 144.06 118.47		2086	106.16	16.97	37.37	149.32	121.56	27.72
105.35 16.94 37.53 147.89 120.38 104.89 16.92 37.69 147.15 119.76 104.49 16.92 37.75 146.50 120.14 104.08 17.04 38.10 146.50 120.14 103.21 17.10 38.09 146.28 120.16 102.81 17.19 37.99 146.81 120.06 102.81 17.19 37.99 146.41 120.06 102.81 17.21 38.04 146.63 120.06 102.81 17.21 38.04 146.63 120.06 101.53 17.21 38.05 146.36 120.06 101.53 17.35 38.43 146.56 120.43 100.67 17.43 38.73 146.36 120.43 100.67 17.43 38.94 145.46 118.67 99.95 17.41 39.48 145.65 118.67 98.99 17.46 39.48 144.06 118.67		2078	105.76	16.94	37.29	148.48	121.03	27.45
104.89 16.92 37.69 147.15 119.76 104.49 16.92 37.75 146.50 119.40 104.08 17.04 38.10 146.96 120.14 103.62 17.03 38.09 146.96 120.14 102.81 17.19 37.99 146.03 120.06 102.40 17.21 38.09 146.03 120.06 102.40 17.21 38.09 146.03 120.20 101.53 17.35 38.42 146.58 120.20 101.13 17.39 38.73 146.58 120.20 101.53 17.47 38.73 146.36 120.43 100.67 17.43 38.94 145.47 119.70 99.85 17.40 39.46 145.63 118.67 98.99 17.52 39.65 143.16 118.67 98.99 17.52 39.65 143.16 118.37 98.77 17.75 39.65 143.16 118.52		2070	105.35	16.94	37.53	147.89	120.38	27.50
104.49 16.92 37.75 146.50 119.40 104.08 17.04 38.10 146.26 120.14 103.62 17.03 38.09 146.26 120.16 103.21 17.16 38.09 146.21 120.06 102.40 17.21 38.05 146.41 120.06 102.40 17.21 38.05 146.41 120.06 101.3 17.35 38.42 146.58 120.20 101.53 17.39 38.73 146.58 120.43 100.67 17.47 38.89 145.47 119.74 100.67 17.47 38.94 145.43 118.67 99.85 17.41 39.48 145.43 118.67 98.99 17.46 39.48 144.06 118.67 98.99 17.52 39.65 143.16 118.52 98.17 17.56 39.65 143.36 118.52 98.77 17.75 39.73 143.33 118.52 <		2061	104.89	16.92	37.69	147.15	119.76	27.38
104.08 17.04 38.10 146.26 120.14 103.62 17.03 38.09 146.28 120.16 102.81 17.16 38.09 146.41 120.06 102.81 17.19 37.99 146.41 120.06 102.40 17.21 38.05 146.03 119.74 101.94 17.35 38.42 146.36 120.03 101.13 17.47 38.73 146.36 120.43 100.67 17.47 38.89 146.36 120.43 100.69 17.50 38.94 146.36 120.43 100.67 17.47 38.94 146.36 118.67 99.85 17.41 39.24 144.06 118.67 99.45 17.46 39.48 143.65 118.47 98.58 17.52 39.65 143.33 118.52 98.77 17.75 39.73 143.33 118.52 97.77 17.75 39.67 143.33 118.57		2053	104.49	16.92	37.75	146.50	119.40	27.10
103.62 17.03 38.09 146.28 118.58 103.21 17.19 38.04 146.83 120.06 102.81 17.19 37.99 146.41 120.08 102.40 17.21 38.05 146.41 120.08 101.34 17.35 38.42 146.58 120.20 101.53 17.39 38.73 146.36 120.43 100.67 17.47 38.73 146.36 120.43 100.67 17.43 38.94 145.47 119.94 100.67 17.41 38.94 145.43 119.50 99.45 17.46 39.94 146.36 118.61 98.99 17.50 39.66 143.39 118.61 98.99 17.52 39.66 143.73 118.67 98.99 17.52 39.66 143.73 118.52 98.77 17.76 39.62 143.33 118.53 96.30 17.76 39.87 143.39 118.67 <		2045	104.08	17.04	38.10	146.96	120.14	26.82
