Avaliação de híbridos de milho para silagem

Hendersson Thayrone Neves Silveira^{1*}; Vivian Fernanda Gai¹; Fernando Sergio Zanatta²; Jacqueline Gabriela Cantú¹; Luiz Rodrigo Vieira de Araujo²; Geovana Borges de Lima¹; Fernanda Dall Agnol Passos¹; Enio Ortiz Correa Junior¹

¹Centro Universitário Assis Gurgacz, Colegiado de Agronomia, Cascavel, Paraná.

Resumo: A escolha do híbrido de milho para produção de silagem é um desafio para o produtor rural devido à existência de um alto número de híbridos no mercado, dificultando o agricultor saber qual utilizar e o ponto de corte ideal, deixando uma lacuna a respeito de qual época certa para colheita. Neste contexto o objetivo deste trabalho é avaliar o efeito do momento do corte sobre massa verde, massa seca e parâmetros bromatológicos de híbridos de milho. O experimento foi realizado no campo experimental do Centro Difusor de Tecnologia (CEDETEC) no programa de estágio pesquisa e extensão da Corteva Agrisciense no Centro Universitário Assis Gurgacz, em Cascavel-PR, nos meses de setembro de 2018 a fevereiro 2019. O experimento foi realizado em parcelas subdivididas, sendo que nas parcelas foram distribuídos os estádios fenológicos R 3; R 5 (início); R 5 + 7 dias; R 5 + 14 dias; R 5 + 21 dias e R 5 + 28 dias e nas subparcelas os híbridos (P4285VYHR, CD3612PW, 2B688PW, 30R50VYH, P3016VYHR, 2B433PW, 2A401PW, P30F53VYH), utilizando três repetições. Os parâmetros avaliados foram massa verde (kg), massa seca (%) e as análises bromatológicas foram efetuadas nos seis cortes no Departamento de Zootecnia da Escola Superior de Agricultura Luiz de Queiroz-ESALQ. Os estádios R 5, R 5+7 dias, apresentaram melhor qualidade bromatológica e um maior rendimento em todos os híbridos avaliados para produção de silagem.

Palavras-chave: Zea mays; Estádios Fenológicos; Parâmetros Bromatológicos

Evaluation of corn hybrids for silage

Abstract: There is a great difficulty in the production of silage due to the existence of a high number of hybrids on the market, making it difficult for the farmer to know which one to use and the ideal cutting point, leaving a gap to which season. is right for harvesting. In this context the objective of this work is to evaluate the effect of cutting time on green mass, dry mass and bromatological parameters of maize hybrids. The experiment was carried out in the Experimental Field of the Technological Diffuser Center (CEDETEC) in the research and extension internship program of the Corteva Agrisciense at the Assisi Gurgacz University Center, in Cascavel-PR, from September 2018 to February 2019. The experiment was carried out in subdivided plots, in which the phenological stages R 3 were distributed in the plots; R 5 (beginning); R 5 + 7 days; R 5 + 14 days; R 5 + 21 days and R 5 + 28 days and in the subplots the hybrids (P4285VYHR, CD3612PW, 2B688PW, 30R50VYH, P3016VYHR, 2B433PW, 2A401PW, P30F53VYH) using three replicates. The evaluated parameters were green mass (kg), dry mass (%) and the bromatological analyzes were carried out in the sixth cuts in the Animal Science Department of Luiz de Queiroz-ESALQ Higher School of Agriculture. The stages R 5, R 5 + 7 days presented better bromatological quality and higher yield in all evaluated hybrids for silage production.

Keywords: Zea mays; Phenological Stages; Bromatological Parameters

²Corteva Agriscience

^{1*}hendersson @outlook.com

Introdução

A produção de silagem apresenta alguns desafios entre eles à existência de um alto número de híbridos no mercado e o ponto de corte ideal, deixando uma lacuna a respeito de qual época certa para colheita, o Brasil tem grande destaque na criação de bovinos, sendo que em algumas regiões a silagem também é utilizada como estratégia alimentar para o período de estiagem, potencializando o uso da terra e rendimento econômico dos sistemas de bovinos leite e corte.

A produção de milho (*Zea mays*) representa aproximadamente 960 milhões de toneladas, sendo o cereal de maior utilização no mundo, destacando-se no mercado devido suas diversas formas de uso, que vai desde a alimentação animal até as indústrias de alta tecnologia, onde os Estados Unidos, China, Brasil e Argentina são os maiores produtores, representando 70% da produção mundial (PEIXOTO, 2014). Também segundo Cruz *et al.* (2008) o uso do grão na alimentação animal representa cerca de 70% no mundo e no Brasil podendo variar de 60 a 80%, dependendo da fonte que realizou a estimativa e o ano.

Pasa (2015) coloca que nos sistemas mais intensivos de produção de carne e leite a silagem de milho é o volumoso mais utilizado. Dados apresentados no 5º Fórum do milho, durante a Expodireto Cotrijal no ano de 2013 pelo MAPA (Ministério da Agricultura, Pecuária e Abastecimento) demonstram que a área de lavoura destinada à produção de silagem é cerca de 2,25 milhões de hectares.

A silagem possui efeito sobre o consumo e a densidade energética da dieta, o que aumenta a conversão alimentar em produção animal, dessa forma há uma grande importância na escolha do híbrido de milho que apresentem característica desejáveis na fabricação da silagem (JOBIM *et al.*, 2008).

O correto ponto de corte do milho para silagem é fundamental para se ter uma maior qualidade de produção tanto nutricional quanto em quantidade de massa verde para porém muitos produtores não dão à importância devida a este critério, além disso o custo de cortar no ponto ideal é o mesmo do que antes ou depois, a recomendação padrão era cortar com 1/2 linha do leite, já atualmente os melhores resultados têm sido obtidos com 2/3 da linha do leite, ou seja, 2 partes farináceo e 1 parte leitoso (CARVALHO, 2013).

