CENTRO UNIVERSITÁRIO ASSIS GURGACZ JEFERSON BERLANDA

CERTIFICAÇÃO DE UM EMPREENDIMENTO FRIGORÍFICO PARA CARCAÇAS BOVINAS DE UM AÇOUGUE PARTICULAR LOCALIZADO NO INTERIOR DE MATELÂNDIA/PR

CENTRO UNIVERSITÁRIO ASSIS GURGACZ JEFERSON BERLANDA

CERTIFICAÇÃO DE UM EMPREENDIMENTO FRIGORÍFICO PARA CARCAÇAS BOVINAS DE UM AÇOUGUE PARTICULAR LOCALIZADO NO INTERIOR DE MATELÂNDIA/PR

Trabalho apresentado na disciplina de Trabalho de Conclusão de Curso II, do Curso de Engenharia Mecânica, do Centro Universitário Assis Gurgacz, como requisito parcial para obtenção do título de Bacharel em Engenharia Mecânica.

Professor Orientador: Rogério Luiz

Ludegero

CENTRO UNIVERSITÁRIO ASSIS GURGACZ JEFERSON BERLANDA

CERTIFICAÇÃO DE UM EMPREENDIMENTO FRIGORÍFICO PARA CARCAÇAS BOVINAS DE UM AÇOUGUE PARTICULAR LOCALIZADO NO INTERIOR DE MATELÂNDIA/PR

Trabalho apresentado no Curso de Engenharia Mecânica do Centro Universitário FAG, como requisito parcial para obtenção do título de Bacharel em Engenharia Mecânica, sob orientação do Professor (a) Rogério Luiz Ludegero.

BANCA EXAMINADORA

Orientador Profit Eng. Rogério Luiz Ludegero Centro Universitário Assis Gurgacz Engenheiro Mecânica

Professor Msc. MBA. Eng. Sergio Henrique Rodrigues Mota Centro Universitário Assis Gurgacz Engemeiro Mecânico

> Professor José Claudio Terra Silveira Centro Universitário Assis Gurgacz Engenheiro Mecânico

Cascavel, 26 de Junho de 2019.

DEDICATÓRIA

Dedico este trabalho aos meus pais e meu irmão, por todo apoio e compreensão, fontes da minha motivação.

AGRADECIMENTOS

Primeiramente agradeço a Deus, pelo dom da vida, por mostrar o caminho certo a que seguir, pelos bons momentos que me trouxeram alegria e motivação, e também pelos maus momentos que me tornaram mais forte e humilde.

A minha mãe Angelita, que em vida doou-se em prol da prosperidade de seus filhos e em fazer o bem.

Ao meu pai Ildo, que por maior que fossem as dificuldades nunca desistiu.

Ao meu irmão Emerson, por toda compreensão e apoio.

Aos meus professores, que ocasionalmente vieram a se tornar amigos, mestres, tutores, conselheiros e até mesmo exemplos de vida.

Agradeço também meus familiares, colegas e amigos que me apoiaram, acreditaram em mim e que desejaram meu crescimento pessoal.

RESUMO

Um dos maiores desafios é garantir que os equipamentos instalados tenham rendimento conforme o projetado. Para isto os comissionamentos tem sido cada vez mais frequentes, sendo o objetivo deste trabalho a apresentação do comissionamento de um empreendimento da área de refrigeração, mais especificamente uma câmara frigorifica para carcaças de um açouque particular localizado no interior da cidade de Matelândia/PR. Em seu contexto a origem da montagem deste trabalho se veio pela incerteza do correto dimensionamento do sistema de refrigeração utilizado pelo açougue, empreendimentos de pequeno porte em sua maioria não possuem um projeto pré-definido de dimensionamento destes tipos de sistema, assim tendo ciência da possibilidade de se verificar tal fato o trabalho foi efetuado. A execução desta certificação foi feita através de uma atividade de comissionamento que iniciou-se pela compilação de dados sobre a câmara frigorifica e informações sobre o clima da região em especifico, em fontes confiáveis, tais dados são essenciais para a execução de uma atividade de comissionamento desse gênero de empreendimento, pois são ligadas diretamente a capacidade de retirada de calor do equipamento de refrigeração e também na carga térmica a ser trabalhada. A estimativa da carga térmica da câmara frigorifica se sustentara na quantidade máxima de carcaças bovinas que o açouque consegue processar, características térmicas da região e características físicas da câmara frigorifica. Após aquisição de todos dados necessários para identificar a necessidade e capacidade de refrigeração, e condições de operação da câmara frigorifica do açougue particular pode-se afirmar que o sistema de refrigeração instalado possui capacidade de refrigeração para atender a necessidade do cliente, porém o mesmo está operando fora dos padrões pelo qual foi projetado e indicado pelo fabricante e a estrutura física da câmara também apresenta más condições de vedação e um método de operação inadequado ao processo, chegando à conclusão que o equipamento é apropriado, porem o empreendimento requer manutenção e/ou alterações para cumprir a função.

Palavras-chave: Comissionamento, Sistema de refrigeração, Câmara frigorífica.

LISTA DE FIGURAS

FIGURA 1: Dados climáticos de Foz do Iguaçu.	19
FIGURA 2: Plataformas software Elgin.	20
FIGURA 3: Manômetro Vulkan Lokring	22
FIGURA 4: Termômetro Full Gauge Penta III	23
FIGURA 5: Trena.	23
FIGURA 6: Unidade Condensadora	24
FIGURA 7: Evaporador	25
FIGURA 8: Etiqueta do compressor.	26
FIGURA 9: Etiqueta do condensador	26
FIGURA 10: Características da unidade condensadora	26
FIGURA 11: Medição da pressão de evaporação	27
FIGURA 12: Medição da temperatura do ar	28
FIGURA 13: Modelo da planta baixa da câmara	29
FIGURA 14: Primeira etapa de configuração do software	30
FIGURA 15: Segunda etapa de configuração software	31
FIGURA 16: Terceira etapa de configuração software	32
FIGURA 17: Carga térmica segundo software Elgin refrigeração V2.1	33
FIGURA 18: Equipamentos sugeridos pelo software Elgin refrigeração V2.1	34

LISTA DE TABELAS

TABELA 1: Relações pressão temperatura do gás R22	27
TABELA 2: Dados de carga térmica e capacidade frigorifica	36
TABELA 3: Dados Compilados.	36

LISTA DE ABREVIATURAS E SIGLAS

∆Tmd: Variação de Temperatura Média

°C: Graus Centigrados

ABNT: Associação Brasileira de Normas Técnicas

ASHRAE: Sociedade Americana de Engenheiros de Aquecimento, Refrigeração e Ar

Condicionado

Cap.: Capacidade

Dt: Diferencial de temperatura de evaporação e interna da câmara

EPS: Poliestireno Expandido (isopor)

EUA: Estados Unidos da América

Freq.: Frequência

h: Altura

HP: Potência cavalo vapor

LEED: Certificação Leadership in Energy and Environmental Design

Longit: Longitudinal

NBR: Norma Brasileira

Pr. atm: Pressão Atmosférica

PR: Estado do Paraná

Pressão Abs: Pressão Absoluta

R22: Fluido Refrigerante Clorodifluorometano

SI: Sistema Internacional de Unidades

T: Temperatura

TBS: Temperatura de Bulbo Seco

TBSc: Temperatura de Bulbo Seco Critica

TBU: Temperatura de Bulbo Úmido

TBUc: Temperatura de Bulbo Úmido Critica

Temp.: Temperatura

TPO: Temperatura de Ponto de Orvalho

U.R.: Umidade Relativa

w: Umidade Absoluta

W: Watts

SUMÁRIO

1.	INTRODUÇÃO	.10
1.1.	OBJETIVOS DA PESQUISA	.10
1.1.1	Objetivo Geral	.10
1.1.2.	Objetivos Específicos	.10
1.2.	JUSTIFICATIVA	.11
1.3.	CARACTERIZAÇÃO DO PROBLEMA	.11
1.4.	DELIMITAÇÃO DA PESQUISA	.12
2.	REVISÃO BIBLIOGRÁFICA	.13
2.1.	COMISSIONAMENTO	.13
2.2.	SISTEMA DE REFRIGERAÇÃO	.14
2.2.1.	Unidade condensadora	.14
2.2.2.	Compressor	.15
2.2.3.	Condensador	.15
2.2.4.	Válvula De Expansão	.16
2.2.5.	Evaporador	.16
2.2.6.	Fluido Refrigerante	.16
2.2.7.	Canalizações	.17
2.2.8.	Propriedades Termodinâmicas	.17
2.3.	CÂMARA FRIGORÍFICA	.18
2.3.1.	Isolamento Térmico	.18
2.4.	CONSERVAÇÃO DE ALIMENTOS	.18
2.5.	DADOS CLIMÁTICOS DA REGIÃO	.18
2.6.	SOFTWARE PARA CÁLCULO DA CARGA TÉRMICA	.19
3.	METODOLOGIA	.21
3.2.	PROCEDIMENTOS	.21
3.3	FERRAMENTAS EMPREGADAS	.21
3.4	ELEMENTOS DO SISTEMA DE REFRIGERAÇÃO	.24
3.5	DADOS DO SISTEMA DE REFRIGERAÇÃO	.25
3.6	DADOS DA CÂMARA FRIGORIFICA	.28
3.7	ESTIMATIVA DE CARGA TÉRMICA	.29
4.	RESULTADO E DISCUSSÕES	.35