103.21 17.16 38.04 146.83 120.06 102.81 17.19 37.99 146.41 120.08 102.40 17.21 38.05 146.03 119.74 101.94 17.35 38.43 146.36 120.03 101.53 17.39 38.73 146.36 120.43 101.13 17.47 38.73 146.36 120.43 100.67 17.43 38.94 145.47 119.94 100.67 17.43 38.94 146.36 118.04 99.65 17.41 39.48 146.36 118.02 99.45 17.46 39.48 148.39 118.61 98.99 17.52 39.66 143.73 118.61 98.99 17.52 39.66 143.76 118.33 98.77 17.76 39.67 143.33 118.67 97.77 17.76 39.87 143.18 118.67 96.49 17.75 39.87 143.18 118.67 </td <td></td> <td>2036</td> <td>103.62</td> <td>17.03</td> <td>38.09</td> <td>146.28</td> <td>119.58</td> <td>26.71</td>		2036	103.62	17.03	38.09	146.28	119.58	26.71
102.81 17.19 37.99 146.41 120.08 102.40 17.21 38.05 146.31 119.74 101.53 17.39 38.42 146.58 120.20 101.13 17.39 38.42 146.58 120.20 101.13 17.39 38.73 146.36 120.43 100.67 17.43 38.89 146.36 120.43 100.26 17.43 38.94 145.47 119.70 99.85 17.41 39.48 145.43 118.62 98.99 17.52 39.65 143.73 118.61 98.99 17.52 39.65 143.73 118.67 98.99 17.52 39.65 143.33 118.52 98.17 17.75 39.71 143.33 118.52 97.77 17.76 39.67 143.33 118.67 96.49 17.75 39.71 143.33 118.67 96.49 17.75 39.87 143.90 118.67 <td></td> <td>2028</td> <td>103.21</td> <td>17.16</td> <td>38.04</td> <td>146.83</td> <td>120.06</td> <td>26.77</td>		2028	103.21	17.16	38.04	146.83	120.06	26.77
102.40 17.21 38.05 146.03 119.74 101.54 17.35 38.42 146.58 120.20 101.53 17.39 38.42 146.36 120.43 101.13 17.47 38.73 146.36 120.43 100.67 17.43 38.94 145.47 119.44 100.26 17.50 38.94 145.43 119.70 99.85 17.41 39.48 144.06 118.82 96.99 17.52 39.65 143.73 118.61 98.99 17.52 39.65 143.73 118.52 98.17 17.62 39.65 143.33 118.52 97.77 17.76 39.62 143.33 118.52 97.77 17.76 39.71 143.33 118.67 96.49 17.75 39.71 143.39 118.67 96.49 17.75 39.71 143.90 118.67 96.49 17.75 39.97 141.90 117.65 <td></td> <td>2020</td> <td>102.81</td> <td>17.19</td> <td>37.99</td> <td>146.41</td> <td>120.08</td> <td>26.33</td>		2020	102.81	17.19	37.99	146.41	120.08	26.33
101.94 17.35 38.43 146.58 120.20 101.53 17.39 38.42 146.36 120.43 101.13 17.47 38.73 146.36 120.43 100.26 17.50 38.94 146.36 120.43 100.26 17.50 38.94 146.37 119.70 99.85 17.46 39.48 146.36 118.82 96.99 17.52 39.65 143.06 118.67 98.58 17.52 39.65 143.73 118.33 98.17 17.52 39.65 143.33 118.52 97.77 17.76 39.62 143.33 118.67 96.30 17.76 39.87 143.87 118.67 96.49 17.75 39.87 143.19 118.67 96.90 17.76 39.87 141.90 117.65 96.49 17.75 39.97 141.90 117.65		2012	102.40	17.21	38.05	146.03	119.74	26.29
