CENTRO UNIVERSITÁRIO ASSIS GURGACZ

VANESSA DA CRUZ

ELABORAÇÃO DE PAÇOCAS FUNCIONAIS A BASE DE AVEIA, SOJA, CHIA E ÓLEO DE COCO

CENTRO UNIVERSITÁRIO ASSIS GURGACZ

VANESSA DA CRUZ

ELABORAÇÃO DE PAÇOCAS FUNCIONAIS A BASE DE AVEIA, SOJA, CHIA E ÓLEO DE COCO

Trabalho de Conclusão de Curso apresentado como requisito para obtenção do título de Bacharel em Nutrição.

Professora Orientadora: Sabrine Zambiazi da Silva.

CASCAVEL - PR 2019

CENTRO UNIVERSITÁRIO ASSIS GURGACZ

VANESSA DA CRUZ

ELABORAÇÃO DE PAÇOCAS FUNCIONAIS A BASE DE AVEIA, SOJA, CHIA E ÓLEO DE COCO

Trabalho apresentado no Curso de Nutrição do Centro Universitário Assis Gurgacz, como requisito parcial para obtenção do título de Bacharel em Nutrição, sob a orientação da Professora Sabrine Zambiase da Silva.

BANCA EXAMINADORA

Profa. Ms. Sabrine Zambiase da Silva Mestra em Sistemas Agroindustriais Universidade Estadual do Oeste do Paraná (UNIOESTE)

Adriana Hernandes Martins Especialização em Gestão de Qualidade e Segurança de Alimentos – Unicamp.

Caroline Lima Zanatta Maciel

Engenheira de Alimentos – Universidade Estadual de Maringa (UEM), Nutricionista – Fundação Assis Gurgacz (FAG), Mestre em Ambiente e Desenvolvimento – Centro Universitário Univates.

ELABORAÇÃO DE PAÇOCAS FUNCIONAIS A BASE DE AVEIA, SOJA, CHIA E ÓLEO DE COCO

CRUZ, Vanessa da¹ SILVA, Sabrine Zambiazi da²

RESUMO: Muitos produtos têm sido desenvolvidos com o intuito de atender às exigências nutricionais em diferentes idades, sendo que a tendência do setor alimentício é investir no desenvolvimento de uma classe variada de produtos como alimentos funcionais, os quais apresentam efeitos benéficos à saúde. Por motivos dos fatores culturais e nutricionais de consumo de paçoca no Brasil, procurou-se avaliar formulações produtos (soja, aveia, óleo de coco e chia) ricos em nutrientes essenciais e de baixo custo. O presente trabalho teve por objetivo de conferir a qualidade nutricional através da análise físico-química e aceitabilidade de um produto tipo paçoca, proporcionando mais opções de doces e de fácil acesso para os consumidores como a paçoca de amendoim, adaptando aveia, chia, soja e óleo de coco como propriedades funcionais, podendo ser uma alternativa para a melhora da qualidade nutricional das paçocas tradicionais de forma que possam beneficiar o público que busca uma alimentação saudável. Dessa forma, para conferir a qualidade nutricional foram realizadas análises físico-químicas que seguiram as metodologias descritas em IAL (2008), realizadas em um laboratório situado na cidade de Cascavel-PR. Por meio destas análises destacam-se os seguintes resultados no relatório de ensaio 245 da paçoca de aveia + soja foi encontrada os seguintes resultados físico-químicos: lipídios 24,91%, fibra bruta 0,57%, proteína 12,51%, carboidratos 57,79%, umidade 2,79%, cinzas 1,43%, no relatório de ensaio 246 da paçoca de aveia + óleo de coco foram encontrados os seguintes resultados físico-químicos: lipídios 26,70%, fibra bruta 0,62%, proteína 12,36%, carboidratos 55,38%, umidade 3,24%, cinzas 1,50%, no relatório de ensaio 247 da paçoca de aveia + óleo de coco + soja + chia foram encontrados os seguintes resultados físicoquímicos: lipídios 24,70%, fibra bruta 0,69%, proteína 16,54%, carboidratos 53,18%, umidade 2,90%, cinzas 1,99%. Desta forma, podemos confirmar que o produto á base de aveia, óleo de coco, soja e chia tem major enriquecimento proteico quando comparado com a paçoca convencional de amendoim. Conclui-se que é possível adicionar outros ingredientes na paçoca tradicional de amendoim, aumentando ainda mais os compostos bioativos do produto inovador e conferindo características funcionais.