5.	CONCLUSÃO	37
5.1.	SUGESTÕES PARA TRABALHOS FUTUROS	37
REFE	RÊNCIAS BIBLIOGRÁFICAS	38
ANEX	(O A – PROPRIEDADES TERMODINÂMICAS R22	40
ANEX	(O B – DADOS CLIMATICOS SEGUNDO ABNT NBR 16401:2008	41
ANEX	(O C – CATALOGO EVAPORADORES ELGIN	42
ANEX	(O D – CATALOGO CONDENSADORAS ELGIN	43
ANEX	(O E – PESO DE CARCAÇAS BOVINAS SEGUNDO ASHRAE	44
ANEX	(O F – DT RECOMENDADO PELA ASHRAE	45

1. INTRODUÇÃO

O referido trabalho trata sobre câmaras frigoríficas, e abordará sobre a atividade de comissionamento de uma câmara frigorífica para refrigeração de carcaças bovinas de um açougue particular localizado no interior da cidade de Matelândia, na região oeste do Paraná.

1.1. OBJETIVOS DA PESQUISA

1.1.1 Objetivo Geral

Realizar a atividade de comissionamento da câmara frigorifica para certificar se o sistema de refrigeração instalado na mesma está funcionando corretamente e tem capacidade para suprir a demanda de refrigeração proveniente das carcaças de bovinos abatidos pelo açougue e demais cargas térmicas existentes, e por fim chegar a um veredito.

1.1.2. Objetivos Específicos

Para alcançar o objetivo deste trabalho serão seguidos três objetivos principais para a execução do comissionamento de uma câmara frigorífica, tais eles:

- Determinar a carga térmica da câmara através do software de cálculo de carga térmica disponibilizado pelo Grupo Elgin em seu website.
- Compilar dados técnicos e operantes do sistema de refrigeração instalado e da câmara frigorifica.
- Notificar a condição e aptidão dos componentes da câmara frigorífica.

1.2. JUSTIFICATIVA

Este trabalho está orientado no âmbito social, vindo de encontro com a redução de consumo energético, sendo que cada dia mais o consumo de energia elétrica vem aumentando e as fontes de energia não são infinitas, podendo chegar a serem insuficientes ou até mesmo se esgotando, sendo assim necessário maior eficiência dos consumidores, e também no sentido de garantia de qualidade de produtos alimentícios processados, sendo que uma vez que não processados da forma correta os mesmos podem vir a apresentar uma baixa durabilidade na conservação e até mesmo causar danos à saúde dos consumidores.

O termo comissionamento tem origem na construção naval, tal termo é designado a um navio apto a aplicação em que foi projetado, sendo que para isto o mesmo deve passar por testes, correções de falhas e treinamentos necessários da tripulação para que enfim possa receber o título de comissionado (CALIFORNIA, 2006).

Os EUA foi o primeiro país a desenvolver um guia para a aplicação de um comissionamento, tanto que, informações que auxiliam na aplicação do comissionamento são de elevado requerimento em projetos neste país e estão em processo continuo de desenvolvimento, por mais que não estejam presentes em normas (ASHRAE, 2005). De acordo com as forças armadas dos EUA instalações que não passaram por um processo de comissionamento tem seu consumo energético superno comparado a instalações comissionadas, em valores quantitativos entre cerca de 8% até 50%, neste mesmo pensamento os encargos de manutenção tem um diferencial de 15% a 35% (DEPARTMENT OF THE ARMY, 2006).

1.3. CARACTERIZAÇÃO DO PROBLEMA

O sistema de refrigeração por compressão de vapor com fluido refrigerante de trabalho R22 instalado na câmara frigorífica para carcaças bovinas do açougue particular atende à demanda de carcaças bovinas de acordo com a necessidade?

1.4. DELIMITAÇÃO DA PESQUISA

Este trabalho é exclusivamente sobre a câmara frigorifica para resfriamento de carcaças em estudo, qual possui como dimensões internas 1,5 metros de largura, 1,9 metros de comprimento e 2,13 metros de altura constituída de painéis isotérmicos com núcleo isolante de EPS (isopor) de 100 milímetros de espessura, totalizando o volume aproximado de 6,07 metros cúbicos, instalada em um cômodo da casa do cliente, com um tempo de processo de 24 horas entre acomodação das carcaças e retirada das mesmas para os cortes, com capacidade requerida pelo cliente para 4 carcaças de boi e temperatura final das carcaças de 0°C .

2. REVISÃO BIBLIOGRÁFICA

2.1. COMISSIONAMENTO

O comissionamento é baseado e definido em uma atividade de certificar que um projeto/sistema esteja de acordo com as necessidades do cliente, podendo aplicar-se essa técnica tanto em projetos novos quanto em modernizações e atualizações (BENDIKSEN, 2005).

No geral a atividade de comissionamento tem como foco assegurar que o cliente receba o projeto de forma organizada e segura, com garantia de desempenho, confiabilidade e rastreabilidade, vindo a ser um fator que irá representar as características de satisfação de prazos, custos da obra, segurança pessoal e operacional e uniformidade (PRATES, 2006).

Também de grande importância para a fase operacional o comissionamento vem de encontro com a garantia de que a manutenção seja possível, prática e acessível de ser executada, para que futuramente as atividades de manutenção possam ser definidas periodicamente com padrões fixos e a prevenção de tempos excessivamente longos de manutenção (MONTENEGRO, 2009).

Outro ponto positivo seria pelo fato de que informações habilmente compiladas provenientes de um comissionamento tendem a gerar dados documentados que servem de prerrogativa para entidades a agências reguladoras que o projeto está seguindo corretamente as suas fases. Quando do rigoroso planejamento e execução, no geral, o comissionamento traz como benefícios menores custos e redução de prazos (HESSLER, 2008).

Tendo uma importância muito grande, porém sendo vulgarizado e perdendo seu valor cada dia mais, o comissionamento é um pré-requisito para obtenção da certificação LEED. Sendo um processo sistemático e trabalhoso, as vezes o comissionamento e executado de forma inadequada, fazendo com que perca sua credibilidade, no geral isto se deve à falta de conhecimento dos profissionais que acabam efetuando um serviço medíocre. O setor de construção civil começou a valorizar este tipo de atividade, tendo por indispensável, devido a

essa certificação LEED, para que além do desenvolvimento, entrega e qualidade da obra também haja o desempenho sustentável da edificação (AXION CONSTRUÇOES, 2013).

2.2. SISTEMA DE REFRIGERAÇÃO

O recurso de refrigeração é uma pratica do homem desde as épocas mais antigas, iniciando pelo fenômeno de evaporação de água para obter o fenômeno de arrefecimento (DINÇER, 2003). Nos tempos atuais a refrigeração e feita por meios artificiais, isso se deu início no século 18 quando da invenção da primeira máquina de refrigeração por um professor na Escócia, era uma máquina que produzia gelo em pequena quantidade. Baseando-se no funcionamento existem tipos diferentes de sistemas: por compressão de vapor, por absorção, ciclos a base de gás entre outros menos comuns (KHARAGPUR, 2008).

Um sistema de refrigeração é normalmente constituído por um ciclo de refrigeração por compressão de vapor, abrangendo a sua aplicação em refrigeradores domésticos, refrigeradores comerciais, ar condicionado e até mesmo sistemas configurados em cascata que tem como objetivo alcançar temperaturas mais baixas de quem um sistema convencional (BORGNAKKE, 2014).

