### Influência de Sementes de Mamoeiro no Desenvolvimento Inicial do Milho

Bruna Rafaela Cecatto<sup>1\*</sup>; Erivan de Oliveira Marreiros<sup>2</sup>

<sup>1</sup>Centro Universitário Assis Gurgacz, Acadêmica do curso de Agronomia, Cascavel, Paraná.

<sup>1\*</sup>brunacecatto@hotmail.com

Resumo: A alelopatia pode ser definida como uma interferência positiva ou negativa de compostos do metabolismo de um determinado vegetal que são liberados podendo impedir a germinação e o desenvolvimento de outras plantas, ela pode ser um fator determinante do sucesso ou insucesso da cultura, ocorrendo entre plantas cultivadas ou não. Este trabalho foi realizado com o objetivo de observar os possíveis efeitos alelopáticos que o extrato da semente do mamoeiro exerce sobre o desenvolvimento inicial do milho. O experimento foi realizado no Laboratório de Análises de Sementes do Centro Universitário da Fundação Assis Gurgacz - FAG, situado no município de Cascavel – PR, no decorrer do mês de outubro de 2018. O delineamento experimental utilizado foi o Inteiramente Casualizado (DIC), com cinco tratamentos e quatro repetições, totalizando 20 unidades experimentais. Os tratamentos foram: T1 – testemunha (água pura); T2 – 1:20 ( concentração 5%); T3 – 1:15( concentração 6,67%); T4 – 1:10( concentração 10%); T5 – 1:05( concentração 20%). Avaliou-se os parâmetros de porcentagem de germinação, comprimento radicular, comprimento de parte aérea e massa seca das plântulas. Foi demonstrado nos resultados que o extrato da semente de mamão nas concentrações 1:15 e 1:10 teve influência alelopática positiva sobre parte aérea, enquanto na dose mais fraca de 1:20 e mais alta de 1:05 não houve influências. Além disso, quando houve aumento na concentração do extrato, ocorreu também um maior resultado de massa seca. Não houve influência na porcentagem de germinação e comprimento de raiz.

Palavras-chave: Zea mays, alelopatia, aleloquímicos, germinação.

# **Influence of Wheat Seeds on Initial Corn Development**

**Abstract**: Allelopathy can be defined as a positive or negative interference of compounds of the metabolism of a given plant that are released and can prevent the germination and development of other plants, it can be a determinant of the success or failure of the crop, occurring between cultivated plants or not. This work was carried out with the objective of observing the possible allelopathic effects that the papaya seed extract exerts on the initial development of maize. The experiment was carried out in the Laboratory of Analysis of Seeds of the University Center of the Assis Gurgacz Foundation - FAG, located in the municipality of Cascavel - PR, during the month of October 2018. five treatments and four replicates, totaling 20 experimental units. The treatments were: T1 - control (pure water); T2 = 1:20 (5% concentration); T3 - 1:15 (concentration 6.67%); T4 - 1:10 (10% strength); T5 = 1:05 (20% strength). The germination percentage, root length, shoot length and dry weight of seedlings were evaluated. It was demonstrated in the results that the extract of the papaya seed at concentrations 1:15 and 1:10 had positive allelopathic influence on shoot, while in the weaker dose of 1:20 and higher of 1:05 there were no influences. In addition, when there was an increase in the extract concentration, a higher dry weight result also occurred. There was no influence on the percentage of germination and root length.

Key words: Zea mays, allelopathy, allelochemicals, germination.

<sup>&</sup>lt;sup>2</sup>Centro Universitário Assis Gurgacz, Professor do curso de Agronomia, Cascavel, Paraná.

## Introdução

O milho (*Zea mays* L.) esta entre os principais cereais cultivados em todo o mundo, fornecendo produtos utilizados para a alimentação humana, animal e matérias-primas para as indústrias, principalmente em função da quantidade e qualidade das reservas acumuladas nos grãos (FANCELLI e DOURADO NETO, 2000). Esta cultura é amplamente difusa na agricultura brasileira, em razão da diversidade de usos na propriedade rural, também é considerado uma das mais antigas plantas cultivadas para alimentação e um dos vegetais superiores mais estudados (GUIMARÃES, 2007).

