CENTRO UNIVERSITÁRIO ASSIS GURGACZ

ALISSON SALVI GUARIENTE

ANÁLISE DA QUEIMA E UMIDADE PRESENTE NO CAVACO A FIM DE VERIFICAR A VIABILIDADE DA CONSTRUÇÃO DE UMA COBERTURA PARA O CAVACO

CENTRO UNIVERSITÁRIO ASSIS GURGACZ

ALISSON SALVI GUARIENTE

ANALISE DA QUEIMA E UMIDADE PRESENTE NO CAVACO A FIM DE VERIFICAR A VIABILIDADE DA CONSTRUÇÃO DE UMA COBERTURA PARA O CAVACO

Trabalho apresentado na disciplina de Trabalho de Conclusão de Curso II, do curso de Engenharia Mecânica, do Centro Universitário Assis Gurgacz, como requisito parcial para obtenção do título de Bacharel em Engenharia Mecânica.

Professor Orientador: Ms. Carlos Alberto Breda

CASCAVEL - PR

CENTRO UNIVERSITÁRIO ASSIS GURGACZ ALISSON SALVI GUARIENTE

ANÁLISE DA QUEIMA E UMIDADE PRESENTE NO CAVACO A FIM DE VERIFICAR A VIABILIDADE DA CONSTRUÇÃO DE UMA COBERTURA PARA O CAVACO

Trabalho apresentado no Curso de Engenharia Mecânica do Centro Universitário FAG, como requisito parcial para obtenção do título de Bacharel em Engenharia Mecânica, sob orientação do Professor Ms. Carlos Alberto Breda

BANCA EXAMINADORA

Orientador Prof^a. Ms. Carlos Alberto Breda Centro Universitário Assis Gurgacz Engenheiro Mecânico

Professor Geovane Duarte Pinheiro Centro Universitário Assis Gurgacz Engenheiro de Controle e Automação

Professor Msc. Eliseu Avelino Zanella Junior Centro Universitário Assis Gurgacz Engenheiro Mecânico

Cascavel, 27 de novembro de 2019.

DEDICATÓRIA

Dedico este trabalho especialmente a meus pais que sempre me apoiaram em toda minha jornada acadêmica, e ao meu orientador, mestre Breda pelo total apoio a esta pesquisa.

AGRADECIMENTOS

Agradeço primeiramente a Deus por ter abençoado toda minha trajetória. Aos meus pais que nunca mediram esforços para possibilitar meus estudos e busca por conhecimento. A meu filho e minha namorada pela compreensão durante todo esse período de ausência.

Agradeço meu orientador, Ms. Carlos Alberto Breda por toda sua dedicação e empenho em compartilhar conhecimento com todos seus alunos, e pelo seu total apoio na elaboração deste trabalho.

Obrigado!

RESUMO

Neste estudo, buscou-se entender a influência da umidade presente no combustível utilizado em uma caldeira de uma fábrica de rações no oeste do Paraná, a fim de viabilizar a construção de uma cobertura para o mesmo. No referido trabalho, o combustível em questão é o cavaco de eucalipto, biomassa predominante na região e que possui ótimo poder calorífico. Para obtenção dos dados foi utilizado um equipamento de medição de umidade, específico para biomassa granulada, e por meio de coleta de amostras a campo obteve-se a média da umidade presente no cavaco da empresa, calculando-se então o consumo específico que esta umidade acima do ideal no cavaco traz. Foi levantado o custo para construção da cobertura, demonstrando por fim o tempo de retorno do investimento inicial. Pode-se entender o quão maléfico a umidade é para a biomassa na utilização em geradores de vapor, representando isso em perda de poder calorífico útil do cavaco, maior consumo específico e consequentemente maior custo para empresa. Foi encontrado o custo mensal que a empresa gasta devido a umidade estar acima do ideal e por meio de uma análise financeira com o método de payback descontado, pode-se calcular o tempo de retorno do investimento. O estudo se mostrou válido, pois com o aumento do consumo específico, o valor mensal gasto pela empresa devido a umidade fora do ideal se torna considerável. O investimento na cobertura para biomassa protegendo a mesma de interferências climáticas, principalmente de chuva e sereno se mostra positivo com um tempo de retorno calculado abaixo de um ano, viabilizando o projeto para a empresa.

Palavras-chave: Biomassa, eucalipto, retorno de investimento.