101.53 17.39 38.42 146.36 120.43 101.13 17.47 38.73 146.36 120.43 100.26 17.50 38.89 145.47 119.94 100.26 17.50 38.94 145.43 119.44 99.85 17.41 39.24 146.43 118.67 99.45 17.62 39.65 143.06 118.67 96.99 17.52 39.65 143.73 118.47 98.77 17.76 39.62 143.33 118.52 97.77 17.76 39.62 143.87 118.83 96.30 17.76 39.87 143.87 118.83 96.49 17.76 39.87 143.87 118.67 96.90 17.76 39.87 143.19 118.67 96.49 17.75 39.97 141.90 117.65		2003	101.94	17.35	38.43	146.58	120.20	26.37
101.13 17.47 38.73 146.36 120.43 100.67 17.43 38.89 145.47 119.94 100.26 17.50 38.94 145.47 119.94 99.65 17.41 39.24 146.43 119.70 98.99 17.52 39.65 143.33 118.61 98.58 17.52 39.66 143.73 118.52 98.77 17.76 39.62 143.33 118.52 97.77 17.76 39.62 143.87 118.83 97.77 17.76 39.87 143.87 118.83 96.50 17.76 39.87 143.19 118.67 96.49 17.75 39.87 143.19 118.67 96.49 17.75 39.97 141.90 117.65		1995	101.53	17.39	38.42	146.36	120.43	25.93
100.67 17.43 38.89 145.47 119.94 100.26 17.50 38.94 146.43 119.94 99.65 17.41 39.24 144.06 118.02 99.45 17.46 39.48 148.06 118.61 98.99 17.52 39.66 143.73 118.47 98.17 17.52 39.66 143.16 118.33 97.77 17.76 39.62 143.33 118.52 97.77 17.76 39.62 143.87 118.83 96.90 17.76 39.87 143.19 118.67 96.49 17.75 39.87 143.19 118.67 96.49 17.75 39.97 141.90 117.65		1987	101.13	17.47	38.73	146.36	120,43	25.93
100.26 17.50 38.94 145.43 119.70 99.85 17.41 39.24 144.06 118.82 99.45 17.46 39.48 143.03 118.61 98.99 17.52 39.65 143.73 118.47 98.58 17.52 39.66 143.16 118.52 98.17 17.62 39.73 143.33 118.52 97.77 17.76 39.67 143.87 118.52 96.50 17.76 39.87 143.19 118.67 96.49 17.75 39.87 143.16 118.67 96.49 17.75 39.97 143.19 118.67		1978	100.67	17.43	38.89	145.47	119.94	25.53
99.05 17.41 39.24 144.06 118.82 99.45 17.46 39.48 143.89 118.61 98.99 17.52 39.65 143.73 118.61 98.78 17.52 39.66 143.16 118.52 97.77 17.76 39.73 143.33 118.52 97.77 17.76 39.62 143.87 118.83 97.77 17.76 39.85 142.66 118.07 96.90 17.76 39.85 142.66 118.07 96.49 17.75 39.97 141.90 117.65		1970	100.26	17.50	38.94	145.43	119.70	25.72
99.45 17.46 39.48 143.89 11861 98.99 17.52 39.65 143.73 118.47 118.47 118.33 118.52 98.17 17.52 39.73 143.33 118.52 97.77 17.76 39.62 143.87 118.83 97.31 17.75 39.71 143.19 118.67 96.90 17.76 39.85 142.66 118.00 96.49 17.75 39.97 141.90 117.65		1962	99.85	17.41	39.24	144.06	118.82	25.24