A composição típica e básica de para um sistema de refrigeração consiste em componentes para compressão de vapor (compressor), para condensação de vapor na linha de alta pressão (trocador de calor denominado condensador), dispositivo para expansão de gases (válvula de expansão) e outro dispositivo de expansão de vapor na linha de baixa pressão (trocador de calor denominado evaporador) (KHARAGPUR, 2008).

2.2.1. Unidade condensadora

Dossat(1961) diz que pode ser denominada de unidade condensadora um equipamento que reúne o compressor, a linha de alta pressão e alta temperatura entre o compressor e o condensador. No sentido literal da palavra devido a sua

principal função, que é sugar vapor em baixa pressão e restituir este fluido em forma condensada ao sistema, intitula-se este tipo de equipamento de unidade condensadora. Podendo também apresentar variações de nomenclatura de acordo com o fluido empregado para retirada de calor do condensador, uma unidade condensadora pode vir a ser nomeada de unidade condensadora refrigerada a água.

2.2.2. Compressor

Para realização do ciclo de refrigeração é necessário um elemento que realize a compressão do gás, um compressor, sendo possível a aplicação tanto de modelos alternativos quanto de rotativos de acordo com a aplicação. A escolha de um tipo de compressor é diretamente ligada tanto a capacidade do sistema de refrigeração quanto ao fluido refrigerante de trabalho, compressores alternativos são mais compatíveis com instalações de pequeno e médio porte, rotativos são mais compatíveis com baixa pressão e empregados em múltiplos estágios para grandes vazões e os de funcionamento centrifugo são de maior aplicação em sistemas que utilizam água pura ou em solução salina (COSTA, 1982).

2.2.3. Condensador

Um condensador tem como objetivo esfriar e consequentemente condensar o vapor comprimido pelo compressor, transferindo o calor do fluido refrigerante para o meio em três etapas, primeiramente ele dessuperaquece o vapor que em seguida é condensado e por último sub-resfriado (COSTA, 1982). O tipo de condensador a ser adotado depende, dentre muitas variáveis, do local e atmosfera onde o mesmo será instalado, tendo parâmetros em consideração de área de troca térmica suficiente para condensar todo vapor admitido por ele, pressões e temperatura de trabalho e dimensão suficiente para suportar a capacidade de vapor enviada pelo compressor (MARTINELLI, 2003).

2.2.4. Válvula De Expansão

A válvula de expansão é o elemento responsável por realizar aqueda de pressão do fluido refrigerante, tal pressão, de condensação proveniente do compressor até a baixa pressão de evaporação do evaporador, tem também a função de controlar o fluxo do fluido de trabalho (NETO DA SILVA, 2013).

2.2.5. Evaporador

O evaporador é o dispositivo onde o fluido refrigerante se expande da forma liquida para gasosa, por mais que seja um dispositivo simples ele é o responsável pela retirada direta do calor de um ambiente controlado transferindo este calor para o fluido de trabalho (MARTINELLI, 2003).

2.2.6. Fluido Refrigerante

Existe hoje uma diversidade de fluidos para sistemas de refrigeração, quando do início da aplicação de sistemas por compressão de vapor eram empregados a Amônia e Dióxido de Enxofre, porém são substancias perigosas por serem toxicas. Para a escolha do fluido refrigerante para um sistema devem-se considerar os aspectos de temperatura a ser alcançada desejada, pois cada fluido possui características termodinâmicas próprias e o equipamento a ser utilizado, pois baixas pressões significam elevados volumes específicos, assim requerendo grandes equipamentos, do contrário altas pressões significam equipamentos menores porem mais robustos, o modo de funcionamento do compressor também é estipulado por essa regra, pois altas pressões requerem compressores de movimento alternativo, já grandes volumes são atendidos por compressores do tipo centrífugo (BORGNAKKE, 2014).

2.2.7. Canalizações

No geral, segundo Costa(1982), uma instalação frigorifica possui tubulações com três funções básicas, sendo elas, a linha de alta temperatura e alta pressão entre o compressor e o condensador, a linha de liquido que fica entre o condensador e o evaporador, que também opera em alta pressão, e a linha de vapor que sai do evaporador até o compressor, esta que por sua vez opera em baixa pressão. Sendo para essas tubulações empregado o aço preto para confecção dos condutos empregados no fluido de trabalho Amônia, e cobre, latão e até mesmo alumínio em casos de pequenas instalações como refrigeradores, que empregam os demais fluidos a base de clorofluorcarbonos. Outro fator importante a se considerar em quesito de tubulações é o correto dimensionamento das mesmas, sendo que uma vez mal dimensionados podem ocasionar baixo rendimento e problemas operacionais.

2.2.8. Propriedades Termodinâmicas

Pode ser denominada propriedade termodinâmica de uma substancia a sua característica de alteração térmica passível de constatação. Para a definição do estado de uma substancia é necessário no mínimo duas propriedades independentes, sendo a pressão, temperatura, volume especifico e massa especifica as mais corriqueiramente empregadas, existem também outras propriedades conhecidas como energia interna, entalpia e entropia, tais essas, essenciais para cálculos de mensuração de transferência de calor, trabalho e energia (DA SILVA, 2005).

Para o sistema em estudo que emprega como fluido de trabalho o gás refrigerante R22 foi buscado junto a um fabricante uma tabela de propriedades termodinâmicas que se encontra no anexo A.

2.3. CÂMARA FRIGORÍFICA

Pode-se definir por câmara frigorífica um espaço de armazenamento com condições climáticas internas sob controle de um sistema de refrigeração. Construtivamente estes tipos de câmara têm características influenciadas pela capacidade de refrigeração da mesma, com vínculo direto no consumo de energia, tanto na redução quanto no aumento deste despendimento (CHAGAS, 2018).

2.3.1. Isolamento Térmico

A isolação térmica tem como objetivo reduzir a troca de calor entre as faces do isolante, sendo empregados materiais de coeficiente de condutividade térmica baixa, ou seja, com alta resistência a transferência de calor (CHAGAS, 2018).

2.4. CONSERVAÇÃO DE ALIMENTOS

É pressuposto pelo simples fato de um produto ser comestível que o mesmo pode vir a se deteriorar com o passar do tempo, sendo conhecidos vários processos para preservação a séculos. É do conhecimento humano a muito tempo a possibilidade de prolongar a durabilidade de alimentos se utilizando de técnicas que empregam o frio, no início era utilizado somente o resfriamento, porem se constatou que poderia estender a conservação dos alimentos congelando-os a temperaturas abaixo de 0°C. Diferente de outros métodos de conservação, quando se utiliza o frio existe a vantagem de que ele mantem imutável tanto sabor quanto odor e até mesmo o aspecto físico do produto de quando fresco (COSTA, 1982).

2.5. DADOS CLIMÁTICOS DA REGIÃO

Para fins de cálculo da carga térmica e capacidade frigorifica do equipamento foram obtidos os seguintes dados climáticos referentes a cidade mais

próxima a seguir indicados na figura, proveniente da tabela A.7 da norma ABNT NBR 16401-1:2008 no anexo B.

PR	Foz de Iguaçu			Latitude	Longit.	Altitude	Pr.atm	Período	
				25,52S	54,58W	243m	98,44	85/01	
Mês>Qt	Freq.	Res	friamento	e desumid	ficação	Baixa umidade			
Jan	anual	TBS	TBUc	TBU	TBSc	TPO	w	TBSc	
	0,4%	35,1	23,6	26,1	31,6	24,6	20,1	28,7	
ΔTmd	1%	34.1	23,7	25,6	31,1	24,0	19,5	28,2	
11,1	2%	33,1	23,5	25,1	30,6	23,5	18,9	27,7	

Figura 1: Dados climáticos de Foz do Iguaçu.

(Fonte: ABNT NBR 16401-1:2008)

2.6. SOFTWARE PARA CÁLCULO DA CARGA TÉRMICA

A empresa Elgin teve a instalação de sua primeira fábrica no ano de 1952, iniciando as atividades no ramo de refrigeração em 1966 com compressores e unidades herméticas. O software Elgin para cálculo de carga térmica é uma ferramenta disponibilizada por essa empresa em seu website para auxiliar profissionais do ramo de refrigeração para estimar a carga térmica de câmaras frigorificas, sendo que este software até mesmo sugere equipamentos e acessórios para a dada carga térmica. A seguir a figura apresenta as plataformas disponíveis do software (ELGIN, 2019).