PALAVRAS-CHAVE: soja, aveia, chia.

¹ Acadêmica do Curso de Nutrição, do Centro Universitário Assis Gurgaz, Cascavel – PR. E-mail: vanessadacruz2009@hotmai.com

² Docente do curso de Nutrição no Centro Universitário Assis Gurgaz, Cascavel – PR. Mestra em Sistemas Agroindustriais Universidade do Oeste do Paraná (UNIOESTE).

1 INTRODUÇÃO

Na atualidade, a paçoca tradicional é composta por uma base de amendoim, açúcar e sal, embora o mercado tenha inovado bastante nas formulações, como: paçocas diets, paçocas com açúcar mascavo, com aveia, com chia, quinoa, amaranto, paçoca zero açúcar entre outros. Segundo Abicab (2018), trata-se de um doce tradicional de todas as regiões do país, muito preparada para temporadas de festas juninas, além de muito consumida diariamente.

Recentemente têm-se estudado sobre as propriedades e os benefícios da semente da chia para a saúde do organismo humano. Uma de suas várias propriedades, podemos destacar os ácidos graxos ômega 3 e 6, que tem como função reduzir níveis de triglicerídeos, LDL e consequentemente prevenindo ou tratando indivíduos com patologias como: diabetes mellitus, doenças cardiovasculares, obesidade, distúrbio metabólicos como hipercolesterolemia (COELHO; SALAS-MELLADO, 2014).

Segundo Pizarro, Maria e Maria (2013), a chia tem tido credibilidade na indústria alimentar particularmente quando se trata em fabricar alimentos saudáveis, para isso o uso da farinha comercial obtida da própria semente promete ser de grande valia, pois a mesma além de fornecer bons nutrientes, pode também facilitar e contribuir de forma positiva na aceitação dos consumidores com relação ao paladar e ao olfato.

Com nome científico *Avena Sativa L.*, a aveia foi considerada um "alimento funcional" em 1997 pela *Foodand Drug Administration* – FDA, por conter alto teor de fibras, ser um antioxidante e reduzir o risco de doenças cardiovasculares. Em virtude dessas informações, a procura e o consumo das várias formas de aveia (flocos, farinha, farelo) têm aumentado nos últimos anos (PIOVESANA; MARIA; MARIA, 2013).

As fibras contidas são do tipo solúvel – pectinas, beta-glicanas, gomas, mucilagens e hemicelulose, e insolúveis – lignina, celulose e pectina insolúvel. Além disso, a aveia é rica nutricionalmente, sendo fonte de vitaminas, sais minerais, aminoácidos e ácidos graxos. Tais qualidades que atuam no controle de doenças crônicas não transmissíveis, como dislipidemias, obesidade e sintomas intestinais principalmente constipação crônica (MAHAN; ESCOTT-STUMP, 2013).

Além do consumo da aveia com iogurtes, vitaminas e frutas, o mercado busca inserir este alimento em produtos tradicionais, como no caso de pães e biscoitos, devido a sua capacidade de absorção de umidade, melhorando a textura e prolongando a vida de prateleira (DUTKOSKI *et al.*, 2007). Os antioxidantes presentes solidificam lipídeos, resultando em maior qualidade no produto final (DESTRO *et al.*, 2013).