98.99 17.52 39.65 143.73 118.47 18.87 18.87 18.87 18.32 18.32 18.33 18.3		1954	99.45	17.46	39.48	143.89	118.61	25.28
98.56 17.52 39.66 143.16 118.33 98.17 17.62 39.73 143.33 118.52 97.77 17.76 39.62 143.87 118.83 95.50 17.76 39.85 142.66 118.00 96.49 17.75 39.97 141.90 117.65		1945	98.99	17.52	39.65	143.73	118.47	25.26
98.17 17.62 39.73 143.33 118.52 97.77 17.76 39.62 143.87 118.83 97.31 17.75 39.71 143.19 118.67 96.50 17.76 39.85 142.66 118.00 96.49 17.75 39.97 141.90 117.65		1937	98.58	17.52	39.66	143.16	118.33	24.83
97.77 17.76 39.62 143.87 118.83 97.31 17.75 39.71 143.19 118.67 96.90 17.76 39.85 142.66 118.00 96.49 17.75 39.97 141.90 117.65		1929	98.17	17.62	39.73	143.33	118.52	24.81
97.31 17.75 39.71 143.19 118.67 96.90 17.76 39.85 142.66 118.00 96.49 17.75 39.97 141.90 117.65		1921	77.79	17.76	39.62	143.87	118.83	25.04
96.90 17.76 39.85 142.66 118.00 96.49 17.75 39.97 141.90 117.65		1912	97.31	17.75	39.71	143.19	118.67	24.52
96.49 17.75 39.97 141.90 117.65		1904	06.96	17.76	39.85	142.66	118.00	24.66
		1896	96.49	17.75	39.97	141.90	117.65	24.25

Aceleracion	Aceleracion Rpm vehiculo	Rpm rodillo	Velocided	torque	torque	Potencia	Potencia	Potencia de perdida(OV)	
(6)			(MAN)	an molonicamina	(ufsulpnani na		(a) Company	San Annual Control	
6	6200	1887	96.04	17.79	40.19	141.62	117.56	24.05	
9 6	5675	1879	95.63	17.81	40.48	141.17	117.07	24.09	
200	5650	1871	95.22	17.79	40.60	140.36	116.68	23.68	
	5626	1863	94.82	17.91	40.55	140.73	116.66	24.06	
	5600	1854	9436	17.89	40.61	139.93	116.32	23.61	
	5676	1846	93.95	17.85	40.76	139.02	115.65	23.37	
0.0	5550	1838	93.54	17.86	40.77	138.43	115.04	23.39	
v 12	5525	1829	93.08	17.85	40.80	137.72	114.72	23.01	
0.0	5550	1821	92.68	17.82	40.98	136.86	113.87	22.99	
0.00	5475	1813	92.27	17.72	41.06	135.51	112.71	22.81	
	5450	1805	91.86	17.74	40.99	135.05	112.44	22.62	
	5425	1796	91 41	17.76	40.97	134.54	111.81	22.73	
. 4	5400	1788	91.00	17.62	41.05	132.92	110.50	22.42	
00	5375	1780	90.59	17.61	40.91	132.22	109.92	22.31	
200	5350	1772	90.18	17.67	40.69	132.00	109.69	22.30	
2	5305	1763	89.73	17.56	40 77	130.63	108.63	22.00	
	5300	1755	89.32	17.48	40.74	129.42	107.67	21.75	
200	6976	1747	88 91	17.51	40.44	129.04	107.58	21.45	
22	6250	1738	88 45	17.57	40.43	128.84	107.30	21.55	
31	522E	1730	88 05	17.55	40.52	128.10	106.68	21.42	
200	5200	1722	87.64	17.54	40.34	127.40	106.13	21.27	
28	5175	1714	87.23	17.65	40.15	127.56	106.39	21.16	
20	5150	1705	86.77	17.69	40.31	127.23	106.19	21.05	
3 (4	5125	1697	86.37	17.67	40.42	126.50	105.71	20.79	