Um fator decisivo sobre a qualidade da semente é a germinação, visto que para que a semente ultrapasse seu estado de latência, tenha crescimento e desenvolvimento, é necessário que seja oferecido condições climáticas ideais, como temperatura, umidade, luminosidade entre outros (SANGRONIS e MACHADO, 2007). Podemos resumir a germinação como o processo de transformação da semente em uma nova planta.

De acordo com Magalhães e Durães (2002), a planta de milho é de rápida emergência. A germinação ocorre após a semeadura quando as sementes absorvem água e começam a crescer, sendo a radícula é a primeira a se alongar, seguida pelo coleóptilo, com plúmula incluída. Esse estádio vegetativo, conhecido como VE, é atingido pela rápida elongação do mesocótilo, o qual empurra o coleóptilo em crescimento para a superfície do solo. A emergência da plântula de milho pode ocorrer de quatro a cinco dias após a semeadura, em condições ideais de temperatura, umidade do ar e luminosidade.

Segundo Ferreira (2004), a alelopatia pode ser definida como uma interferência negativa ou positiva de compostos do metabolismo de um determinado vegetal que são liberados interferindo a germinação e o desenvolvimento de outras plantas. Pode ser um fator determinante do sucesso ou insucesso da cultura, podendo acontecer entre plantas cultivadas ou não (SOARES, 2000).

Nas plantas, essas substâncias desempenham diversas funções, sendo responsáveis pela prevenção de decomposição das sementes, interferindo na dormência de gemas e sementes e influenciando as relações com outras plantas, com microrganismos, insetos e até animais superiores como homem (CASTRO *et al.*, 2002).

Alguns aspectos como germinação, crescimento e desenvolvimento das plântulas ou plantas adultas, devem ser avaliados para determinação do efeito causado por essa interferência de uma planta sobre a outra (SOUZA *et al.*, 2002).

O conhecimento dos efeitos alelopáticos de várias substâncias é importante para se entender as interações entre espécies de plantas, tanto em ecossistemas naturais como nos ecossistemas agrícolas (RODRIGUES *et al.*, 1992). Os recentes avanços na química de produtos naturais, por meio de métodos modernos de extração, isolamento, purificação e identificação, têm contribuído para um maior conhecimento desses compostos secundários, os quais podem ser agrupados de diversas formas (FERREIRA e AQUILA, 2000).

Segundo Cremonez *et al.*, (2013), o mamoeiro está entre as principais espécies de plantas encontradas nos sistemas agrícolas brasileiros com efeito alelopático, Esta planta frutífera originária da América Tropical, tem sua produção no Brasil em dois grupos: 'Formosa' e 'Solo', este último é comercializado tanto para o mercado interno quanto no externo, enquanto o 'Formosa' é destinado principalmente para o mercado interno, onde se tem uma pesquisa mais abrangente com estudos de efeitos significantes da sua influência alelopática sobre outras culturas (ROCHA, 2003).

Viecelli *et al.*, (2012), efetuou estudos com o arilo da semente de mamão, onde obteve apenas resultados benéficos. Em contrapartida Silva *et al.*, (2015), concluiu com seu estudo que o extrato aquoso do arilo das sementes de mamão interferiu significativamente na porcentagem de germinação de sementes de corda-de-viola (*Ipomoea purpurea*), reduzindo-a a 0% na concentração de 10%.

Ferreira e Áquila, (2000), diz que o potencial alelopático desses compostos pode ser pesquisado por meio de extratos aquosos submetidas da extração realizada a partir do uso da semente da fruta. Por isso, costuma-se realizar em laboratório os testes de germinação e crescimento de plântulas em extratos aquosos, uma vez que esse é o solvente na natureza.

O objetivo deste trabalho foi observar os possíveis efeitos alelopáticos que o extrato da semente do mamoeiro exerce sobre o desenvolvimento inicial do milho.

#### Material e Métodos

O experimento foi realizado no Laboratório de Análises de Sementes do Centro Universitário Assis Gurgacz, localizado na cidade de Cascavel, PR, no mês de outubro de 2018. Foram utilizados sementes de milho da variedade Pioneer 30F53 e sementes de mamão foram de frutos maduros *in natura* adquiridos em comércio local.