A soja (Glycline Max L. Merril), pertence à família Fabaceae de plantas como feijão, lentilha e ervilha. A palavra soja vem do japonês shoyu, a planta teve origem no continente Asiático na China, logo em seguida por seu alto valor nutricional expandiu para outras partes do Oriente Coréia e Japão, no Brasil chegou à Bahia e logo se espalhou, onde é cultivada até os dias atuais (PAIVA; ALVES; HELENO, 2006).

O grão de soja é muito utilizado pela indústria química, agroindustrial e de alimentos para a fabricação de diversos produtos e coprodutos como: biodiesel, cosméticos, tintas, fertilizantes, óleo refinado, bebidas à base de soja, molhos, produtos cárneos, biscoitos entre outros (HE; CHEN, 2013).

É o único vegetal com alto valor de proteína que contem todos os aminoácidos essenciais para o crescimento, suporte e manutenção do organismo, segundo a Organização Mundial de Saúde (OMS). Aliás, a soja pode melhorar os níveis sanguíneos de colesterol e também sendo uma ótima opção para pessoas com intolerância a lactose (CARRÃO-PANIZZI; SILVA, 2011). Estudos realizados nos mostram que a soja ajuda na prevenção de doenças cardiovasculares, câncer, sintomas de menopausa e osteoporose (MORAIS, 2001; BEHRENS; SILVA, 2004; AMARAL, 2006).

Já o óleo de coco (*Cocos nucifera L.*) é composto por ácidos graxos saturados de cadeia média, os principais são: ácido mirístico, ácido láurico, ácido cáprico, ácido caprílico, ácido caprólico, ácido palmítico, ácido esteárico e os insaturados ácidos oleicos e o ácido linoleico (NETO *et al.*, 2013).

O coco pode ser classificado como um alimento funcional, pois é rico em vários componentes que fazem bem a saúde, chamados de nutracêuticos ácidos, láurico, mirístico e palmíticos (FONTENELE, 2005).

Tem em sua composição a vitamina E, principal vitamina antioxidante e responsável pelo transporte dos lipídeos pelo sangue, principalmente dos ácidos

graxos poli-insaturados que degradam a radicais livres, reduzindo o risco de doenças cardiovasculares (NETO, 2003; DOLINSK, 2009).

Também o amendoim é originado da planta *Arachis hypogaea*, nativa do Brasil, mas também encontrada em vários países do mundo, principalmente aqueles com clima quente. Suas sementes são muito utilizadas na indústria alimentícia - amendoins torrados em grão e salgado, óleo vegetal, manteiga de amendoim, pasta de amendoim, cremes, doces e balas (CONAB, 2004).

Rico em vitaminas do complexo B e E, proteínas, fibras, sais minerais (ferro, zinco, magnésio, potássio, selênio, cálcio), excelente fonte de ômega 9 e ácidos graxos poli-insaturados (TACO, 2011). Segundo Dolinsky (2009), a vitamina E, o selênio contribui para a prevenção de câncer, artrite e aterosclerose, e o ácido graxo poli-insaturado tem efeito no controle de colesterol e consequentemente na redução da hipercolesterolemia.

Diante do exposto, o presente trabalho teve por objetivo de conferir a qualidade nutricional através da análise físico-química e aceitabilidade de um produto tipo paçoca, proporcionando mais opções de doces e de fácil acesso para os consumidores como a paçoca de amendoim, adaptando aveia, chia, soja e óleo de coco como propriedades funcionais, podendo ser uma alternativa para a melhora da qualidade nutricional das paçocas tradicionais de forma que possam beneficiar o público que busca uma alimentação saudável.

2 MATERIAIS E MÉTODOS

Esta pesquisa foi aprovada pelo Comitê de Ética e pesquisa – CEP e encontram—se de acordo as normas regulamentadoras de pesquisa em seres humanos, número do parecer: 3.167.786.

2.1 Análises físico-químicas

Para a realização das análises físico-químicas das paçocas foram separados 100 gramas de cada amostra e guardadas em potes plásticos. As amostras continham os seguintes ingredientes, conforme podemos observar na Tabela 1 abaixo:

Tabela 1: Ingredientes e quantidades em (%) utilizados nas formulações das paçocas.