Abendroth *et al.* (2011) afirmaram que o estádio fenológico R 3 ou grão leitoso ocorre em 18 a 22 dias após o embonecamento com cerca de 80% de umidade no grão, o fluido interno é branco leitoso a partir do amido acumulado (endosperma), e eles preenchem completamente o espaço entre as fileiras de grãos. Estes autores ainda descrevem os estádios R 4 e R 5 como sendo R 4 grãos pastoso ocorre em 24 a 28 dias após o embonecamento com cerca de 70 % de

umidade e o fluido interno engrossa até ficar em uma consistência pastosa, como uma massa, já no estádio R5 de formação de dente ocorre 35 a 42 dias após o embonecamento e responde por quase metade do tempo do desenvolvimento reprodutivo.

Na confecção de silagem utilizar híbridos que contêm características de uma boa produtividade, menores teores de FDN e alta participação dos grãos na matéria seca, fazem com que o animal possa ingerir uma maior quantidade de alimento com maior subsídio energético, resultando em maior produtividade (REINEHR *et al.*, 2012).

É importante saber a quantidade de matéria seca que contém a silagem, pois é com base nela que se faz os cálculos da dieta, já que o consumo dos animais é em kg de MS animal dia. Considerando a existência de variações no ponto de corte, indica entre 32 a 35 % de matéria seca (MS) o que terá que ocorrer no ponto dos grãos farináceo-duro (BACKES; SANCHES; GONÇALVES, 2001).

O objetivo deste trabalho é avaliar o efeito do momento do corte sobre massa verde e massa seca e parâmetros bromatológicos de híbridos de milho.

Material e Métodos

O experimento foi realizado no campo experimental do Centro Difusor de Tecnologia (CEDETEC) no programa de estágio pesquisa e extensão da Corteva Agrisciense no Centro Universitário Assis Gurgacz, em Cascavel, no Paraná, com as seguintes coordenadas geográficas 24°93'94" S, 53°51'97" O, nos meses de setembro de 2018 a fevereiro de 2019.

O experimento foi realizado em parcelas subdivididas, sendo que nas parcelas foram distribuídos os estádios fenológicos (R 3, R 5, R 5+7 dias, R 5+14 dias, R 5+21 dias, R 5+28 dias) e nas subparcelas os híbridos (P4285VYHR, CD3612PW, 2B688PW, 30R50VYH, P3016VYHR, 2B433PW, 2A401PW, P30F53VYH), utilizando três repetições. Cada unidade experimental foi constituída por seis metros e composta por seis linhas.

A semeadura foi realizada em setembro de 2018 com matraca de pesquisa com duas sementes, com espaçamento de 34 cm, simulando 65000 plantas por hectare, o adubo utilizado foi 250 kg ha⁻¹ de superfosfato simples e 200 kg ha⁻¹ de ureia.

Após a germinação foi realizado o desbaste em cada unidade experimental. As aplicações foram realizadas com o pulverizador costal sendo três de fungicida e uma de inseticida.

O primeiro corte de massa verde para envio laboratório foi em R 3, segundo em R 5 (inicio), terceiro em R 5 +7 dias, quarto em R 5 + 14 dias, quinto em R 5 + 21 dias, sexto em R 5 + 28 dias.

Para cada época de corte do híbrido foram separadas amostras para envio para o laboratório, sendo que antes foi feito avaliação de massa verde. Os dados foram coletados eliminando as bordas, onde três plantas de cada repetição dos híbridos foram cortadas em sequência na linha com 30 cm do solo. A pesagem das plantas foi realizada logo após o corte, para se evitar a perda de umidade dos tecidos, com o auxílio de uma balança de gancho.

Após processada a silagem com o triturador, foi homogeneizada com ajuda de uma caixa de plástico, acondicionada em papel filme de (PVC) e compactada, retirando todo ar da amostra. Cada amostra teve em média 550 g, as quais foram medidas com o auxílio de uma balança digital de precisão e identificadas por número, local e data de coleta. Para o envio no laboratório foi acompanhado uma ficha de identificação das amostras e demais dados, colocadas em caixa de isopor com gelo e enviada por Sedex para o Departamento de Zootecnia da Escola Superior de Agricultura Luiz de Queiroz- ESALQ para posterior avaliações de massa seca e parâmetros bromatológicos seguindo a metodologia de Silva e Queiroz (2006).

Os parâmetros avaliados foram Massa Seca (MS); Fibra Insolúvel em Detergente Neutro (FDN); Fibra Insolúvel em Detergente Ácido (FDA); Nutrientes Digestíveis Totais (NDT); Proteína Bruta (PB) e toneladas de leite por toneladas de MS (t leite t MS⁻¹)

Os dados foram submetidos à análise de variância (ANOVA) e as médias comparadas pelo teste de Tukey com 5% de significância por meio do software de análise estatística ASSISTAT (SILVA e AZEVEDO,2016).

Resultados e Discussão

A Tabela 1 trás as informações do F calculado para as épocas experimentais dos híbridos utilizados e a interação entre épocas e híbridos.

Tabela 1 – F calculado dos índices bromatológicos de MV (massa verde), MS (massa seca), FDN (Fibra Insolúvel em Detergente Neutro), FDA (Fibra Insolúvel em Detergente Ácido), NDT (Nutrientes Digestíveis Totais), PB (proteína Bruta) e Toneladas de leite por tonelada de MS consumida.