O delineamento experimental utilizado foi inteiramente casualizado (DIC), com cinco tratamentos e quatro repetições, totalizando 20 unidades experimentais. Os tratamentos utilizados foi: T1: água destilada (testemunha); T2: extrato da semente de mamão 1:20 – 10 g de semente e 200 mL de água; T3: extrato da semente de mamão 1:15 – 10 g de semente e 150 mL de água; T4: extrato da semente de mamão 1:10 – 10 g semente e 100 mL de água; T5: extrato da semente de mamão 1:05 – 10 g de semente e 50 mL de água.

Para o preparo dos extratos de sementes de mamão, as mesmas foram retiradas diretamente do fruto *in natura* do tipo Formosa, foi realizada a pesagem das sementes em uma balança de precisão e então trituradas no liquidificador com água destilada. Cada extrato foi filtrado com algodão, foi adicionado 20 mL de cada extrato em placas de Petri previamente identificadas, e acomodadas um total de 80 sementes de milho embebidas em cada extrato por 20 minutos, exceto o tratamento testemunha que foi umedecido e submerso em água.

As sementes de milho foram colocadas para germinar em caixas do tipo Gerbox com papel filtro da marca Germitest. O papel filtro foi pesado e calculado o peso médio e posteriormente acomodado 2 folhas do mesmo em cada caixa Gerbox. O papel Germitest foi umedecido com um volume de água correspondente à 20% do peso de duas folhas de papel filtro, aproximadamente 5 mL. Foi acomodada em cada caixa Gerbox a quantidade de 20 sementes de milho, de acordo com cada repetição, 80 sementes por tratamento. As caixas foram identificadas e levadas para câmara de germinação do tipo BOD (Biochemical Oxygen Demand). Os tratamentos foram mantidos na câmara de germinação com fotoperíodo de 12 horas de luz e temperatura de 25°C durante sete dias de acordo com as Regras para Análise de Sementes (BRASIL, 2009).

Os parâmetros avaliados foram percentagem de germinação, comprimento radicular, comprimento de parte aérea e massa seca das plântulas.

A avaliação da percentagem de germinação foi realizada no 7º dia de acordo com a RAS (BRASIL, 2009), através da contagem manual das plântulas germinadas. Neste momento foram realizadas as medidas do comprimento das radícelas e comprimento de parte aérea das plântulas com o uso de régua milimetrada.

Após as medições, as plântulas de cada repetição foram acomodadas em sacos de papel previamente identificados e acondicionadas em estufa a 60°C até peso constante. Após a secagem, foram pesadas em balança digital, para a obtenção da massa seca.

Os dados avaliados foram submetidos à análise de regressão no programa Assistat versão 7.7 PT (SILVA e AZEVEDO, 2009).

## Resultados e Discussão

Os resultados obtidos pelo experimento são referentes às porcentagens de germinação de sementes, comprimento de parte aérea (mm), comprimento radicular (mm) e massa seca das plântulas (mg), e estão apresentados na Tabela 1.

**Tabela 1** – Médias da porcentagem de germinação de sementes, comprimento de parte aérea, comprimento radicular e massa seca das plântulas.

| Tratamentos | Concentrações | Germinação (%) | Comprimento P.A.(mm) | Comprimento<br>Radicular<br>(mm) | Massa seca<br>(mg) |
|-------------|---------------|----------------|----------------------|----------------------------------|--------------------|
| T1          | 0             | 96,25          | 3,88                 | 74,99                            | 34,85              |
| T2          | 1:20          | 88,75          | 2,13                 | 66,65                            | 32,06              |
| T3          | 1:15          | 93,75          | 9,85                 | 68,01                            | 41,09              |
| T4          | 1:10          | 96,25          | 11,53                | 87,68                            | 52,19              |
| T5          | 1:05          | 97,50          | 9,53                 | 83,59                            | 53,75              |

Fonte: o autor (2019).

Podemos observar na Tabela 1 que nos tratamentos T4 (10%) e T5 (20%) onde as concentrações eram maiores obteve as maiores médias em todos os parâmetros, e no T2 (5%) na menor concentração observamos as menores médias comparadas com a testemunha (água pura).

Ao efetuar a análise de regressão, pode ser observado que houve influência significativa no comprimento da parte aérea e na massa seca das plântulas de milho (Tabela 2). No entanto a porcentagem de germinação e o comprimento radicular das plântulas não houve diferença estatística.