*F1	(%)	**F2	(%)	***F3	(%)
Amendoim torrado sem casca	44	Amendoim torrado sem casca	55,10	Amendoim torrado sem casca	42,2
Soja em pó	22	Aveia	17,6	Aveia	13,5
Aveia	14	Açúcar demerara	13,2	Açúcar demerara	10,1
Açúcar demerara	10,5	Fécula de mandioca	11	Fécula de mandioca	8,4
Fécula de mandioca	8,8	Óleo de coco	2,2	Óleo de coco	1,6
Sal	0,5	Sal	0,6	Sal	0,5
				Soja em pó	21,1
				Chia	2,3

Fonte: Autora, (2019).

Para realização das análises (carboidratos, proteínas, lipídios, calorias totais e cinzas) foram realizadas as metodologias descritas em Métodos Físico-Químicos para Análise de Alimentos - 4ª Edição, Instituto Adolfo Lutz - IAL (2008), detalhadas a seguir, realizadas no laboratório da Fundação para o Desenvolvimento Científico e Tecnológico - Fundetec, situada na cidade de Cascavel-PR.

Determinação de umidade, usando método de secagem direta em estufa a 105°C (IAL, 2008) método 012/IV;

Determinação de nitrogênio total pelo método de Kjeldahl (AOAC^b, 1995), usando o fator de conversão de proteínas 5,75 segundo a RDC n° 360 (BRASIL^a, 2003) método 036/IV;

Determinação de extrato etéreo, utilizado o método de extração soxhlet (IAL, 2008) método 032/IV;

Determinação de cinzas ou matéria mineral, por incineração em mufla (IAL, 2008) método 018/IV;

Determinação de fibras bruta (IAL, 2008) método 044/IV;

Determinação de carboidratos por diferença, obtendo a fração Nifext segundo RDC nº 360 (BRASILª, 2003).

Para calorias totais foi utilizado os fatores de conversão de 4 Kcal/kg para proteínas, 4 Kcal/kg para carboidratos e para lipídeos 9 Kcal/kg (MERRIL; WATT, 1973).

3 RESULTADOS E DISCUSSÕES

^{*} Paçoca desenvolvida receita 1.

^{**} Paçoca desenvolvida receita 2.

^{***} Paçoca desenvolvida receita 3.

Na análise físico-química, foram determinadas a quantidade de carboidratos, proteínas, lipídios, calorias totais e cinzas, presentes em 100 gramas da amostra de cada formulação, na paçoca da formulação 1 de aveia e soja, formulação 2 da paçoca de aveia e óleo de coco e na formulação 3 da paçoca de aveia, óleo de coco, soja e chia conforme podemos observar na (Tabela 2).

Tabela 2- Composição físico-química (%) das paçocas 100 gramas da amostra

	Formulação 1 (g%)	Formulação 2 (g%)	Formulação 3 (g%)
Lipídios	24,91	26,70	24,70
Fibra bruta	0,57	0,62	0,69
Proteína	12,51	12,36	16,54
Carboidrato	57,79	55,58	53,18
Umidade	2,79	3,24	2,90
Cinzas	1,43	1,50	1,99
Calorias totais	505,39	541,26	501,18

Fonte: Fundação para o Desenvolvimento Científico e Tecnológico - Fundetec (2019).

De acordo com a Tabela 2, com relação aos lipídeos, podemos observar os seguintes dados médios: 25,43% de lipídios, 0,62% de fibras, 13,80% de proteína, 55,45% de carboidratos, 2,97% de umidade e 1,64% de cinzas da amostra.

Se compararmos os resultados com Wang, Cabral e Borges (1999), que encontraram em sua pesquisa uma porcentagem de 6,05% de umidade, 14,80% de proteína, 13,29% de lipídios, 3,65% de fibras, 61,05% de carboidratos e 1,16% de cinzas nas suas paçocas elaboradas com farinha de trigo, amendoim e resíduo de leite de soja.