ABSTRACT

In this study was sought understand the humidity influence present on the fuel used in a boiler of a feed factory in western Paraná, in order to make possible to build a cover for it. In this project, the fuel it's eucalyptus chip, predominant biomass in the region and has excellent calorific value. For obtain the datas was used a moisture measuring equipment specific for granulated biomass, and by collecting samples in the field, the average moisture present in the company's chip was obtained, and was calculated the specific consumption of this moisture above the ideal that the chip brings. It was raised the cost for the roof construction, finally demonstrating the return on initial investment. It is possible understand how harmful is the biomass factor used in steam generators, which means loss of useful power of the chip, higher specific consumption and consequently higher cost for the company. It was found the monthly cost that the company spends due the humidity was higher then ideal, and by a financial analysis with the financial payback method, one can calculate the return time of the investment. The study proves to be valid, because with the increase in specific consumption, the monthly amount spent by the company due to the non-ideal humidity becomes considerable. The investment in coverage for biomass, protecting it from climatic interference, mainly from rain and serene, is positive with a calculated payback time of less than one year, making the project viable for the company.

Keywords: Biomass, eucalyptus, return on investment.

LISTA DE FIGURAS

FIGURA 1: Componentes de um gerador de vapor	20
FIGURA 2: Caldeira flamotubular de 3 passes para combustíveis líquidos	22
FIGURA 3: Caldeira aquatubular	23
FIGURA 4: Caldeira mista	
FIGURA 5: Reação de combustão	30
FIGURA 6: Medidor de umidade para biomassa e granulados	
FIGURA 7: Pátio onde a biomassa fica sujeita às intempéries climáticas	
FIGURA 8: Coleta de amostras utilizando o medidor de umidade para biomassa	

LISTA DE TABELAS

TABELA 1: Composição dos combustíveis	25
TABELA 2: Composição média da lenha seca	26
TABELA 3: Relação de umidade e poder calorífico inferior (PCI)	27
TABELA 4: Dimensões da cobertura para o cavaco	36
TABELA 5: Características da caldeira mista utilizada na fábrica de rações	42

LISTA DE GRÁFICOS

LISTA DE QUADROS

QUADRO 1: Consumo percentual de combustíveis no setor industrial	28
QUADRO 2: Origem e dados técnicos do eucalipto e outros tipos de biomassa	30
QUADRO 3: Coleta de amostras de cavaco de eucalipto e sua respectiva umidade	39
QUADRO 4: Custo excedente gerado devido a umidade na biomassa	
QUADRO 5: Retorno do investimento utilizando <i>Payback</i> descontado	44

LISTA DE EQUAÇÕES

EQUAÇÃO 1:Teor de umidade a base umida	28
EQUAÇÃO 2: Teor de umidade a base seca	
EQUAÇÃO 3: Rendimento do gerador de vapor	
EQUAÇÃO 4: Consumo específico da caldeira	
EQUAÇÃO 5: Poder calorífico útil	
EQUAÇÃO 6: Consumo específico com PCU	
EQUAÇÃO 7: Consumo específico acima de 32% de umidade	
EQUAÇÃO 8: Custo excedente mensal com umidade acima de 32%	
EQUAÇÃO 9: Payback descontado	
EQUAÇÃO 10: Valor presente	

LISTA DE ABREVIATURAS E SIGLAS

ABNT - Associação Brasileira de Normas Técnicas

C – Carbono

CO - Monóxido de Carbono

CO2 - Dióxido de Carbono.

CH4 – Gás Metano

dias - Dias trabalhados no mês

horas - Horas trabalhados no dia

H2 - Hidrogênio

H2SO4 – Ácido Sulfúrico

H2S - Sulfeto de hidrogênio

H2O – Água

hl – Entalpia da água de entrada (KJ/kg)

hv – Entalpia do vapor produzido (KJ/kg)

i - Taxa de juros mensal

n – Tempo em meses

η – Eficiência da Caldeira

N2 – Nitrogênio

N2O – Óxido Nitroso

NO – Nobélio

NO₂ - Dióxido de nitrogênio

NR – Norma regulamentadora

 \dot{m}_c - Vazão mássica de combustível (Kg/s)

 $\dot{m}c_{fixo}$ - Consumo específico a umidade de 32% (Kg/h)

 $\dot{m}c_{variável}$ - Consumo específico de acordo com a umidade encontrada (Kg/h)