	F calculado											
FV	GL	MV	MS	FDN	FDA	NDT	PB	Ton leite/Ton MS				
Estádios	5	6,0864**	497,3691**	87,2117**	46,0936**	167,1459**	32,9740**	144,1873**				
Híbridos	7		6,8991**	9,4270**	8,1771**	3,0018**	16,6848**	5,3177**				
Estádios x híbridos	35		3,5377**	3,1999**	2,7266**	2,2876**	3,3302**	1,9258**				

^{**} significativo ao nível de 1% de probabilidade (p < 01). * significativo ao nível de 5% de probabilidade (01 =).

É possível observar na Tabela 1 que houve significância em todos os parâmetros bromatológicos avaliados, apresentando interação entre as 6 épocas avaliadas e os 8 híbridos. Mendes *et al.* (2015) avaliando 4 híbridos em duas épocas de semeadura (outubro e novembro) também encontraram interação entre os parâmetros avaliados tendo aumento no número de grãos em relação ao número de folhas de acordo com a época de semeadura.

A Tabela 2 exibe as médias dos valores bromatológicos entre os estádios fenológicos.

Tabela 2- Valores Médios de MV (kg/3 plantas), MS (%), FDN (%), FDA (%), NDT (%), PB (%) e Toneladas de leite por tonelada de MS dos híbridos de milho submetidos a seis Estádios Fenológicos R 3, R 5 (Inicio), R 5+ 7 dias, R 5+14 dias, R 5+21 dias, R 5+28 dias.

Estádios	MV	MS	FDN	FDA	NDT	PB	Ton Leite/Ton MS
R3	2,64 a	24,95 f	50,68 a	28,18 a	63,5 c	10,3 a	1,42 c
R5	2,65 a	30,93 e	43,54 b	24,97 b	70,09 a	9,15 bc	1,64 a
R5+7dias	2,50ab	34,51 d	41,8 b	24,7 b	70,7 a	9,26 b	1,65 a
R5+14dias	2,58 a	39,46 c	37,55 c	21,8 c	70,63 a	8,9 bc	1,62 a
R5+21 dias	2,55 a	42,05 b	41,55 b	25 b	67,3 b	8,87 bc	1,49 b
R5+28dias	2,3 b	45,32 a	38,5 c	22,4 c	67,7 b	8,8 c	1,50 b
DMS	0,24789	1,60890	2,38413	1,59394	1,01884	0,46584	0,03842

^{*}Medias seguidas de mesma letra maiúscula nas colunas e minúscula nas linhas não diferem entre si pelo Teste de Tukey a 5% de probabilidade.

Analisando os valores médios de massa verde na Tabela 2, a menor média de peso a cada 3 plantas foi para o estádio fenológico R 5+28 dias com 2,3 kg, os outros estádios foram superiores e não diferiram estatisticamente apresentando uma média de 2,58 kg/3 plantas. No estudo de Oliveira *et al.* (2013), foi observado a redução na produção de massa verde com significativo aumento na produção de massa seca de acordo aumentou os estádios fenológicos esses dados conferem com o presente experimento.

Observa-se na Tabela 2, que nos estádios fenológicos, R 3, R 5(Inicio), R 5+7 dias R 5 + 21 dias e R 5+28 dias os teores de MS foram se elevando gradualmente de 24,95% para 45,32 %. Beleze *et al.* (2003), avaliando cinco tipos de híbridos diferentes, obteve aumento nos teores de matéria seca ao decorrer do pós-plantio do milho influenciando de maneira significativa nos resultados, onde os milhos precoces apresentaram 25,85 a 39,47% de MS aos 125 e 151 dias após a semeadura.

Os teores de FDN apresentaram uma tendência a diminuir de acordo com o aumento da idade da planta (estádios fenológicos) de 50,68% a 38,5%, e o estádio R 3 diferiu estatisticamente dos demais apresentando o maior valor de FDN. Segundo Detmann *et al.* (2003), a ocorrência de

mecanismos físicos de regulação do consumo, como o enchimento ruminal, é determinado com aumento dos níveis de volumosos na dieta. Lavezzo *et al.* (1997), avaliando cultivares de milho ensilados com os grãos nos estádios leitoso, farináceo, ponto pamonha e semiduro, observaram redução nos teores de FDN nas silagens (de 61,5 para 56,4%) com o avanço do estádio de maturação, dados estes que acompanham os achados deste experimento.

Na Tabela 2 observa-se que houve diminuição dos valores médios de FDA, estes valores reduziram à medida que avançou os estádios fenológicos de 28,18 a 22,4%, estes resultados contrariam os de Vilela *et al.* (2008) que obtiveram aumento de acordo com o avanço do estádio de maturação, foram avaliados quatro cultivares de milho com medias variando de 25,9 a 29,00%.

Na Tabela 2 o menor valor de NDT foi no estádio fenológico R 3 com 63,5% e o maior para o estádio R 5+7 dias com 70,7%. (FLARESSO; GROSS; ALMEIDA, 2000) postulam que uma silagem para ser considerada de boa qualidade, deve apresentar de 64% a 70% de NDT, também (Silva, 2001) relata que o NDT é uma medida de digestibilidade total sendo que valores iguais ao redor de 70% para silagem de milho são bem interessantes.

Para a PB na Tabela 2 houve um decréscimo do estádio R 3 com 10,3% para o R 5+28 dias com 8,8%. Santos (2014) testando a qualidade de três híbridos de milho em diferentes épocas encontrou uma redução entre os híbridos no teor de PB da forragem, onde observou que de 70 aos 110 dias de idade reduziu de 7,95 para 5,85%, resultado semelhante ao deste experimento.