Cálculo de carga térmica

INDISPENSÁVEL PARA O SEU DIA A DIA

DISPONÍVEL PARA:

BAIXE AGORA

Figura 2: Plataformas software Elgin.

(Fonte: Autor)

3. METODOLOGIA

3.2. PROCEDIMENTOS

A carga térmica do produto será calculada de acordo com n demanda de refrigeração de carcaças do cliente e características da câmara frigorifica. Para os equipamentos instalados será consultado o(s) fabricante(s) para a obtenção das características de funcionamento dos mesmos e serão selecionadas as informações coerentes com o modo operacional que se encontram os equipamentos.

3.3 FERRAMENTAS EMPREGADAS

Para obtenção da pressão de evaporação do sistema foi empregado um manômetro especifico para tal função, de marca Vulkan modelo Lokring, que apresenta escalas de pressão em kg/cm² e PSI, e também traz outras 4 escalas para temperatura aproximada dos fluidos refrigerantes R134a, R404a, R22 e R12. Sendo trazida na página a seguir uma figura de um equipamento semelhante ao usado.

Figura 3: Manômetro Vulkan Lokring. (Fonte: Frimann Assistência Técnica Peças e Serviços Ltda)

Para fins de medição de temperatura foi empregado um termômetro Full Gauge modelo Penta III, como apresentado na figura da página a seguir.

Figura 4: Termômetro Full Gauge Penta III.

(Fonte: Autor)

Sendo necessário também o conhecimento das medidas físicas da câmara frigorifica foi empregado uma trena comum com capacidade de medição de até 5 metros, como exemplo na figura abaixo.

Figura 5: Trena. (Fonte: Autor)

3.4 ELEMENTOS DO SISTEMA DE REFRIGERAÇÃO

Os elementos do sistema de refrigeração localizados do lado externo da câmara frigorífica são compostos por uma unidade condensadora Elgin modelo T/SUM 2063 que emprega como fluido de trabalho o R22, possui também um reservatório de fluido e um filtro, como pode ser observado na figura abaixo.

Figura 6: Unidade Condensadora.

(Fonte: Autor)

Na parte interna da câmara frigorifica pode-se observar o evaporador, no caso deste empreendimento é um modelo muito antigo que não possui nenhuma identificação, somente o ventilador instalado no mesmo que é do mesmo modelo dos ventiladores do condensador. A válvula de expansão foi instalada de uma forma

que não é possível ver suas inscrições para determinar qual é seu modelo, na figura a seguir pode-se verificar a situação física e o formato construtivo do evaporador.

Figura 7: Evaporador.

(Fonte: Autor)

Para a possível comparação de carga térmica e desempenho foi empregado um evaporador da mesma fabricante da unidade condensadora similar ao instalado, tal modelo empregado foi o FXBN/E 012-1 com características que podem ser vistas no catálogo do fabricante no anexo C.

3.5 DADOS DO SISTEMA DE REFRIGERAÇÃO

Analisando o sistema e seus equipamentos pode-se constatar que se trata de uma unidade condensadora modelo T/SUM 2063 composta de 1 compressor e 1 condensador com 2 ventiladores, como mostram as figuras 7 e 8 abaixo referentes as etiquetas de identificação dos equipamentos.

Figura 8: Etiqueta do compressor. (Fonte: Autor)

Figura 9: Etiqueta do condensador. (Fonte: Autor)

Segundo o catalogo do fabricante este equipamento possui as seguintes características técnicas apresentadas na figura 9 abaixo, proveniente do catalogo no anexo D.

Modelo Model Modelo	Tensão Voltage Voltaje (V)	Ref. Com. Comm. Ref. Ref. Com. [HP]	Capacidade Frigorífica [Kcal/h] / Temperatura de Evaporação [°C] Refrigerating Capacity [Kcal/h] / Evaporating Temperature [°C] Capacidad Frigorífica [Kcal/h] / Temperatura de Evaporación [°C]						Corrente Current Corriente [A]	Input
	[V]	[HP]	-15°C	-15°C -10°C -6,7°C -5°C 0°C [cc/rev]					Tev=	-6,7°C
T/SUM 2063	220	1 1/4	1100	1.515	1.680	1.995	2200	20,66	4,8	1.160

Figura 10: Características da unidade condensadora.

(Fonte: Autor)

Para conhecimento da pressão de evaporação em que o sistema opera foi conectado o manômetro na linha de baixa pressão, como mostrado na figura da página a seguir, o resultado foi uma pressão de aproximadamente 1,8 Kg/cm² que no caso do fluido R22 como mostra a outra escala do manômetro condiz a aproximadamente -18 °C.

Figura 11: Medição da pressão de evaporação.

(Fonte: Autor)

A tabela demonstrada pelo fabricante, no anexo A, está no padrão SI e traz pressões absolutas em Pascal, convertendo os valores para a unidade kg/cm2 trazida pelo manômetro obtêm-se os valores aproximados da tabela abaixo.

Tabela 1: Relações pressão temperatura do gás R22.

Temp. (°C)	Pressão Abs. (kg/cm2)	Pressão Manométrica (kg/cm2)
-18	2,7	1,7
-15	3,02	2,02
0	5,08	4,08

(Fonte: Autor)

Para maior fiabilidade dos dados obtidos e do resultado também foi medido a temperatura interna da câmara em regime normal de operação, foi posicionado o sensor de temperatura do termômetro a frente do fluxo de ar do

evaporador e obtido o valor de aproximadamente 5,6°C como mostrado na figura abaixo.

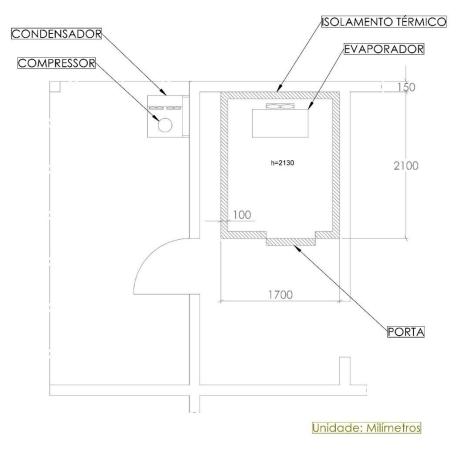


Figura 12: Medição da temperatura do ar.

(Fonte: Autor)

3.6 DADOS DA CÂMARA FRIGORIFICA

Para fins de ilustração das dimensões da câmara frigorífica foi feito um modelo da mesma e da disposição dos equipamentos, mostrado na figura a seguir, sendo as paredes de 150mm de alvenaria com tijolos de 6 furos e revestimento em ambos lados de argamassa, e as paredes, teto e porta da câmara fria com 100mm de espessura compostas de placas galvanizadas de metal com núcleo isolante de Poliestireno.

Figura 13: Modelo da planta baixa da câmara. (Fonte: Autor)

3.7 ESTIMATIVA DE CARGA TÉRMICA

Para a estimativa de carga térmica foi empregado o uso do software Elgin Refrigeração V2.1, mesma fabricante da unidade condensadora instalada na câmara frigorifica, tal software é disponibilizado pela empresa em seu website, sendo empregados os dados já obtidos. A primeira etapa da configuração do software consiste principalmente nos dados dimensionais da câmara, como pode ser visto na figura a seguir.

Figura 14: Primeira etapa de configuração do software. (Fonte: Autor)

A temperatura interna de 0°C foi um dado passado pelo cliente.

A temperatura externa foi definida em 32°C pois é o mais próximo do clima da região que o software permite configuração.

A segunda etapa se fundamenta no produto a ser refrigerado, como pode ser visto na figura da página a seguir.

Figura 15: Segunda etapa de configuração software. (Fonte: Autor)

A massa de produto foi definida em 880Kg pois corresponde a condição crítica de abates passada pelo cliente de 4 bois, e também pela condição crítica de peso de carcaças bovinas indicada pela ASHRAE, no anexo E, de 220Kg por carcaça.

A terceira etapa é referente a parte do maquinário, onde e definido o fluido refrigerante a ser empregado e outras informações mostradas na figura a seguir.