000	5100	1689	98 38	17.72	40.35	126.20	105.40	20.80	
200	5075	1680	85 50	17.88	40.35	126.76	106.05	20.71	
47	5050	1672	85.09	17.96	40.65	126.67	106.19	20.48	
41	5025	1664	8469	17.97	40.76	126.15	105.81	20.34	
35	2000	1656	84.28	18.04	40.77	125.95	105.71	20.24	
58	4975	1647	83.82	18.08 Max	40.85	125.66	105.48	20.17	
22	4950	1639	83.42	18 08	41.31	124.97	105.01	19.96	
191	4925	1631	83.01	18.03	41.57	123.99	104.21	19.79	
11	4900	1623	82 60	17.95	41.64	122.86	103.22	19.63	
US.	4875	1614	8214	17.99	41.80	122.50	102.86	19.63	
98	4850	1606	81.74		41.93	121.64	102.06	19.58	
20	4825	1598	81.33		41.96 Mex	120.65	101.18	19.46	
88	4800	1589	80.87	17.80	41.85	119,34	100.08	19.26	
80	4775	1581	80.46		41.66	118.58	99.44	19.14	
74	4750	1573	80.06		41.71	118.00	10.66	18.99	
000	4725	1565	79.65		41.62	116.94	98.13	18.81	
00	2000								

ploracion	eleracion Rom vehiculo	Rom rodillo	Velocidad	torque	torque	Potencia	Potencia	Potencia	
0			(Km/h)	en motor(Kgm)	en rueda(Kgm)		en rueda(Ov)	de perdida(Ov)	
	4700	1556	79.19	17.69	41.48	116.12	97.42	18.71	
	4675	1548	78.78	17.71	41.25	115.61	96.94	18.66	
	4650	1540	78.38	17.68	41.20	114.83	96.23	18.60	
	4625	1531	77.92	17.60	41.23	113.70	95.41	18.28	
	4600	1523	77.51	17.64	41.08	113.35	95.04	18.31	
	4575	1515	77.10	17.63	41.00	112.68	94.60	18.08	
	4550	1507	76.70	17.59	41.02	111.75	93.89	17.87	
	4525	1498	76.24	17.55	40.92	110.94	93.12	17.82	
	4500	1490	75.83	17.54	40.84	110.23	92.57	17.66	
	4475	1482	75.42	17.50	40.88	109.37	91.80	17.57	
	4450	1474	75.02	17.46	40.91	108.52	91.01	12.51	
	4425	1465	74.56	17.40	40.82	107.54	90.17	17.37	
	4400	1457	74.15	17.35	40.72	106.60	89.34	17.26	
	4375	1449	73.75	17.32	40.70	105.84	88.70	17.13	
	4350	1440	73.29	17.31	40.61	105.16	88.17	16.99	
	4325	1432	72.88	17.31	40.46	10453	87.65	16.89	
	4300	1424	72.47	17.32	40.31	104.03	87.26	16.78	
	4275	1416	72.07	17.34	40.18	103.50	86.85	16.66	
	4250	1407	71.61	17.39	40.12	103.24	86.76	16.47	
	4225	1399	71.20	17.42	40.11	102.80	86.41	16.40	
						Limite Superior	uperior —		
	4200	1391	70.79	17.46	40.13	102.45	86.15	16.30	
	4175	1382	70.34	17.50	40.15	102.05	85.86	16.19	
	4150	1374	69.93	17.49	40.22	101.35	85.34	16.01	
	4125	1366	69.52	17.54	40.40	101.03	85.16	15.87	
	4100	1358	69.11	17.58	40.49	100.69	84.82	15.86	
	4075	1349	99.89	17,61	40.60	100.24	84.38	15.86	
	4050	1341	68.25	17.65	40.72	99.82	83.97	15.85	

ANEXO 02: RESULTADOS DO ENSAIO EM DINAMÔMETRO DE ROLO DA EMPRESA INJEDIESEL POWER CHIP, COM O COLETOR DE ESCAPE DIMENSIONADO POR ESSA PESQUISA.