A Tabela 3 trás os parâmetros bromatológicos médios avaliados dos híbridos de milho.

Tabela 3 – Avaliação dos parâmetros bromatológicos MV (Kg/3plantas), MS (%), FDN (%), FDA (%), NDT (%), PB (%) e Toneladas de leite por tonelada de MS dos híbridos de milho P30F53VYH, P3016VYHR, P4285VYHR, 2A401PW, 30R50VYH, 2B433PW, CD3612PW 2B688PW

	CD3012F V	v, zbudor vv	•				
Híbridos	MV	MS	FDN	FDA	NDT	PB	TON LEITE/TON MS
P30F53VYH	2,65 a	34,84 b	40,95 cd	23,74 cd	69,38 a	8,97 de	1,62 a
P3016VYHR	2,56 a	36,22 ab	42,23 bcd	24,6 abcd	67,72 b	8,77 e	1,57 ab
P4285VYHR	2,52 a	35,05 b	44,34 a	25,95 a	67,94 ab	9,9 a	1,52 b
2A401PW	2,45 a	36,41 a	40,74 d	23,45 d	67,83 b	8,9 de	1,55 b
30R50VYH	2,55 a	36,67 a	42,08 bcd	24,24 bcd	68,94 ab	9,51 ab	1,56 b
2B433PW	2,46 a	37 a	40,78 d	23,39 d	67.89 ab	9,05 cde	1,54 b
CD3612PW	2,59 a	36,44 a	43,98 ab	25,55 ab	68,11 ab	9,39 bc	1,53 b
2B688PW	2,51 a	37 a	42,9 1abc	24,99 abc	68,55 ab	9,33 bcd	1,54 b
DMS	0,27039	1,40155	2,01987	1,47110	1,53050	0,4054	0,05410

^{*}Medias seguidas de mesma letra maiúscula nas colunas e minúscula nas linhas não diferem entre si pelo Teste de Tukey a 5% de probabilidade.

Como pode ser observado na Tabela 3 para massa verde não houve diferença produtiva entre os híbridos, já na massa seca os híbridos P30F53VYH, P4285VYHR apresentaram menor rendimento da MS quando comparado aos demais híbridos que tiveram resultados iguais e superiores estatisticamente. Neumann *et al.* (2017) avaliando seis híbridos de milho para silagem na região Centro Sul do Paraná achou diferença para três deles em termos de produção de MV e MS sendo que apenas os três híbridos com rendimento superior foram recomendados pelos autores para utilização, estes também apresentaram melhores valores nutricionais.

Os valores de FDN e FDA do híbrido P4285VYHR apresentaram os maiores valores 44,34 e 25,95 respectivamente. Gomes *et al.* (2004) relatou que o FDN é uma característica importante na avaliação da qualidade da silagem, a qual determina a quantidade de fibra, correspondente às frações de lignina, celulose e hemicelulose presentes na silagem.

Santos *et al.* (2010) relata que quanto menores os teores de FDN e FDA melhor será a qualidade da silagem, e maior será o consumo de MS, sendo que esses parâmetros são índices da quantidade de fibra da forragem, estando a FDN relacionada à quantidade de fibra que há no volumoso, enquanto a FDA à quantidade de fibra menos digestível.

De acordo com a Tabela 3 para as avaliações das médias de NDT entre os híbridos, os que apresentaram menores valores foram P3016VYHR, 2A401PW (respectivamente 67,72 % e 67,83%) diferenciando dos demais híbridos que exibiram resultados semelhantes e superiores estatisticamente sendo destaque para o híbrido P30F53VYH que apresentou NDT de 69,38 %

NDT. Silva *et al.* (2018), avaliando 24 híbridos de milho no Estado de Minas Gerais, encontraram valores adequados para todos os híbridos acima de 67 %, porém não houve diferença significativa entre eles.

Na avaliação de PB o hibrido que teve o maior valor foi o P4285VYHR com 9,9 % e o menor valor o P3016VYHR com 8,77%. Assis *et al.* (2014) avaliando nove híbridos de milho teve variação entre eles de 8,14% a 9,10%, no presente trabalho também ocorreu essa variação.

No parâmetro de tonelada leite/ tonelada massa seca os híbridos 30F53VYH e o P3016VYHR obteve uma maior produção, já os outros híbridos avaliados não apresentaram diferença estatística entre eles.

A avaliação de Massa Seca em diferentes estádios fenológicos e híbridos de milho é indicado na Tabela 4.

Tabela 4 - Quantidade de Massa Seca (%) nos seis estádios fenológicos R 3, R 5(Inicio), R 5 +7 dias, R 5+14 dias, R 5+21 dias, R 5+28 dias para os oito híbridos de milho avaliados P30F53VYH, P3016VYHR, P4285VYHR, 2A401PW, 30R50VYH, 2B433PW, CD3612PW, 2B688PW.

Estádios	P30F53VYH	P3016VYHR	P4285VYHR	2A401PW	30R50VYH	2B433PW	CD3612P W	2B688PW
R 3	22,97 eBC	25,00 dABC	22,20 dC	25,07 eABC	26,10 dAB	25,53 eABC	26,17 dAB	26,50 dA
R 5	30,57 dAB	31,40 cAB	30,63 cAB	31,37 dAB	28,70 cdB	32,26 dA	31,96 cAB	30,53 cAB
R 5+7dias	34,17 cAB	35,40 bA	33,83 cAB	36,37 cA	31,97 сВ	36,10 cA	35,03 cAB	33,23 cAB
R 5+14dias	39,03 bA	38,53 bA	38,20 bA	39,97 bA	41,00 bA	39,53 bA	39,47 bA	39,93 bA
R 5+21dias	39,27 bC	43,23 aAB	40,70 bBC	41,97 abBC	42,73 bAB	43,00 aAB	39,97 bBC	45,47 aA
R 5+28dias	43,03 aB	43,77 aB	44,46 aB	43,73 aB	49,47 aA	45,70 aB	46,07 aAB	46,33 aAB
DMS linhas	3,4331		DMS coluna	3,3158				
CV % a	estádios	4,58		CV % b	híbridos	3,74		

^{*}Medias seguidas de mesma letra maiúscula nas colunas e minúscula nas linhas não diferem entre si pelo Teste de Tukey a 5% de probabilidade.