Figura 16: Terceira etapa de configuração software. (Fonte: Autor)

Para o caso desta câmara frigorífica estudada alguns dados não são aplicáveis/relevantes, sendo assim, algumas variáveis foram definidas com valor 0.

O software trás poucas possibilidades de configuração do Dt, assim sendo, foi definido o valor de 6 para o mesmo, que condiz ao mais aproximado do recomendado pela ASHRAE no anexo F. Quanto ao comprimento da tubulação foi aplicado o valor mínimo admitido pelo software, pois no empreendimento a tubulação apenas necessita transpassar a parede do isolamento, de alvenaria e um pequeno espaço vago para alcançar o evaporador.

Por fim na quarta etapa o software apresenta os dados referentes a carga térmica calculada pelo mesmo, individualmente ele apresenta as cargas térmicas e suas respectivas fontes, e também a carga total final, como mostrado na figura da página a seguir.

Figura 17: Carga térmica segundo software Elgin refrigeração V2.1. (Fonte: Autor)

Este software também conta com uma função onde ele gera uma lista com equipamentos e acessórios sugeridos para esta aplicação calculada, que podem ser conhecidos na figura da página a seguir.

Figura 18: Equipamentos sugeridos pelo software Elgin refrigeração V2.1. (Fonte: Autor)

4. RESULTADO E DISCUSSÕES

Foi possível verificar uma corrente de ar frio proveniente das vedações da porta da câmara frigorifica, indicando má vedação, que resulta na infiltração de ar quente externo e na fuga do ar frio interno, fazendo com que a câmara praticamente perca sua principal característica, que é de ser um ambiente controlado.

A unidade condensadora apresenta uma capacidade de aproximadamente 17% maior que a demanda, e até mesmo superior as unidades condensadoras sugeridas pelo software, porém, encontra-se operando fora dos parâmetros prédefinidos pela fabricante, no caso deste equipamento ele está com uma pressão de evaporação abaixo da faixa operacional, o que gera um comportamento imprevisível e principalmente a perda da garantia pelo fabricante.

Visualmente pode-se verificar que o evaporador possui muitas aletas amassadas que resulta em uma baixa eficiência e performance, outro fator importante relativo ao evaporador é a ausência de identificação e informações técnicas, que por sua vez não permite a confirmação do seu desempenho. Pode-se verificar também que os evaporadores da marca Elgin contam com ventiladores de modelo diferente do qual está no evaporador instalado, que é do mesmo modelo dos ventiladores do condensador, tal fato não garante que o desempenho do mesmo seja adequado para os parâmetros de operação.

O proprietário do empreendimento informou que pelo fato do equipamento não se desligar e para uma economia de energia ele faz o desligamento do mesmo durante o período noturno do processo de resfriamento, tal atividade interfere no tempo de resfriamento fazendo com que o processo de resfriamento se estenda além das 24 horas pré-definidas, e também na durabilidade do alimento.

Com todos os dados de carga térmica da câmara e capacidade frigorifica do equipamento pode-se apresentar a tabela na página seguir.

Tabela 2: Dados de carga térmica e capacidade frigorifica.

Equipamento	Dt	Cap. Do Equipamento	Carga Requerida	Relação
Unidade				
Condensadora	6	1810 Kcal/h	1499 Kcal/h	17,2%
Evaporador	6	1165 Kcal/h	1499 Kcal/h	-28,6%

(Fonte: Autor)

Pode-se observar na tabela acima que a unidade condensadora apresenta uma relação percentual positiva, já o evaporador similar comparado apresenta uma relação negativa, ou seja, possui capacidade inferior a carga requerida.

Na tabela abaixo encontra-se os dados técnicos e operantes do sistema de refrigeração e da câmara frigorifica em si.

Tabela 3: Dados Compilados.

Item	Valor			
Carga Térmica da Câmara	1499 Kcal/h			
Modelo da Unidade Condensadora	T/SUM 2063			
Pressão Operacional de Evaporação	1,8 Kg/cm2			
Temperatura Operacional de Evaporação	-18°C			
Capacidade da Condensadora com Dt=6	1810 Kcal/h			
Modelo do Evaporador Similar	FXBN/E 012-1			
Capacidade do Evaporador com Dt=6	1165 Kcal/h			
Comprimento da Câmara Frigorifica	1,9 Metros			
Largura da Câmara Frigorífica	1,5 Metros			
Altura da Câmara Frigorifica	2,13 Metros			
Temperatura Interna/Final	0°C			
Tipo de Isolamento da Câmara	Poliestireno			
Espessura do Isolamento	100 Milímetros			
Fluido Refrigerante de Trabalho	R-22			

(Fonte: Autor)

5. CONCLUSÃO

É necessário a manutenção da vedação da porta da câmara frigorífica.

A unidade condensadora atende a demanda de refrigeração, porém requer manutenção e/ou alterações.

O evaporador não apresenta indícios da capacidade de suprir a demanda de troca térmica, requer substituição.

Tal modo operacional de desligamento dos equipamentos da câmara fria durante o processo de resfriamento deve ser abolido.

5.1. SUGESTÕES PARA TRABALHOS FUTUROS

- Retrofit do sistema para operação com gás refrigerante R134a.
- Guia de manutenção para a câmara frigorifica.
- Comparação entre carga térmica dada pelo software e calculada.
- Comparação de consumo energético entre o sistema instalado e sistema sugerido pelo software.
- Avaliação do desempenho da câmara frigorifica devido ao seu estado de conservação e modo operacional.
- Análise da capacidade de refrigeração do evaporador.

REFERÊNCIAS BIBLIOGRÁFICAS

ABNT, Associação Brasileira de Normas Técnicas. NBR 15220-2: **Desempenho Térmico de edificações, Parte 2:** Métodos de cálculo da transmitância térmica, da capacidade térmica, do atraso térmico e do fator solar de elementos e componentes de edificações. Rio de Janeiro, 2003.

_____: **Desempenho térmico de edificações, Parte 3:** Zoneamento bioclimático brasileiro e diretrizes construtivas para habitações unifamiliares de interesse social. Rio de Janeiro, 2003.

ASHRAE. *Guideline 0-2005*, "The Commissioning Process", Atlanta: ASHRAE Inc, 2005.

AXION CONSTRUÇÕES. Sustentabilidade e Novas Tendências da Construção. **Comissio namento LEED – entenda o que é isto?**, Axion Construções, 2013. Disponível em https://axionconstrucoes.wordpress.com/2013/01/17/comissionamento-leed-entenda-o-que-e-isto/ > acesso em: 03 jun, 2019.

BENDIKSEN, T.; YOUNG, G. Commissioning of Offshore Oil and Gas Projects: The Manager's Handbook, AuthorHouse Publishers, 2005.

BORGNAKKE, C.; SONNTAG, R. E.; **Fundamentos da Termodinâmica.** 8. ed. São Paulo: Blucher, 2014. 728 p.

CALIFORNIA, Commissioning Guide - Existing Buildings. California Commissioning Collaborative. California, 2006.

CHAGAS, J. A. C. **Projeto E Construção De Câmaras Frigoríficas**: Contracting Division. Joinville/SC: YORK Refrigeration, 2018. 14 p.

COSTA, Ê. C. Da. **Refrigeração**. 3. ed. São Paulo: Blucher, 1982. 331 p.

DA SILVA, M. N. Eficiência Energética Em Sistemas De Refrigeração Industrial E Comercial. Rio de Janeiro/RJ: Eletrobrás, 2005. 316 p.

DEPARTMENT OF THE ARMY. *TM 5-697 Commissioning of Mechanical Systems for C4ISR Facilities*. USA: Department of the Army, 2006.

DINÇER, I. Refrigeration Systems and Applications. WILEY, 2003.

DOSSAT, R. J. *Principles of Refrigeration*. Wiley International Edition. TOPPAN COMPANY LTD, 1961.

ELGIN. Grupo Elgin. Disponível em < https://www.elgin.com.br/institucional/index.php> Acesso em: 28 mai.2019.

HESSLER, J. & LEHNER, N. *Planning and Designing Research Animal Facilities*, *Academic Press*; 1^a ed., Nov/2008.

KHARAGPUR, E.E, et al., *Refrigeration & Air Conditioning*, India, 2008. http://pt.scribd.com/doc/29982457/Refrigeration-and-Air-Conditioning-by-Iit-Kgp. Data de consulta: 20 de Abril de 2019.