Nombre de prueba: 35_2828_VOL Pot, maxima en el cigueñal: 158.03 Cv a 7150 Rpm Pot, maxima en la rueda: 120.96 Cv a 6350 Rpm Pot, maxima de perdida: 43.9 Cv a 7150 Rpm Torque maximo en cigueñal: 18.7 Kgm a 4400 Rpm Prom. Pot en el cigueñal: "FL": Prom. Pot en la rueda: ""FL": Romecion Atmosferica: 1.00000

0	
=	_
П	_
7	,
(
0	١
Ц	L
Ш	L
5	5
5	>
0	1
>	
_	L
-	1
-	
ū	
LICELL	
ובטונטבו	
ובטונטבו	
I I I I I I I I I I I I I I I I I I I	

Nombre de la Prieha	35 VOLKSVAGEN 2828 STD	Marca	VOLKSVAGEN
Fecha v Hora		Nro Patente	- 2828
Correction atmosfférica	7.106043	Nº Motor	STD
Relación Fie motor/freno	3.02	Cliente	URIEL
Presión atmosferica	: 924 Hpa	Comando	STD
Humedad	: 49 %	Variador de Avanço	DTFQ
Temperatura ambiente	: 25.4 grados C	Injeção	SDT
Temperatura en la boca del carburador	24 Lerados C	Marcha	OTO:
Tipo de prueba	Inercial Total	Escapamento	STD
Potencia promedio	: Entre 2650 y 4200 Rpm	Observaciones	:05-671
Pot. Promedio en Cigueñal: ***F L**** Pot. maxima en Cigueñal: 159.46 Cv a 7150 Rpm	Pot promedio en rueda: ***F L*** Pot maxima en rueda: 121,15 Cv a 6325 Rpm	6325 Rpm	Pot promedio de perdida: ***F L*** Pot. maxima de perdida: 45.25 Cv a 719

Tabla de valores

Rpm vehiculo	Rpm rodillo	Velocidad (Km/h)	torque en motor(Kgm)	torque en rueda(Kgm)	Potencia en motor(CV)	Potencia en rueda(CV)	Potencia de perdida(CV)
150	2368	120,52 Max	15.97	28 67	159.46 Mex	114.21	45.25 Mex
125	2359	120.06	15.77	30.37	156.89	113.67	43.22
100	2351	119.65	15.91	30.47	157.73	114.49	43.24
075	2343	11924	15.85	30.79	156.60	114.37	42.23
050	2334	118.79	15.90	30.89	156.54	114.88	41.66
1025	2326	118 38	15.94	31.26	156.38	115.57	40.81
000	2318	117.97	16.03	31.22	156.75	115.35	41.40
5475	2310	117.56	16.06	31.55	156.43	115.73	40.70
950	2301	117.11	16.06	31.64	155.90	115.80	40.10
925	2293	116.70	16.04	31.89	155.10	115.98	39.12
0069	2285	116.29	16.17	32.21	155.81	116.26	39.55
5875	2276	115.83	16.32	32.24	156.74	116.63	40,12
5850	2268	115.43	16.37	32.47	156.63	117.07	39.56
3825	2250	115.02	16.36	32.61	155.94	117.45	38.49
5800	2252	114.61	16.35	32.79	155.30	117.47	37.83
5225	2243	114.16	16.45	32.99	155.64	117.79	37.85
5750	2235	113.75	16.54	33.21	155.92	118.11	37.80
5725	2227	113.34	16.62	33.45	156.13	118.36	37.77
3700	2219	112.93	16.61	33.69	155.46	118.56	36.90
3675	2210	112.48	16.76	33.82	156.27	119.31	36.96
9850	2202	112.07	16.86	34.04	156.58	119.47	37.10