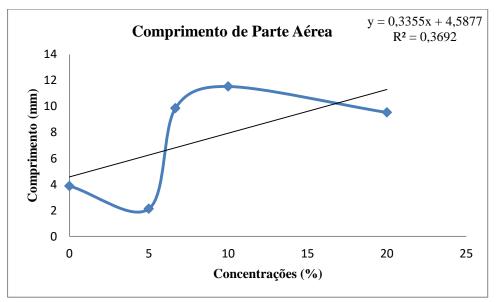
**Tabela 2** – Análise de regressão da porcentagem de germinação de sementes, comprimento de parte aérea, comprimento radicular e massa seca das plântulas.

| FV              | Germinação | Comp. P. A. (mm) | Comp. Radicular | Massa seca |
|-----------------|------------|------------------|-----------------|------------|
| 1, A            | (%)        | Comp. P. A. (mm) | (mm)            | (mg)       |
|                 | F          | F                | F               | F          |
| Reg. Linear     | 1.5000 ns  | 9.7710 **        | 2.4080 ns       | 13.4774 ** |
| Reg. Quadrática | 2.4107 ns  | 0.6970 ns        | 0.8447 ns       | 0.3318 ns  |
| Reg. Cúbica     | 2.8359 ns  | 3.9452 ns        | 1.8449 ns       | 1.8286 ns  |
| Reg. 4° Grau    | 0.5658 ns  | 1.0348 ns        | 0.6036 ns       | 0.0019 ns  |

<sup>\*\*</sup> significativo ao nível de 1% de probabilidade (p < .01)

Com base nos resultados, observou se que a ação do extrato da semente de mamão para o índice de velocidade de germinação das sementes de milho demonstrou que não houve diferença estatística para a variável analisada. Como visto na Tabela 2 a germinação não sofreu influências em nenhum dos tratamentos.

Conforme estudos de Viecelli *et al.*, (2012), as sementes de milho, soja, pepino e alface que foram expostas a lixivia de arilo de sementes de mamão, após seus sete dias de cultivo em câmera de germinação, não influenciou significativamente a germinação das mesmas.


Comparando a pesquisa de Scheren *et al.*, (2014), as sementes de milho que foram expostas ao extrato aquoso de tiririca (*Cyperus rotundus* L.) nas concentrações de 7,5%, a germinação resultou em 94%, sendo que o tratamento testemunha apresentou 95% de

<sup>\*</sup> significativo ao nível de 5% de probabilidade (.01 = ) ns não significativo (p >= <math>.05)

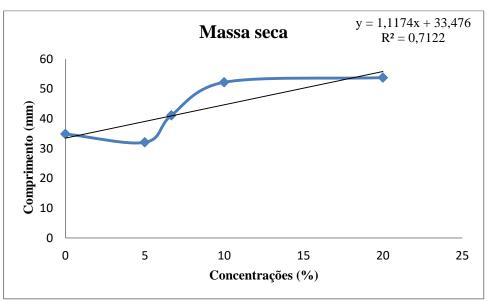
germinação, considera-se que não interferiu no desenvolvimento. Entretanto, quando a concentração de extrato foi de 15%, o percentual de germinação reduziu para 85%. Logo, quando foi superior a essa concentração, fez com que retardasse a germinação, onde, o extrato era de 30%, a germinação foi de apenas 76%.

Foi visto também a influência não significativa, em nenhuma das concentrações do extrato da semente de mamão sobre o comprimento de raiz. Ao contrário do estudo de Viecelli *et al.*, (2012), que obtiveram um efeito significativo do arilo da semente de mamão com aumento de 30% no crescimento da raiz do milho em relação á testemunha.

O extrato aquoso de nim gerou um efeito inibidor ao comprimento de raiz do milho, do qual apresentou alterações significativas, a partir da concentração de 20% do extrato. Sendo que na testemunha resultou em 16,52 cm de comprimento de raiz, para a concentração de 20% foi de apenas 4,71 cm. (RICKLI *et al.*, 2011). Conforme Ferreira (2004), pode se afirmar que isso ocorre porque a germinação é menos sensível aos efeitos dos aleloquímicos do que crescimento de plântulas.