MONTENEGRO, B. O Comissionamento durante as fases de construção de um empreendimento complexo, em: EPC *News*, abril 2009.

MARTINELLI, L. C. J. Refrigeração. Panambi/RS: UNIJUÍ, 2003. 134 p.

NETO DA SILVA, R. M. **Análise Comparada de Evaporadores de Expansão Directa e Inundados**. 2013. 92 f. Trabalho Final de Mestrado (Mestre em Engenharia Mecânica)-ISEL, Lisboa/PT, 2013.

PRATES, A.; Inovações Tecnológicas no Comissionamento de Projetos de Óleo & Gás. Em Revista TN Petróleo, ano IX, num 50, 2006.1991.

TOWLER, G. SINNOTT, R. K. *Chemical Engineering Design, 2nd Edition:* Principles, Practice and Economics of Plant and Process Design. 2^a ed. Elsevier, 2012.

ANEXO A - PROPRIEDADES TERMODINÂMICAS R22

Freon™22 Refrigerant

Table 1 (continued) Freon™ 22 Saturation Properties — Temperature Table

Temp	Pressure		Volume		sity		Enthalpy		Ent	гору	Temp
°C	[kPa]	[m ³	/kg]	[kg/	/m³]		[kJ/kg]		[kJ/l	K-kg]	°C
		Liquid	Vapour	Liquid	Vapour	Liquid	Latent	Vapour	Liquid	Vapour	
		Vf	Vg	df	dg	H _f	H_{fg}	Hg	Sf	Sg	200
-46	78.9	0.0007	0.2684	1424.0	3.726	148.4	236.9	385.3	0.794	1.838	-46
-45	82.9	0.0007	0.2563	1421.0	3.901	149.4	236.4	385.8	0.799	1.835	-45
-44	87.1	0.0007	0.2450	1418.0	4.082	150.5	235.8	386.3	0.804	1.833	-44
-43	91.3	0.0007	0.2342	1416.0	4.270	151.6	235.1	386.7	0.809	1.830	-43
-42	95.8	0.0007	0.2240	1413.0	4.464	152.7	234.5	387.2	0.813	1.828	-42
-41	100.4	0.0007	0.2144	1410.0	4.665	153.8	233.9	387.7	0.818	1.825	-41
-40	105.2	0.0007	0.2052	1407.0	4.873	154.9	233.2	388.1	0.823	1.823	-40
-39	110.2	0.0007	0.1965 0.1883	1404.0	5.088	156.0	232.6	388.6 389.1	0.827 0.832	1.821	-39
-38	115.4	0.0007 0.0007		1401.0	5.311	157.1	232.0			1.819	-38 -37
-37 -36	120.7 126.3	0.0007	0.1805 0.1730	1398.0 1395.0	5.541 5.779	158.2 159.3	231.3 230.7	389.5 390.0	0.837 0.841	1.816 1.814	-36
	132.0	0.0007	0.1730	1393.0	6.025	160.4	230.7	390.0	0.846	1.812	-35
-35 -34	138.0	0.0007	0.1593	1389.0	6.279	161.5	229.4	390.4	0.851	1.810	-34
-33	144.1	0.0007	0.1593	1386.0	6.541	162.6	228.7	391.3	0.855	1.808	-33
-32	150.5	0.0007	0.1323	1383.0	6.811	163.7	228.1	391.8	0.860	1.806	-32
-31	157.1	0.0007	0.1410	1380.0	7.090	164.8	227.4	392.2	0.864	1.804	-31
-30	163.9	0.0007	0.1355	1377.0	7.379	165.9	226.8	392.7	0.869	1.802	-30
-29	170.9	0.0007	0.1303	1374.0	7.676	167.0	226.1	393.1	0.873	1.800	-29
-28	178.2	0.0007	0.1253	1371.0	7.982	168.1	225.5	393.6	0.878	1.798	-28
-27	185.7	0.0007	0.1205	1368.0	8.298	169.2	224.8	394.0	0.882	1.796	-27
-26	193.4	0.0007	0.1160	1365.0	8.623	170.3	224.2	394.5	0.887	1.794	-26
-25	201.4	0.0007	0.1116	1362.0	8.958	171.4	223.5	394.9	0.891	1.792	-25
-24	209.7	0.0007	0.1075	1359.0	9.304	172.6	222.7	395.3	0.896	1.790	-24
-23	218.2	0.0007	0.1035	1356.0	9.659	173.7	222.1	395.8	0.900	1.788	-23
-22	227.0	0.0007	0.0998	1353.0	10.030	174.8	221.4	396.2	0.905	1.786	-22
-21	236.0	0.0007	0.0961	1350.0	10.400	175.9	220.7	396.6	0.909	1.784	-21
-20	245.3	0.0007	0.0927	1347.0	10.790	177.0	220.1	397.1	0.914	1.783	-20
-19	254.9	0.0007	0.0894	1343.0	11.190	178.2	219.3	397.5	0.918	1.781	-19
-18	264.8	0.0008	0.0862	1340.0	11.600	179.3	218.6	397.9	0.922	1.779	-18
-17	275.0	0.0008	0.0832	1337.0	12.020	180.4	217.9	398.3	0.927	1.777	-17
-16	285.4	0.0008	0.0803	1334.0	12.450	181.6	217.1	398.7	0.931	1.776	-16
-15	296.2	0.0008	0.0775	1331.0	12.900	182.7	216.5	399.2	0.935	1.774	-15 -14
-14	307.3	0.0008	0.0749	1328.0	13.360	183.8	215.8	399.6	0.940	1.772	-14 -13
-13	318.7	0.0008	0.0723	1324.0	13.830	185.0	215.0 214.3	400.0 400.4	0.944 0.949	1.771 1.769	-13
-12	330.4	0.0008	0.0699	1321.0	14.310	186.1	214.5	400.4	0.949	1.769	-12
-11	342.4 354.8	0.0008 0.0008	0.0675 0.0653	1318.0 1315.0	14.810 15.320	187.3 188.4	213.5	400.8	0.953	1.766	-10
-10 -9	367.5	0.0008	0.0631	1311.0	15.850	189.6	212.0	401.6	0.962	1.764	-9
-8	380.5	0.0008	0.0610	1308.0	16.380	190.7	211.3	402.0	0.966	1.763	-8
-7	393.9	0.0008	0.0590	1305.0	16.940	191.9	210.5	402.4	0.970	1.761	-7
-7 -6	407.7	0.0008	0.0590	1302.0	17.500	193.0	209.8	402.8	0.974	1.760	-6
-5	421.8	0.0008	0.0571	1298.0	18.090	194.2	209.0	403.2	0.979	1.758	-5
-4	436.3	0.0008	0.0535	1295.0	18.680	195.3	208.2	403.5	0.983	1.757	-4
-3	451.1	0.0008	0.0518	1292.0	19.300	196.5	207.4	403.9	0.987	1.755	-3
-2	466.4	0.0008	0.0502	1288.0	19.920	197.7	206.6	404.3	0.992	1.754	-2
-1	482.0	0.0008	0.0486	1285.0	20.570	198.8	205.9	404.7	0.996	1.752	-1
o	498.0	0.0008	0.0471	1282.0	21.230	200.0	205.0	405.0	1.000	1.751	0
1	514.4	0.0008	0.0457	1278.0	21.910	201.2	204.2	405.4	1.004	1.749	1
2	531.2	0.0008	0.0442	1275.0	22.600	202.4	203.4	405.8	1.008	1.748	2
3	548.4	0.0008	0.0429	1271.0	23.310	203.5	202.6	406.1	1.013	1.746	3
4	566.1	0.0008	0.0416	1268.0	24.040	204.7	201.8	406.5	1.017	1.745	4
5	584.1	0.0008	0.0403	1264.0	24.790	205.9	200.9	406.8	1.021	1.744	5
6	602.6	0.0008	0.0391	1261.0	25.560	207.1	200.1	407.2	1.025	1.742	6 7
7	621.5	0.0008	0.0380	1257.0	26.340	208.3	199.2	407.5	1.030	1.741	7

ANEXO B - DADOS CLIMATICOS SEGUNDO ABNT NBR 16401:2008

ABNT NBR 16401-1:2008

Tabela A.6 (continuação)