De acordo com a Tabela 4 observa-se que todos os híbridos mostraram o mesmo comportamento, tendo aumento gradativo dos teores de MS conforme o avanço da idade fenológica da planta onde destacou-se o híbrido 30R50VYH mostrando maior rendimento da MS em R 5 + 28 dias. Oliveira *et al.* (2013) avaliando hibrido de milho em diferentes estádios de maturação observaram aumento na massa seca conforme aumentava os estádios fenológicos, apresentando dados iguais a este experimento.

Tabela 5 expõe a avaliação da Fibra Insolúvel em Detergente Neutro em diferentes estádios fenológicos e híbridos de milho.

Tabela 5 – Fibra Insolúvel em Detergente Neutro (%) nos seis estádios fenológicos R 3, R 5(Inicio), R 5 +7 dias, R 5+14 dias, R 5+21 dias, R 5+28 dias para os oito híbridos de milho avaliados P30F53VYH, P3016VYHR, P4285VYHR, 2A401PW, 30R50VYH, 2B433PW, CD3612PW, 2B688PW.

Estádios	P30F53VYH	P3016VYHR	P4285VYHR	2A401PW	30R50VYH	2B433PW	CD3612PW	2B688PW
R 3	54,10 aA	50,43 aABC	52,47 aAB	47,17 aC	51,43 aABC	48,63 aBC	50,06 aABC	51,13 aABC
R 5	39,67 bC	41,90 bcBC	47,00 bA	42,73 abABC	44,23 bABC	41,83 bBC	45,20 bAB	45,73 bAB
R 5+7dias	39,17 bA	44,10 bA	41,99 cA	39,53 bcA	41,13 bcA	42,63 bA	42,80 bcA	42,47 bcA
R 5+14 dias	34,93 bC	37,00 dABC	41,20 cAB	34,87 cC	36,27 dBC	35,77 cC	38,97 cABC	41,33 bcdA
R 5+21 dias	39,57 bB	39,13 cdB	42,03 cB	41,73 bB	42,03 bcB	41,10 bB	47,60 abA	39,23 cdB
R 5+28 dias	38,30 bAB	40,83 bcdA	41,37 cA	38,40 bcAB	37,37 cdAB	34,73 cB	39,23 cAB	37,60 dAB
DMS linhas	4,9476		DMS coluna	4,8038				
CV % a	estádios	5,82		CV % b	híbridos	4,62		

^{*}Medias seguidas de mesma letra maiúscula nas colunas e minúscula nas linhas não diferem entre si pelo Teste de Tukey a 5% de probabilidade.

De acordo com a Tabela 5 os valores de FDN para o estádio R 3 foram superiores para todos os híbridos, ocorrendo uma queda nos demais estádios. Salazar *et al.* (2011), avaliando 15 híbridos de milho também tiveram valores superiores com 90 dias de 70,6% e havendo uma queda quando colhidos com 150 dias para 63,0%.

A Tabela 6 estabelece a avaliação da Fibra Insolúvel em Detergente Ácido em diferentes estádios fenológicos e híbridos de milho.

Tabela 6 – Fibra Insolúvel em Detergente Acido (%) nos seis estádios fenológicos R 3, R 5(Inicio), R 5 +7 dias, R 5+14 dias, R 5+21 dias, R 5+28 dias para os oito híbridos de milho avaliados P30F53VYH, P3016VYHR, P4285VYHR, 2A401PW, 30R50VYH, 2B433PW, CD3612PW, 2B688PW.

Estádios	P30F53VYH	P3016VYHR	P4285VYHR	2A401PW	30R50VYH	2B433PW	CD3612PW	2B688PW
R 3	30,87 aA	27,53 aABC	29,47 aAB	25,83 aC	28,57 aABC	26,83 aBC	27,70 abABC	28,70aABC
R 5	22,20 bcB	24,77 abcAB	27,57 abA	24,23 aAB	25,23 abAB	24,00 abAB	25,23 bcAB	26,50 abA
R 5+7dias	23,30 bcA	25,33 abA	25,20 bcA	22,60 abA	25,10 bA	24,30 aA	25,70 bcA	25,37 abA
R 5+14 dias	19,90 cC	21,50 cABC	24,03 cAB	20,43 bBc	20,63 cBC	20,70 bcBC	22,43 cABC	24,40 bcA
R 5+21 dias	23,67 bB	24,50 abcB	24,87 bcB	24,80 aB	24,83 bB	24,23 aB	29,37 aA	23,73 bcB
R 5+28 dias	22,50 bcAB	23,70 bcAB	24,57 bcA	22,83 abAB	21,10 cAB	20,27 cB	22,97 cAB	21,23 cAB
DMS linhas	3,6034			DMS coluna	3,4460			
CV % a	estádios	6,71		CV % b	híbridos	5,80		

^{*}Medias seguidas de mesma letra maiúscula nas colunas e minúscula nas linhas não diferem entre si pelo Teste de Tukey a 5% de probabilidade.