**Figura 1-** Gráfico de análise de regressão linear do desenvolvimento de parte aérea das plântulas de milho em relação as concentrações de extrato das sementes de mamão.


No presente trabalho pode-se observar na Figura 1 que o extrato da semente de mamão nas concentrações 1:15 e 1:10 apresentou influência alelopática positiva sobre parte aérea, enquanto na dose mais fraca de 1:20 e a mais alta de 1:05 não houve influência positiva, isso por que as pequenas quantidades não foram suficientes e em grandes quantidades por estar mais concentrado pode ter impedido as plântulas de milho de se desenvolverem. Esses resultados corroboram com o estudo de Viacelli *et al.*, (2012), no qual observou-se que o

extrato do arilo do mamão estimulou o crescimento de 50% da parte aérea das plântulas em relação á testemunha.

Scheren *et al.*, (2014), relata que o extrato 7,5% de tiririca influenciou positivamente no desenvolvimento de parte aérea do milho, sendo superior ao da testemunha. Enquanto que nas concentrações de 15 a 30% inibiu o crescimento de parte aérea.

Geralmente, os compostos que tem efeitos alelopáticos atuam como inibidores de crescimento (FERREIRA e AQUILA, 2000), porém, podem conter substâncias que estimulam germinação e crescimento de plântulas. Certa variação nos teores de concentrações pode aumentar ou reduzir esse efeito (GUSMAN *et al.*, 2011).

Para o massa seca das plântulas de milho é possível observar na Figura 2 que, conforme houve um aumento na concentração do extrato da semente de mamão, ocorreu também um maior resultado de massa seca que nos permite concluir que o extrato é alelopata positivo, causando um aumento na massa das plântulas. Sousa *et. al.*, (2016), relatam que o aumento do massa seca ocorre devido ao aumento da parte aérea de plântulas.



**Figura 2-** Gráfico de análise da regressão linear do massa seca de plântulas de milho submetidas ao extrato da semente de mamão.

No trabalho de MIRÓ *et al.*, (1998), com o extrato dos frutos de erva mate ocorreu uma redução significativa no massa seca das raízes das plântulas de milho, e também reduziu o massa seca da parte aérea significativamente à medida que aumentou a concentração do extrato, apresentando evidências de alelopatia nas concentrações 1:16 e 1:8 dos extratos.

#### Conclusão

Nesse trabalho foi possível concluir que o extrato da semente de mamoeiro interfere positivamente no desenvolvimento do milho, o que sugere um eventual potencial dos metabólitos secundários presentes na sementes do mamoeiro como um estimulador do desenvolvimento inicial da cultura do milho.

### Referências

BRASIL. Ministério da Agricultura, Pecuária e Abastecimento. Regras para Análise de Sementes. **Ministério da Agricultura, Pecuária e Abastecimento**. Secretaria de Defesa Agropecuária. Brasília, DF: Mapa/ACS, 2009. 398p.

CASTRO, P. R. C.; SENA, J. O. A.; KLUGE, R. A. Introdução à fisiologia do desenvolvimento vegetal. Maringá: Eduem, 2002. p.159-178.

CREMONEZ, F. E.; CREMONEZ, P. A.; CAMARGO, M. P.; FEIDEN, A. Principais plantas com potencial alelopático encontradas nos sistemas agrícolas brasileiros. **Acta Iguazu**, Cascavel, v.2, Suplemento, p. 70-88, 2013.

FANCELLI, A. L.; DOURADO NETO, D. **Produção de milho**. Guaíba: Agropecuária, 2000. 360 p.

FERREIRA, A. G. Interferência: competição e alelopatia, In: FERREIRA, A. G.; BORGHETTI, F. (Org.). **Germinação: do básico ao aplicado**. Porto Alegre: Artmed, 2004. cap. 16, p. 251-262.

FERREIRA, A. G.; AQUILA, M. E. A. Alelopatia: uma área emergente da Ecofisiologia. **Revista Brasileira de Fisiologia Vegetal**, n.12, ed. Especial, p.175-204, 2000.

FERREIRA, A. G.; AQUILA, M. E. A. Alelopatia: uma área emergente da ecofisiologia. **Revista Brasileira de Fisiologia Vegetal,** Brasilia, v. 12, p. 175-204, 2000. FERREIRA, A.G; BORGHETTI F. **Germinação: do básico ao aplicado**. Porto Alegre: Editora Artimed. 323p. 2004.