SP		São Paul	0	Latitude	Longit.	Attitude	Pr.atm	Período	Extrem.	TBU	TBSmx	s	TBSmn	S
	(Congonha	as	23,625	46,65W	803m	92,04	82/01	anuais	28,2	34,3	0,9	5,8	2,5
Mês>Qt	Freq.	Res	friamento	e desumidificação		Baixa umidade		de	Mês>Fr	Freq.	Aquec.		Umidificaçã	io
Fev	anual	TBS	TBUc	TBU	TBSc	TPO	w	TBSc	Jul	anual	TBS	TPO	w	TBSc
	0,4%	32,0	20,3	23,2	27,8	22,1	18,5	25,3	1	99,6%	8,8	3,9	5,5	18,4
ΔTmd	1%	31,0	20,4	22,6	27,1	21,2	17,5	24,3	The State of the	99%	10,0	5,8	6,3	17,4
												_		
8,3	2%	30,0	20,4	22,1	26,7	21,0	17,2	24,0				,	T	
8,3 SP		30,0 São Paul		22,1 Latitude	26,7 Longit.	21,0 Altitude	17,2 Pr.atm	24,0 Periodo	Extrem.	ТВИ	TBSmx	s	TBSmn	s
			0							TBU 29,0		s 1,0		s 2,8
		São Paul Guarulho	o s	Latitude	Longit. 46,47W	Altitude 750m	Pr.atm	Período 88/01	Extrem.		TBSmx	1,0	TBSmn	2,8
SP		São Paul Guarulho	o s	Latitude 23,43S	Longit. 46,47W	Altitude 750m	Pr.atm 92,63	Período 88/01	Extrem.	29,0	TBSmx 34,8	1,0	TBSmn 3,4	2,8
SP Mês>Qt	Freq.	São Paul Guarulho Res	o s sfriamento	Latitude 23,43S e desumidi	Longit. 46,47W ficação	Altitude 750m	Pr.atm 92,63 aixa umida	Período 88/01 de	Extrem. anuais Mês>Fr	29,0 Freq.	TBSmx 34,8 Aquec.	1,0	TBSmn 3,4 Umidificaçã	2,8
SP Mês>Qt	Freq. anual	São Paul Guarulho Res TBS	o s sfriamento TBUc	Latitude 23,43S e desumidi TBU	Longit. 46,47W ficação TBSc	Altitude 750m Ba	Pr.atm 92,63 aixa umida w	Período 88/01 de TBSc	Extrem. anuais Mês>Fr	29,0 Freq. anual	TBSmx 34,8 Aquec. TBS	1,0 TPO	TBSmn 3,4 Umidificaçã	2,8 o TBSc

Tabela A.7 — Região Sul

PR	I	Curitiba		Latitude	Longit.	Altitude	Pr.atm	Periodo	Extrem.	TBU	TBSmx	s	TBSmn	s
		00111100	•	25,52S	49,17W	908m	90,88	82/01	anuais	27,4	32,9	1,0	-1,4	2.0
Mês>Qt	Freq.	Res	sfriamento	e desumidi			aixa umida		Mês>Fr	Freq.	Aquec.		Umidificaçã	
Jan	anual	TBS	TBUc	TBU	TBSc	TPO	w	TBSc	Jul	anuai	TBS	TPO	w	TBSc
	0.4%	30.9	20,2	23,2	26,8	22,2	18,9	24,3		99,6%	2,4	-1,2	3,8	6,7
ΔTmd	1%	29.8	20,2	22,6	26,2	21,7	18,3	23,9	50,540,00	99%	4,8	1,7	4,8	9,3
9.5	2%	28,7	20,2	22,0	25,6	21,1	17,6	23,2	erdik i dir.	100	. Aug 5		THE TAX 15	
					,									
PR	Fo	z de Igu	acu	Latitude	Longit.	Altitude	Pr.atm	Período	Extrem.	TBU	TBSmx	s	TBSmn	s
				25,52S	54,58W	243m	98,44	85/01	anuais	29,4	37,2	0,9	0,1	1,9
Mês>Qt	Freq.	Res	sfriamento	e desumidi			aixa umida		Mês>Fr	Freq.	Aquec.		Umidificaçã	
Jan	anual	TBS	TBUc	TBU	TBSc	TPO	w	TBSc	Jul	anual	TBS	TPO	w	TBSc
	0.4%	35,1	23,6	26,1	31,6	24,6	20.1	28,7		99.6%	3,4	1.1	4,2	6.3
ΔTmd	1%	34,1	23,7	25,6	31,1	24,0	19,5	28,2	1914/1-1-6	99%	5,8	3,1	4,9	8,0
11,1	2%	33,1	23,5	25,1	30,6	23,5	18,9	27,7				141		
				I 1 49 1.		Altitude	Pr.atm	Período	E	TBU	TDO		TDO	1
PR		Londrin	а	Latitude	Longit.				Extrem.		TBSmx	8	TBSmn	_ s
		_		23,33\$	51,13W	570m	94,66	84/01	anuais	30,2	35,7	1,5	3,9	2,0
Més>Qt	Freq.			e desumidi			aixa umida		Mês>Fr	Freq.	Aquec.		Umidificaçã	
Dez	anual	TBS	TBUc	TBU	TBSc	TPO	20,7	TBSc	Jul	anual	TBS	TPO	W	TBSc
ΔTmd	0,4%	33,9 32,8	21,7 21,8	25,3 24,7	28,9 28,5	24,4 23,9	20,7	26,6 26,2	and the	99,6% 99%	7,2 9,3	1,2 3,8	4,4 5,3	13,4 15,2
10,0	2%	31,9	21,8	24,7	28,0	23,3	19,3	25,6	Rainkeyty I	9976	3,3	1 3,0	3,3	15,2
							,		Low Har Williams			v. 4009/10/14/2010		
RS	P	orto Ale	gre	Latitude	Longit.	Altitude	Pr.atm	Período	Extrem.	TBU	TBSmx	S	TB\$mn	s
				30,00\$	51,18W	3m	101,29	82/01	anuais	N/D	37,9	1,4	1,6	2,4
Mês>Qt	Freq.			e desumidi			aixa umida		Mês>Fr	Freq.	Aquec.		Umidificaçã	
Jan	anual	TBS	TBUc	TBU	TBSc	TPO	w	TBSc	Jul	anual	TBS	TPO	w	TBSc
	0,4%	34,8	N/D	N/D	N/D	N/D	N/D	N/D		99,6%	4,0	N/D	N/D	N/D
ΔTmd	1%	33,2	N/D	N/D	N/D	N/D	N/D	N/D	1000	99%	5,8	N/D	N/D	N/D
9,7	2%_	31,8	N/D	N/D	N/D	N/D	N/D	N/D		<u> 1900 - 1900 - 1900</u>		<u> </u>		
sc	FI	orianópo	olis	Latitude	Longit.	Altitude	Pr.atm	Período	Extrem.	TBU	TBSmx	S	TBSmn	S
				27,67	48,55	5m	101,26	82/01	anuais	30,1	35,2	1,7	3,4	1,9
Mês>Qt	Freq.			e desumid			aixa umida		Mês>Fr	Freq.	Aquec.		Umidificaçã	
Fev	anual	TBS	TBUc	TBU	TBSc	TPO	w	TBSc	Jul	anual	TBS	TPO	w	TBSc
	0,4%	32,2	25,5	26,6	30,1	25,8	21,1	28,5	l	99,6%	7,5	3,0	4,7	11,3
ΔTmd 6,7	1%	31,0	25,2	26,0	29,3	25,0	20,2	27,7		99%	9,2	5,1	5,4	11,8
	2%	29,9	24,6	25,5	28.5	24,5	19,5	27,1						