Na Tabela 6 o valor de FDA foi superior para todos os híbridos do estádio R 3, apresentando um comportamento decrescente na maioria dos híbridos até o estádio R 5+28 dias. Também é possível observar que nos estádios R 3 e R 5+14 dias não houve diferença entre os híbridos. Pôssas *et al.* (2015), avaliando três híbridos comerciais de milho, dois apresentaram efeitos semelhantes ao deste trabalho e um deles teve valor superior no último corte ao contrário desta pesquisa.

A Tabela 7 apresenta a avaliação dos nutrientes digestíveis totais em diferentes estádios fenológicos e híbridos de milho.

Tabela 7 – Nutrientes Digestíveis Totais (%) nos seis estádios fenológicos R 3, R 5(Inicio), R 5 +7 dias, R 5+14 dias, R 5+21 dias, R 5+28 dias para os oito híbridos de milho avaliados P30F53VYH, P3016VYHR, P4285VYHR, 2A401PW, 30R50VYH, 2B433PW, CD3612PW, 2B688PW.

Estádios	P30F53VYH	P3016VYHR	P4285VYH	2A401PW	30R50VYH	2B433PW	CD3612PW	2B688PW
			R					
R 3	62,33 dA	62,00 dA	62,67 cA	63,67 cA	64,33 dA	64,00 cA	65,00 bA	64,00 cA
R 5	72,67 aA	71,33 aAB	68,67 bB	70,67 aAB	68,33 dA	70,67 aAB	68,33 abB	70,00 abAB
R 5+7dias	72,00 abA	67,67 bcB	72,33 aA	70,33 abAB	72,67 aA	67,67 abB	70,67 aAB	71,67 aA
R 5+14 dias	72,33 abA	70,67 abA	69,33 abA	70,00 abA	71,67 abA	70,67 aA	70,67 aA	69,67 abA
R 5+21 dias	69,00 bcA	67,67 bcA	67,67 bA	65,33 cA	67,00 cdA	66,67 bcA	67,00 bA	68,00 bA
R 5+28 dias	68,00 cA	67,00 cA	67,00 bA	67,00 bcA	69,67 abcA	67,67 abA	67,00 bA	68,00 bA
DMS linha	3,7489		DMS coluna	3,4025				
CV % a	estádios	1,54	CV % b	híbridos	2,16			

^{*}Medias seguidas de mesma letra maiúscula nas colunas e minúscula nas linhas não diferem entre si pelo Teste de Tukey a 5% de probabilidade.

De acordo com a Tabela 7 o estádio fenológico R 5+14 dias foi semelhante para todos os híbridos e para os estádios R 3, R 5, R 5+7 dias, R 5+ 21 dias, R 5+28 dias ocorreu variações entre os híbridos. Mello *et al.* (2010) avaliando seis híbridos de milho encontrou variação entre os híbridos e entre os estádios fenológicos avaliados, variando de 71,38 a 58,51%, no presente trabalho também pode ser verificada esse tipo de variação.

A Tabela 8, exibe a avaliação da proteína bruta em diferentes estádios fenológicos e híbridos de milho.

Tabela 8 – Proteína Bruta (%) nos seis estádios fenológicos R 3, R 5(Inicio), R 5 +7 dias, R 5+14 dias, R 5+21 dias, R 5+28 dias para os oito híbridos de milho avaliados P30F53VYH, P3016VYHR, P4285VYHR, 2A401PW, 30R50VYH, 2B433PW, CD3612PW, 2B688PW.

Estádios	P30F53VYH	P3016VYHR	P4285VYHR	2A401PW	30R50VYH	2B433PW	CD3612PW	2B688PW
R 3	11,33 aA	9,40 aC	11,10 aAB	9,50 aC	10,87 aAB	9,60 aC	10,30 aBC	10,27 aBC
R 5	8,87 bA	8,73 abA	9,56 bcA	9,20 abA	9,17 bA	9,03 abA	9,27 bcA	9,40 abA
R 5+7dias	8,40 bC	9,10 aBC	10,33 abA	8,77 abBC	9,63 bAB	8,80 abBC	9,67 abAB	9,37 abABC
R 5+14 dias	8,47 bA	8,77 abA	9,20 cA	9,00 abA	9,20 bA	9,13 abA	8,53 cA	8,83 bA
R 5+21 dias	8,67 bAB	7,97 bB	9,20 cA	8,87 abAB	9,27 bA	9,00 abA	8,87 bcAB	9,10 bA
R 5+28 dias	8,10 bB	8,10 bB	9,67 bcA	8,30 bB	8,93 bAB	8,47 bB	9,70 abA	9,00 bAB
DMS linha	0,9931		DMS coluna	0,9593				
CV % a	estádios	5,22	CV % b	híbridos	4,25			

^{*}Medias seguidas de mesma letra maiúscula nas colunas e minúscula nas linhas não diferem entre si pelo Teste de Tukey a 5% de probabilidade.

Na Tabela 8 o estádio fenológico R 3 apresentou maiores valores de PB, também é possível observar que nos estádios R 3, R 5, R 5+28 dias os valores não apresentaram variação significativa entre os híbridos. Zeoula *et al.* (2003) avaliando cinco híbridos de milho observou que com o avanço do estádio de maturação, houve redução nos teores de proteína bruta (PB) ocorrendo o mesmo no presente experimento.

A avaliação de toneladas de leite/toneladas de massa seca (t leite t MS⁻¹) em diferentes estádios fenológicos e híbridos de milho é colocado na Tabela 9.

Tabela 9 – Toneladas de leite por tonelada de massa seca nos seis estádios fenológicos R 3, R 5(Inicio), R 5 +7 dias, R 5+14 dias, R 5+21 dias, R 5+28 dias para os oito híbridos de milho avaliados P30F53VYH, P3016VYHR, P4285VYHR, 2A401PW, 30R50VYH, 2B433PW, CD3612PW, 2B688PW.