Com relação às três amostras, obtivemos na umidade uma redução do seu teor em uma média de 2,97% e no teor lipídico conseguimos uma redução em média de 25,43% devido à quantidade de fibras presentes nas três amostras, tornando a paçoca tradicional de amendoim mais calórica.

Já no estudo de Santos *et al.* (2012), a análise físico-química na formulação da paçoca com amêndoa de baru e amendoim, encontrou valores similares de (13,53-16,72%) de proteína, (17,81–19,45%) de lipídios, e (43,16–44,47%) de carboidratos.

Se compararmos com as três amostras do nosso estudo, obtivemos um valor similar de proteína; porém, um aumento no valor de lipídios e carboidratos comparados com a paçoca de baru e amendoim.

Na avaliação físico-química da paçoca de resíduo do extrato de soja Ribeiro (2006) observou nos resultados do seu produto 10-15% de umidade, 16-31% de proteína e 18-25% de lipídios, sendo valores similares de proteína e lipídios, porém um alto teor de umidade comparando-se com as três formulações do nosso trabalho.

Branco (1988), no estudo do seu produto, tipo paçoca elaborada com amendoim, fubá e farinha de soja desengordurada, obteve um aumento no teor de proteínas, e uma diminuição nos lipídios, quando aumentou a concentração do extrato de soja. Podendo confirmar que a formulação da paçoca de aveia, óleo de coco, soja e chia pode ser mais proteica, que a paçoca tradicional de amendoim. Alguns autores estão desenvolvendo pesquisas dirigidas nessa área, das quais trocaram o amendoim por outros componentes (WANG; CABRAL; BORGES,1999; SANTOS *et al.*, 2012).

CONCLUSÃO

Com este estudo, pudemos confirmar que o produto a base de aveia, de óleo de coco, da soja e da chia tem maior enriquecimento proteico quando comparado à paçoca convencional de amendoim. Conclui-se que é possível adicionar outros ingredientes na paçoca tradicional de amendoim, aumentando ainda mais os compostos bioativos do produto inovador e conferindo características funcionais.

REFERÊNCIAS

ABICAB. **Associação Brasileira da Indústria de Chocolates, Amendoim e Balas**. Acesso em: 29/09/2018. Disponível em:http://www.abicab.org.br/.

BEHRENS, J. H.; SILVA, M. A. A. P. Atitude do consumidor em relação à soja e produtos derivados. **Ciência e Tecnologia de Alimentos**, v. 24, n. 3, p. 431-439, 2004.

BRANCO, N. S. D.C. Aceitabilidade e valor nutricional de uma paçoca elaborada com amendoim, fubá e farinha de soja desengordurada. 1988. 90f. Dissertação

(Mestrado em Ciências dos Alimentos)-Escola Superior de Agricultura de Lavras, MG.

CARRÃO-PANIZZI, M. C. Avaliação de cultivares de soja quanto aos teores de isoflavonóides. Pesquisa Agropecuária. **Brasileira**, Brasília, v. 31, n. 10, p. 691-698, 1996.

CARRÃO-PANIZZI, M. C.; MANDARINO, J.M.G. Soja: potencial de uso na dieta brasileira. **EMBRAPA SOJA**. Documento 113. Londrina: Embrapa Soja,1998.

COELHO, M.S. SALAS-MELLADO, M. M. Composição química, propriedades funcionais e aplicações tecnológicas da semente de chia (Salviahispanica L) em alimentos. **Brazilian Journal of Food Technology**. Campinas, v. 17, n. 4, p. 259-268. 2014.

DESTRO, D.; FARIA, A. P; DESTRO, T. M.; FARIA, R. T.; GONÇALVES, L. S. A.; LIMA, W. F. Food type soybean cooking time: a review. **Crop Breeding Applied Biotechnology**, Viçosa, v. 13, n. 3, 2013.