GUIMARÃES, P.S. Desempenho de híbridos simples de milho (*Zea mays* L.) e correlação entre heterose e divergência entre as linhagens parentais. 2007. 111p. Dissertação (Mestrado em Agricultura Tropical Subtropical) — Instituto Agronômico de Campinas, Campinas, 2007.

GUSMAN, G. S.; YAMAGUSHI, M. Q.; VESTENA, S. Potencial alelopatico de extratos aquosos de *Bridens pilosa* L., *Cyperusrotundus* L. *e Euphorbia heterophylla*. **Iheringia.** Ser. Bot., Porto Alegre, v. 66, n. 1 p. 87-98, jul. 2011.

MAGALHÃES, P. C.; DURÃES, F. O. M; CULTIVO DO MILHO. **EMBRAPA MILHO E SORGO**, Sete Lagoas, MG, 2002. Cap. 3, p. 33-54.

- MIRÓ, C. P.; FERREIRA A. G., AQUILA M. E. A.. Alelopatia de frutos de erva mate (ILEX PARAGUARIENSIS) no desenvolvimento do milho. **Pesquisa Agropecuária Brasileira**, Brasilia, v.33, n.8, p.1261-1270, 1998.
- RICKLI, H. C. et al. Efeito alelopático de extrato aquoso de folhas de Azadirachta indica A. Juss. em alface, soja, milho, feijão e picão-preto. **Semina: Ciências Agrárias**, v. 32, n. 2, p. 473-484, 2011.
- ROCHA, R. H. C. Qualidade e vida útil pós-colheita do mamão Formosa 'Tainung 01' armazenado sob refrigeração. Dissertação (Mestrado) Escola Superior de Agricultura de Mossoró, Mossoró, Rio Grande do Norte, 64p, 2003.
- RODRIGUES, L. R. A.; RODRIGUES, T. J. D.; REIS, R. A. Alelopatia em plantas forrageiras. Jaboticabal: UNESP/FUNEP, 1992. 18 p. (Boletim).
- SANGRONIS, E.; MACHADO, C. J. Influence of germination on the nutritional quality 225 of *Phaseolus vulgaris* and *Cajanus cajan*. **LWT-Food Science and Technology**, v. 40, n. 1, 226 p. 116-120, 2007.
- SCHEREN, M. A.; RIBEIRO, V. M.; NOBREGA, L. H. P. Efeito alelopático de Cyperus rotundus L., no desenvolvimento de plântulas de milho (Zea mays L.). Revista Varia Scientia Agrária v. 04, n.01, p. 105-116. 2014.
- SILVA, F. A. S.; AZEVEDO, C. A. V. Principal components analysis in the software assistatstatistical attendance. In: **WORLD CONGRESS ON COMPUTERS IN AGRICULTURE**, 7., 2009, Reno. Proceedings... St. Joseph: American Society of Agricultural and Biological Engineers, 2009.
- SILVA, I. C.; SILVA, V. M.; SILVA, O. B. J.; FERREIRA, V. M..Germinação de sementes de Corda de viola (Ipomoeapurpurea L.) submetidas ao extrato aquoso de sementes de mamão (Caricapapaya L.). **Cadernos de Agroecologia**, [S.l.], v. 10, n. 2, sep. 2015. SOARES, G.L.G. Inibição da germinação e do crescimento radicular de alface (cv. Grand Rapids) por extratos aquosos de cinco espécies de Gleicheniaceae. **Floresta e Ambiente**, v.7, p.190-197, 2000.
- SOUZA, A. P. S.; ALVES, S. M.. Alelopatia princípios básicos e aspectos gerais. **Embrapa Amazônia Oriental**. Belém, 2002. Cap.8. p. 205-260.
- VIECELLI, C. A.; SILVA, C. T. A. C.; TRÉS, S. P.; ROSA, T. C. M.; VERGUTZ, B. R.. Desenvolvimento inicial de milho, soja, alface e pepino germinados na presença do arilo da semente de mamão. **Revista Brasileira de Tecnologia Aplicada nas Ciências Agrárias**, Guarapuava-PR, v. 5, n. 2, p. 133-144, 2012.