Estádios	P30F53VYH	P3016VYHR	P4285VYHR	2A401PW	30R50VYH	2B433PW	CD3612PW	2B688PW
R 3	1,40 dA	1,42 cA	1,38 cA	1,45 bA	1,40 dA	1,46 bA	1,45 bA	1,39 cA
R 5	1,77 aA	1,69 aAB	1,58 abB	1,68 aAB	1,60 abcB	1,65 aAB	1,57 abB	1,63 aB
R 5+7dias	1,70 aA	1,63 abAB	1,67 aAB	1,64 aAB	1,69 aA	1,55 abB	1,62 aAB	1,67 aAB
R 5+14 dias	1,69 abA	1,65 aAB	1,55 bB	1,63 aAB	1,63 abAB	1,63 aAB	1,62 aAB	1,56 abAB
R 5+21 dias	1,57 bcA	1,51 bcAB	1,47 bcAB	1,41 bB	1,48 cdAB	1,44 bAB	1,46 bAB	1,51 bcAB
R 5+28 dias	1,54 cA	1,50 cA	1,46 bcA	1,47 bA	1,54 bcA	1,54 abA	1,47 bA	1,51 bcA
DMS linhas	0,1325		DMS coluna	0,1208				
CV % a	estádios	2,55	CV % b	híbridos	3,36			

^{*}Medias seguidas de mesma letra maiúscula nas colunas e minúscula nas linhas não diferem entre si pelo Teste de Tukey a 5% de probabilidade.

Os valores da Tabela 9 de tonelada de leite por tonelada de massa seca no estádio R 5, R 5+7 dias não apresentaram variação estatística, já os estádios R 3, R 5+14 dias, R 5+21 dias, R 5+28 dias ocorreu diferença entre alguns híbridos. Silva *et al.* (2018) avaliando 24 híbridos de milho no Estado de Minas Gerais não encontrou diferença entre os híbridos avaliados para kg de leite por tonelada de massa seca.

Conclusão

Os resultados apresentaram variação entre os estádios fenológicos e os híbridos avaliados, porém os estádios R 5, R 5+7 dias, apresentaram melhor qualidade bromatológica e um maior rendimento em todos os híbridos avaliados para produção de silagem.

Referências

- ABENDROTH, L. J.; ELMORE, R. W.; BOYER, J. M.; MARLAY, S.K 2011. **Corn Growth and Development**. PMR 1009. Iowa State University Extension, Ames, 2011.
- ASSIS, F. B.; BASSO, F. C.; LARA, E. C.; RAPOSO, E.; BERTIPAGLIA, L. M. A.; FERNANDES, L. O.; RABELO, C. H. S.; REIS, A. R.; (2014). Caracterização agronômica e bromatológica de híbridos de milho para ensilagem. Semina: Ciências Agrárias, 35(6).
- BACKES, A. A.; SANCHEZ, L. M. B.; GONÇALVES, M. B. F. Desempenho de novilhos Santa Gertrudis confinados submetidos a dietas com diferentes fontes proteicas e silagem de milho, com ou sem inoculante. **Revista Brasileira de Zootecnia**, v. 30, n.6, p.2121-2125, 2001
- BELEZE, J. R. F.; ZEOULA, L. M.; CECATO, U.; DIAN, P. H. M.; MARTINS, E. N.; FALCAO, A. D. S. (2003). Avaliação de cinco híbridos de milho (*Zea mays* L.) em diferentes estádios de maturação. 2. Concentrações dos componentes estruturais e correlações. **Revista Brasileira de Zootecnia**, *32*(3), 538-545.
- CRUZ, J. C.; KONZEN, A. E.; FILHO, I. A. P.; MARRIEL.I.E.; CRUZ, I.; DUARTE, J. D. O.; OLIVEIRA, M. F.; ALVARENGA, R. C. **Importância da produção do milho orgânico para a agricultura familiar.** 2008. Disponível em:https://ainfo.cnptia.embrapa.br/digital/bitstream/item/50217/1/Importancia-producao.pdf/> Acesso em: março 2019.
- CARVALHO, I. Q. Ponto de corte do milho para silagem. **Fundação abc.** 2013. Pesquisa e Desenvolvimento agropecuário.
- DETMANN, E.; QUEIROZ, A. D.; CECON, P. R.; ZERVOUDAKIS, J. T., PAULINO, M. F., VALADARES, S. D. C.; CABRAL, L. S.; LANA, R. D. P. (2003). Consumo de fibra em detergente neutro por bovinos em confinamento. **Revista Brasileira de Zootecnia**, *32*(6), 1763-1777.
- FLARESSO, J. A.; GROSS, C. D.; ALMEIDA, E. D. Cultivares de milho (Zea mays L.) e sorgo (Sorghum bicolor (L.) Moench.) para ensilagem no Alto Vale do Itajaí, Santa Catarina. **Revista Brasileira de Zootecnia**, *29*(6), 1608-1615. (2000).