DOLINSK, M. Nutrição Funcional. São Paulo: Roca, 2009.

DUTCOSKY, S. D. **Análise Sensorial de Alimentos**. 3.ed., Curitiba: Champagnat, 2011.

FONTENELE, R.E.S. Cultura do coco no Brasil: caracterização do mercado atual e perspectivas atuais. In: CONGRESSO DA SOCIEDADE BRASILEIRA DE ECONOMIA, ADMINISTRAÇÃO E SOCIOLOGIA RURAL, 43., 2005, Ribeirão Preto. **Anais...,** 2005.

HE, F. J.; CHEN, J. Q.; Consumption of soybean, soy foods, soy isoflavones and breast cancer incidence: Differences between Chinese women and women in Western countries and possible mechanisms. Food Science and Human Wellness, v. 2, p.146–161, 2013.

IBGE. Instituto Brasileiro de Geografia e Estatística. 2011. Acesso em: 10/09/2018. Disponível em: http://www.asbran.org.br/.

Instituto Adolfo Lutz. Normas analíticas do Instituto Adolfo Lutz: métodos químicos e físicos para análise de alimentos. 2.ed. São Paulo: Instituto Adolfo Lutz; 2008.

MAHAN, K. L; ESCOTT-STUMP, S. **Krause:** Alimentos, Nutrição e Dietoterapia. 13. Ed. Rio de Janeiro: Ed. Elsevier, 2013.

MORAES, R. M. A.; JOSÉ, I. C.; RAMOS, F. G.; BARROS, E. G.; MOREIRA, M. A. Caracterização bioquímica de linhagens de soja com alto teor de proteína. Pesquisa **Agropecuária Brasileira**, v.41, p.725 – 729, 2006.

NETO, F. T. **Nutrição Clínica**. Rio de Janeiro: Guanabara, 2003.

- NETO, N. S. et al. Caracterização química e físico-química do óleo de coco extra virgem (*Cocos nucifera L.*). 5° CONGRESSO NORTE NORDESTE DE QUÍMICA E 3° ENCONTRO NORTE- NORDESTE DE ENSINO DE QUÍMICA. Natal, **Anais**... Universidade Federal do Rio Grande do Norte. Natal, Abr./ 2013.
- PAIVA, B. M.; ALVES, R. M.; HELENO, N. M. Propriedades funcionais da soja. **Informe Agropecuário**, Belo Horizonte, v. 27, n. 230, p. 15-18, 2006.
- PIOVESANA, A.; MARIA, M. B.; MARIA, K. V. Elaboração e aceitabilidade de biscoitos enriquecidos com aveia e farinha de bagaço de uva. **Brazilian Journal of Food Technology**, Campinas-SP, v. 16, n. 1, p. 68-72, 2013.
- PIZARRO, P. L.; et al. Evaluation ofwhole chia (Salvia hispanical.) flour and hydrogenated vegetable fat in poundcake. **Food Science and Technology**, 2013.
- RIBEIRO, V. A. **Aproveitamento do resíduo do extrato de soja na elaboração de um produto tipo paçoca.** 2006. 75 f. Dissertação (Mestrado Ciência dos Alimentos) Universidade Federal de Lavras, Lavras, 2006.
- SANTOS, G. G. et al. Aceitabilidade e qualidade físico-química de paçocas elaboradas com amêndoa de baru. **Pesquisa Agropecuária Tropical**, Goiânia, v. 42, n. 2, p. 159-165, 2012.
- TABELA BRASILEIRA DE COMPOSIÇÃO DE ALIMENTOS. 4.ed. Campinas: NEPAUNICAMP, 2011.
- WANG, S. H.; CABRAL, L. C.; BORGES, G. G. Utilização do resíduo do leite de soja na elaboração de paçoca. **Pesquisa Agropecuária Brasileira, Brasília**, v. 34, n. 7, p. 1305-1311,1999.