L. Aceleracion	Aceleración Hpm veniculo	Ham rodillo	Verocidad	torque	torque	Potencia	Fotencia	Topical .
			(Km/h)	en motor(Kgm)	en rueda(Kgm)	en motor(Cv)	en rueda(CV)	de perdida(CV)
	6625	2194	111.66	16.85	34.25	155.89	11917	36.71
	6600	2185	111.20	17.04	34.46	157.09	119.71	37.38
	8575	2177	110.80	17.04	34.64	156.46	120.05	36.41
	6550	2169	110.39	17.00	34.98	155.54	119.79	35.74
	6525	2161	109.98	17.07	35.17	155.58	120.20	35.38
	6500	2152	109.52	17.15	35.22	155.72	120.33	35.38
	6475	2144	109.12	17.21	35.51	155.60	120.14	35.46
	6450	2136	108.71	17.24	35.75	155.34	120.22	35.12
	6425	2127	108.25	17.32	35.81	155.43	120.54	34.89
	6400	2119	107.84	17.28	36.08	154.47	120,32	34.15
	6375	2111	187.44	17.26	36.24	153.72	120.43	33.29
	6350	2103	107.03	17.36	36.32	153.95	120.85	33.10
	6325	2094	106.57	17.56	36.49	155.12	121.15 Mex	33.97
	6300	2086	106.16	17.50	36.73	15402	120.89	33,13
	6275	2078	105.76	17.54	36.81	153.68	120.92	32.76
	6250	2070	105.35	17.63	36.99	153.93	120.49	33.44
	6225	2061	104.89	17.55	37.26	152.60	119.72	32.88
	6200	2053	164.49	17.62	37.51	152.60	120.10	32.50
	6175	2045	10408	17,63	37.58	152.01	119.90	32.11
	6150	2036	103.62	17.57	37.74	150.88	119.42	31.46
	6125	2028	103.21	17.81	37.76	152.32	119.99	32.33
	6100	2020	102.81	17.83	37.66	151,89	119.61	32.29
	6075	2012	102.40	17.72	37.94	150.36	119.87	30.49
	0509	2003	101.94	17.82	38.03	150.56	120.06	30.50
	6025	1995	101.53	17.91	38.04	150.71	119.96	30.75
	0009	1987	101.13	17.92	38.36	150.20	119.52	30.68
	5975	1978	100.67	17.96	38.41	149.90	119.64	30.26
	5950	1970	100,26	17.95	38.65	149.20	119.15	30.04
	5925	1962	99.85	17.95	38.87	148.52	118.83	29,69
	5900	1954	99.45	18.00	39.00	148.30	118.69	29.61
	5875	1945	98.99	18.03	39.02	147.98	118.42	29.56
	5850	1937	98.58	18.07	39.21	147.65	118.31	29.33
	5825	1929	98.17	18.02	39.22	146.59	117.93	28.56
	5800	1921	77.78	18.08	39.29	146.47	117.84	28.64
	5775	1912	97.31	18.16	39.41	146.50	117.29	29.21
	5750	1904	96.90	18.15	39.49	145.76	117.17	28.59
	5725	1896	96.49	18.19	39.62	145.47	117.08	28.38
	5700	1887	96.04	18,23	39.66	145.10	116.81	28.29
	5675	1879	95.63	18.17	39.80	144.01	116.47	27.54
	1 1 1 1 1	700	00 30	1012	20.70	113.40	41017	40 40

T Amelananian	Annihim Chamber	Down saddle	Volumband	forestile	forcessin	Dotorcia	Dotonois	Doloncia	
Sea)	The selection	o o	(Km/h)	en motor(Kam)	en rueda(Kgm)	en motor(Cv)	en rueda(Ov)	de perdida(Ov)	
1							44.00	2 40	
3.81	5295	1863	34.82	18.23	39.31	143,43	115.02	76.17	
3.75	2600	1854	94.36	18.25	40.07	142.77	115.44	27.33	
3.68	5575	1846	93.95	18.25	40.15	142.12	115.17	26.95	
3.63	5550	1838	93.54	18.30	40.21	141.81	115.06	26.76	
3.56	5525	1829	93.08	18.33	40.28	141.46	114.65	26.81	
3.50	5500	1821	92.68	18.36	40.34	141.02	114.59	26.43	
3.44	5475	1813	92.27	18.38	40.39	140.51	114.29	26.22	
3.38	5450	1805	91.86	18.40	40.49	140.08	113.76	26.32	
3,31	5425	1796	91.41	18.34	40.62	138.94	113.10	25.84	
3.25	5400	1788	91.00	18.42	40.66	138.90	113.03	25.87	
3.19	5375	1780	90.59	18.35	40.82	137.74	112.03	25.72	