- GOMES, M. D. S.; PINHO, R. G. V.; RAMALHO, M. A. P.; FERREIRA, D. V.; BRITO, A. H. **Variabilidade genética em linhagens de milho nas características relacionadas com a produtividade de silagem**. Área de Informação da Sede-Artigo em periódico indexado (ALICE). (2004).
- JOBIM, C. C.; SANTOS, G. T.; UHLIG, L.; BRANCO, A. F.; DAMASCENO, J. C.; CECATO, U. **A qualidade da silagem como determinante da produção e da qualidade do leite. In Bovinocultura de leite: inovações tecnológicas e sustentabilidade**. (eds), Maringá/PR: Eduem, p.211-217, 2008.
- LAVEZZO, O. E. N. M.; LAVEZZO, W.; SIQUEIRA, E. R. Estádio de desenvolvimento do milho. 2. Efeito sobre o consumo e a digestibilidade da silagem em ovinos. **Revista Brasileira de Zootecnia**, v.26, n.4, p.675-682, 1997.
- MELLO, R.; NÖRNBERG, J. L.; DA ROCHA, M. G.; DE DAVID, D. B. Características produtivas e qualitativas de híbridos de milho para produção de silagem. **Revista Brasileira de Milho e Sorgo**, *4*(01). 2010.
- MENDES, M. C.; GABRIEL, A.; FARIA, M. V.; ROSSI, E. S.; JUNIOR, O. P. Época de semeadura de híbridos de milho forrageiro colhidos em diferentes estádios de maturação. **Revista Agro@ mbiente** *On-line*, *9*(2), 136-142. 2015.
- NEUMANN, M.; LEÃO, G. F. M.; COELHO, M. G.; FIGUEIRA, D. N.; SPADA, C. A.; PERUSSOLO, L. F. Aspectos produtivos, nutricionais e bioeconômicos de híbridos de milho para produção de silagem. **Archivos de zootecnia**, *66*(253), 51-57. 2017.
- OLIVEIRA, M. R.; NEUMANN, M.; JOBIM, C. C.; UENO, R. K.; MARAFON, F.; NERI, J. Composição morfológica e nutricional de plantas e silagens de milho em diferentes estádios de maturação. **Revista Brasileira de Milho e Sorgo**, *12*(2), 183-191. 2013.
- PASA, C. PASA, M. C. **Zea mays L. e a produção de massa seca**. Biodiversidade V.14, N3, 2015 pág. 36
- PEIXOTO, C. D. M. O milho no Brasil sua importância e evolução. **Dupont Pioneer**. 2014.Disponivel em:Acesso em: Março 2019.
- PÔSSAS, F. P.; GONÇALVES, L. C.; PEREIRA, L. G. R.; MACHADO, F. S.; JAYME, D. G.; RODRIGUES, J. A. S.; RODRIGUEZ, N. M.; TOMICH, T. R. (2015). Cinética de fermentação ruminal das silagens de três híbridos de milho comerciais em diferentes estádios de maturação. Embrapa Gado de Leite-Artigo em periódico indexado (*ALICE*).
- REINEHR, L. L.; NEUMANN, M.; KLOSOVSKI, M.; BUENO, A. V. I.; POCZYNEK, M.; GUELLER, J. M. **Avaliação Nutricional da Silagem de Diferentes Híbridos de Milho**. In: CONGRESSO NACIONAL DE MILHO E SORGO, 29. 2012. Águas de Lindóia.
- SANTOS, C. G. Produção de silagem de milho híbrido com diferentes idades de corte. **Revista Científica de Produção Animal**, *16*(1), 32-45.2014.
- SANTOS, R. D.; PEREIRA, L. G. R.; NEVES, A. L. A.; ARAUJO, G. G. L.; VOLTOLINI, T. V.; BRANDÃO, L. G. N.; DÓREA, J. R. R. (2010). Características de fermentação da silagem de seis variedades de milho indicadas para a região Semiárida brasileira. Embrapa Semiárido-Artigo em periódico indexado (*ALICE*).

- SALAZAR, D. R.; STABILE, S.S.; GUIMARÃES, P.S.D.; PATERNIANI, M. E. A. G. Z.; SANTOS, D. M. V.; PRADA, L. F. (2011). **Valor nutritivo do colmo de híbridos de milho colhidos em três estádios de maturidade.** Pesquisa Agropecuária Brasileira, *45*(7), 758-766.
- SILVA, J. M. **Silagem de forrageiras tropicais**, 2001. Disponivel em:http://old.cnpgc.embrapa.br/publicacoes/divulga/GCD51.html/>. Acesso em: 06 junho. 2019.
- SILVA, M. J.; BALBINO, L. C.; CARDOSO, D. A. B.; MIRANDA, L. M.; PIMENTEL, L. D. Características bromatológicas em híbridos de milho para produção de silagem no estado de Minas Gerais. **Revista de Agricultura Neotropical**, Cassilândia-MS, v. 5, n. 2, p. 76-82, abr./jun. 2018. ISSN 2358-6303.
- SILVA, F. A. S.; AZEVEDO, C. A. V. The Assistat Software Version 7.7 and its use in the analysis of experimental data. **African Journal of Agricultural Research**, v. 11, n.39, p. 3733-3740,2016.
- SILVA, D. J.; QUEIROZ, A. C. de. **Análise de alimentos**: métodos químicos e biológicos 3. ed. Viçosa, MG: UFV, 2006. 235 p.
- VILELA, H. H.; REZENDE, A. D.; VIEIRA, P. D. F., ANDRADE, G. A.; EVANGELISTA, A. R.; ALMEIDA, G. D. S. Valor nutritivo de silagens de milho colhido em diversos estádios de maturação. **Revista Brasileira de Zootecnia**, *37*(7), 1192-1199.2008.
- ZEOULA, L. M.; BELEZE, J. R. F.; CECATO, U.; JOBIM, C. C.; GERON, L. J. V., MAEDA, E. M.; FALCAO, A. D. S. Avaliação de cinco híbridos de milho (Zea mays, L.) em diferentes estádios de maturação. 3. Composição químico-bromatológica. *Revista Brasileira de Zootecnia*, 32(3), 556-566. (2003)