ANEXO C - CATALOGO EVAPORADORES ELGIN

CARACTERÍSTICAS TÉCNICAS CARACTERÍSTICAS TÉCNICAS TECHNICAL FEATURES

						Cap	acidade /	Capacida	id / Capai	city - [Kca	ıl/h]					
Modelo Modelo				Tempera	tura de e	vaporaçã	io / Tempo	eratura de	evapora	ción / Eva	poration	Temperat	ure - [ºC]			
Model	-35		-30		-2	-25		-20		-15		10		5	0	0
	60 Hz	50 Hz	60 Hz	50 Hz	60 Hz	50 Hz	60 Hz	50 Hz	60 Hz	50 Hz	60 Hz	50 Hz	60 Hz	50 Hz	60 Hz	50 Hz
FXBN/E 005-1	364	339	370	344	385	358	404	376	424	394	449	418	465	432	502	467
FXBN/E 008-1	609	566	618	575	640	595	672	625	708	658	759	706	793	737	866	805
FXBN/E 012-1	871	810	883	821	917	853	966	898	1.024	952	1.109	1.031	1.179	1.096	1.298	1.207
FXBN/E 014-2	1.022	950	1.036	963	1.075	1.000	1.131	1.052	1.199	1.115	1.298	1.207	1.375	1.279	1.523	1.416
FXBN/E 024-2	1.744	1.622	1.790	1.665	1.875	1.744	1.989	1.850	2.134	1.985	2.299	2.138	2.418	2.249	2.583	2.402
FXBN/E 031-2	2.296	2.135	2.387	2.220	2.508	2.332	2.628	2,444	2.761	2.568	2.960	2.753	3.142	2.922	3.372	3.136
FXBN/E 039-3	2.784	2.589	2.892	2.690	3.039	2.826	3.214	2.989	3,400	3.162	3.643	3.388	3.871	3.600	4.149	3.859
FXBN/E 048-3	3.189	2.966	3.388	3.151	3,633	3.379	3.918	3,644	4.159	3.868	4.454	4.142	4.777	4.443	5.152	4.791
FXBN/E 052-4	3.434	3.194	3.637	3.382	3.891	3.619	4.174	3.882	4.459	4.147	4.813	4.476	5.156	4.795	5.549	5.161
FXBN/E 063-4	4.659	4.333	4.832	4.494	5.060	4.706	5.297	4.926	5.556	5.167	5.953	5.536	6.317	5.875	6.779	6.304
FXBN/E 081-5	5.719	5.319	5.969	5.551	6.314	5.872	6.743	6.271	7.045	6.552	7.556	7.027	8.062	7.498	8.673	8.066
FXBN/E 097-6	6.523	6.066	6.901	6.418	7.376	6.860	7.928	7.373	8.538	7.940	9.003	8.373	9.643	8.968	10.410	9.681
FXBN/E 112-7	8.149	7.579	8.457	7.865	8.912	8.288	9.460	8.798	9.824	9.136	10.582	9.841	11.269	10.480	12.111	11.263
FXBN/E 130-8	9.078	8.443	9.507	8.842	10.080	9.374	10.783	10.028	11.407	10.609	12.127	11.278	12.964	12.057	13.949	12.973

ANEXO D - CATALOGO CONDENSADORAS ELGIN

CAPACIDADE FRIGORÍFICA REFRIGERATING CAPACITY CAPACIDAD FRIGORÍFICA

Modelo Modelo

MBP

Tensão Voltage Voltaje [V] Ref. Com. Comm. Ref. Ref. Com. [HP]

Voltage Voltaje [V]

Aplicação: Média temperatura de evaporação (-15°C a 0°C) Application: Medium evaporating temperature (-15°C to 0°C) Aplicación: Media temperatura de evaporación (-15°C a 0°C)

Capacidade Frigorifica [Kcal/h] / Temperatura de Evaporação [°C]
Refrigerating Capacity [Kcal/h] / Evaporating Temperature [°C]
Capacidad Frigorifica [Kcal/h] / Temperatura de Evaporación [°C]
Desplaz

60 Hz

Corrente Consumo
Current Input
Corriente Consumo
[A] [W]

				-13 C	-10 C	-0,7 C	-50	0.0		iev-	-0,7 C
										F	R-134a
	UCM 0013 D	127	1/5	100	242	700	770	425	6.00	3,8	705
	UCM 0013 E	220	1/6	196	242	302	332	425	6,82	1,9	306
	UCM 0015 D	127	1/5	242	339	367	409	520	7,32	4,0	376
	UCM 0015 E	220	1/5	242	339	30/	409	520	7,52	2,0	3/0
	UCM 0020 D	127	1/3	335	407	472	503	636	8,43	4,5	386
ER	UCM 0020 E	220	1/3	333		4/2	503		0,43	2,4	300
POLIOL ESTER ISO-32	UCM 0030 D	127	1/2	426	572	648	717	891	11.65	6,3	490
ISO	UCM 0030 E	220	1/2	420	3/2	048	717	891	11,05	3,2	490
20	UCM 0035 D	127	1/2+	642	820	914	1.002	1.198	15,72	8,0	640
	UCM 0035 E	220	1/2+	042	820	914	1.002	1.196	13,72	4,0	040
	T/SUM 0040 E	220	7/8	662	855	1.001	1.039	1.276	17,52	4,5	720
	T/SUM 0051 D	127	1	012	1.110	1.301	1 406	1.602	20.66	9,2	220
	T/SUM 0051 E	220	1	912	1.119	1.501	1.406	1.692	20,66	4,6	880
	T/SUM 0061 E	220	1.1/4	976	1.208	1.332	1.427	1.821	23.2	4.8	930

R-22

	UCM 2010	127	115	070	200	700	77.	100	200	3,8	764
	UCM 2010	220	1/6	232	298	308	374	486	5,90	1,9	361
	UCM 2015	127	1/5	315	385	400	425	650	6.82	4,0	380
	UCM 2015	220	1/5	315	385	400	425	050	0,82	2,0	380
	UCM 2020	127	1/4	458	532	564	585	792	7,32	5,0	506
	UCM 2020	220	1/4	436	552	504	585	192	1,34	2,5	506
	UCM 2030	127	1/2	490	632	680	702	888	8.42	6,7	530
0	UCM 2030	220	1/2	490	032	680	702	000	0,44	3,4	550
ALQUILBENZENO ISO-32	T/SUM 2038	220	3/4	632	800	1.012	1.120	1.280	11,65	4,6	776
ILBEN SO-3	UCM 2041	127	7/8	633	805	1.015	1.145	1.290	15,76	7,5	847
LOUI	UCM 2041	220	7/6	033	803	1.013	1.145	1.290	13,76	4,0	047
∢	T/SUM 2040	127	7/8	635	808	1.020	1.180	1.305	15,76	7,5	840
	T/SUM 2040	220	716	033	808	1.020	1.160	1.303	13,76	4,0	040
	T/SUM 2051	127	1	918	1.125	1.360	1.500	1.725	17.52	8,0	870
	T/SUM 2051	220	1	916	1.123	1.300	1.500	1./25	17,52	4,2	670
	T/SUM 2053	127	1	930	1.300	1.420	1,722	2.001	17.52	8,0	880
	T/SUM 2053	220	1	930	1.300	1.420	1,/66	2.001	17,32	4,2	360
	T/SUM 2061	220	1 1/4	1095	1.285	1.575	1.710	2.010	20,66	4,8	1.150
	T/SUM 2063	220	1 1/4	1100	1.515	1.680	1.995	2200	20,66	4,8	1.160

ANEXO E – PESO DE CARCAÇAS BOVINAS SEGUNDO ASHRAE

Bovinos	1 carcaça (Kg)
Vaca	150
Boi (Centro/Zebu)	220
Boi (Sul)	200
Búfalo	240

Fonte: ASHRAE

ANEXO F – DT RECOMENDADO PELA ASHRAE

		U.R.	
Classe	Dt	Aproximada	Classes dos Produtos
			Armazenamento de vegetais, produtos agrícolas, flores, gelo
1	4 - 5°C	90%	sem embalagem e câmaras para resfriamento.
			Armazenamento de frigorificados em geral e refrigeração,
			alimentos e vegetais embalados, frutas e produtos similares e
			produtos que requerem menores níveis de umidade relativa
2	6 - 7°C	80 - 85%	que os produtos da classe 1.
			Cerveja, vinho, produtos farmacêuticos, batatas, cebolas,
			frutas de casca dura e produtos embalados que requerem U.R.
3	7 - 9°C	65 - 80%	moderada.
			sala de preparo e processo, corte, armazém de cerveja, doces e
			armazenagem de filmes. Aplicações necessitam de baixa
4	9 - 12°C	50 - 65%	umidade relativa e não são afetadas pela umidade.

TRABALHO DE CONCLUSÃO DE CURSO

Eu, Rogério Luiz Ludegero professor do Centro Universitário Assis Gurgacz e orientador do acadêmico Jeferson Berlanda no Trabalho de Conclusão de Curso, declaro que as correções solicitadas pela banca foram efetuadas corretamente.

Assinatura do Professor

Cascavel, 1 de Junho de 2019.