3.13	5350	1772	90.18	18.26	40.92	136.47	111.43	25.03	
3.07	5325	1763	89.73	18.26	40.90	135.81	110.83	24.98	
3.00	5300	1755	89.32	18.32	40.87	135.60	110.28	25.32	
2.94	5275	1747	88.91	18.25	41.01	134.45	109.52	24.93	
2 88	5250	1738	88.45	18.21	40.86	133,51	109.00	24.51	
2 82	5225	1730	88.05	18.22	40.81	132.93	108.45	24.47	
276	5200	1722	87.64	18.20	40.79	132.16	107.86	24.30	
2.70	5175	1714	87.23	18.17	40.79	131.33	107.36	23.97	
263	5150	1705	86.77	18.11	40.70	130.23	106.55	23.69	
2.57	5125	1697	86.37	18.13	40.68	129.80	106.12	23.67	
2.51	5100	1689	85.96	18.07	40.69	128.72	105.33	23.38	
2.45	5075	1680	85.50	1810	40.66	128.27	105.06	23.20	
2.39	5050	1672	85.09	18.09	40.67	127.57	104.59	22.98	
2.33	5025	1664	84,69	1813	40.56	127.24	104.28	22.97	
2.26	5000	1656	84.28	18.17	40.58	126.87	104.20	22.66	
2.20	4975	1647	83.82	18.22	40.50	126.60	104.04	22.56	
2.13	4950	1639	83.42	18.25	40.58	126.18	103.73	22.45	
2.08	4925	1631	83.01	18.32	40.59	126.02	103.67	22.35	
2.01	4900	1623	82.60	18.35	40.67	125.58	103.23	22.35	
1.95	4875	1614	82.14	18.43	40.85	125.45	103.34	22.11	
1.89	4850	1606	81,74	18.45	40.99	124.95	103.18	21.77	
1.83	4825	1598	81.33	18.50	41.10	124.67	103.07	21.60	
1.77	4800	1589	80.87	18.60	41.28	124.68	103.10	21.59	
17.1	4775	1581	80.46	18.61	41.31	124.09	102.60	21.49	
1.65	4750	1573	90.08	18,62	41.57	123.53	102.25	21.28	
1.59	4725	1565	79.65	18.65	41.71	123.09	101,88	21.20	
1.53	4700	1556	79.19	18.70	41.89	122.75	101.64	21.11	
1.47	4675	1548	78.78	18.71	42.12	122.19	101.33	20,86	
1.41	4650	1540	78.38	18.67	42.14	121.28	100.78	20.50	

Aceleracion	Aceleracion Rpm vehiculo Rpm rodillo	Rpm rodillo	Velocidad	torque	torque	Potencia	Potencia	Potencia	
(bas			(Kmyh)	en motor(Kgm)	en rueda(Kgm)	en motor(Ov)	en rueda(Ov)	de perdida(Ov)	
35	4625	1531	77.92		42.21	120.45	100.22	20.23	
29	4600	1523	77.51		42.29	120.06	99.85	20.21	
23	4575	1515	77.10		42.41	119.42	99.37	20.05	
17	4550	1507	76.70		42.51	118.88	98.96	19.92	
11	4525	1498	76.24		42.51	118.31	98.65	19.67	
.05	4500	1490	75.83		42.52	117.80	98.22	19.58	
99	4475	1482	75.42		42.57	117.55	98.06	19.49	
93	4450	1474	75.02		42.60	116.85	97.41	19.44	
.88	4425	1465	74.56		42.68	116.13	96.82	19.31	
82	4400	1457	74.15		42.76	115.61	96.55	19.06	
3/2	4375	1449	73.75		42.84	115.04	96.18	18.85	
.70	4350	1440	73.29		42.99	114.15	95.34	18.81	
64	4325	1432	72.88		42.96	113.26	94.60	18.66	
58	4300	1424	72.47		42.95	112.88	94.33	18.54	
53	4275	1416	72.07		43.06	112.08	93.73	18.35	
46	4250	1407	71.61		43.13 Mex	111.33	93.07	18.26	
41	4225	1399	71.20	18.74	43.02	110.61	92.46	18.15	
						Limite Superior	perior		
35	4200	1391	70.79	18.76	42.95	110.06	92.18	17.88	
29	4175	1382	70.34	18.72	43.07	109.18	91.42	17.76	
23	4150	1374	69.93	18.69	43.02	108.33	90.62	17.71	
18	4125	1366	69.52	18.68	42.99	107.63	90.14	17.49	
12	4100	1358	69.11	18.67	42.97	106.92	89.57	17.35	
90	4075	1349	99.89	18.61	43.07	105.89	88.60	17.29	
000	4050	1341	68.25	18.61	43.00	105.28	88.02	17.25	