 $\dot{\boldsymbol{m}}_{\boldsymbol{v}}$ - Vazão mássica de vapor (Kg/s)

 m_{H_20} - Massa de água contida na biomassa

 $m_{bio\ seca}$ - Massa de biomassa seca

0₂ - Oxigênio

0₃ - Ozônio

ρ - Densidade (Kg/m³)

PCI – Poder calorífico inferior (Kcal/kg)

PCS - Poder calorífico superior (Kcal/kg)

PCU – Poder calorífico útil (Kcal/kg)

R\$ - Valor da tonelada de cavaco de eucalipto

S - Enxofre

SO2 – Dióxido de Enxofre

TWh - Terawatt-Hora

u − Teor de umidade (%)

VP - Valor presente, valor no tempo "0"

 \emph{VF} - Valor futuro a ser descontado a taxa de juros

ω – Umidade do Cavaco de Madeira

Z – Porcentagem de Cinzas

°C – Graus Célsius

% – Porcentagem

SUMÁRIO

1- INTRODUÇÃO	16
1.1- OBJETIVOS	17
1.1.1 Objetivo Geral	17
1.1.2 Objetivos Específicos	17
1.2- JUSTIFICATIVA	17
1.3- CARACTERIZAÇÃO DO PROBLEMA	18
1.4- DELIMITAÇÃO DA PESQUISA	18
2 - REFERENCIAL TEÓRICO	19
2.1- CALDEIRA OU GERADOR DE VAPOR	19
2.1.1- Principais componentes	19
2.1.2 Descrição do funcionamento	20
2.1.2.1 Circuito dos fluidos gasosos	
2.1.2.2 Circuito da água	21
2.1.2.3 Formação de vapor	21
2.1.3 Classificação de caldeiras	21
2.1.3.1 Caldeiras flamotubulares	
2.1.3.2 Caldeira aquatubular	23
2.1.3.3 Caldeira mista	
2.2 Combustíveis	25
2.3 BIOMASSA	26
2.3.1 Propriedades físicas da biomassa	27
2.3.2 Biomassa no Brasil	
2.3.3 Eucalipto	29
2.4 Combustão	
3 METODOLOGIA	32
4 RESULTADOS E DISCUSSÕES	38
4.1 Coleta de dados	38
4.2 CÁLCULOS EFETUADOS	39
4.2 Estimativas financeiras	
5 CONCLUSÃO	45
6 SUGESTÃO DE TRABALHOS FUTUROS	46
REFERÊNCIAS BIBLIOGRÁFICAS	47
ANEXO A - TABELA PODER CALORÍFICO INFERIOR	48
ANEXO B - PROPRIEDADES TERMODINÂMICAS DA ÁGUA	49

1- INTRODUÇÃO

No presente trabalho buscou-se entender a influência da umidade presente no combustível utilizado em caldeiras industriais, verificando o quanto a mesma interfere na eficiência da caldeira.

O combustível estudado é o cavaco de madeira eucalipto, utilizado em uma caldeira de uma fábrica de rações, na qual este combustível está armazenado em um pátio sem cobertura, susceptível a intempéries climáticos. Buscou-se então comprovar nesta pesquisa, a partir de dados coletados a campo, a viabilidade de uma cobertura, melhorando assim a produtividade no gerador de vapor.

O sucesso deste estudo trará benefícios ambientais na diminuição da utilização de madeira, assim como queima de menor quantidade de combustível, o que garante menor emissão de gases na atmosfera. Auxiliará também a compreensão do processo de geração de vapor e servirá de inspiração para trabalhos futuros nesta mesma área de pesquisa.

Este trabalho inicia-se com a apresentação dos objetivos e justificativa de sua execução, seguido de uma introdução para melhor entendimento do meio em que está inserido este tema, expondo conceitos de caldeira e seus componentes, bem como os tipos mais utilizados no mercado e também sobre o combustível em estudo. Finaliza-se com a pesquisa a campo e seus resultados.

1.1- OBJETIVOS

1.1.1 Objetivo Geral

Analisar a viabilidade econômica do projeto de construção de uma cobertura para o cavaco utilizado em caldeiras industriais.

1.1.2 Objetivos Específicos

- Coletar amostras de cavaco em diferentes pontos do local armazenado;
- Determinar o teor de umidade médio do cavaco, utilizando um medidor de umidade para biomassa e granulados;
- Calcular o custo do consumo específico, levando em conta a umidade média encontrada no campo;
- Levantar custos para a construção de uma cobertura para a biomassa;
- Apresentar *payback* descontado do projeto de cobertura de cavaco.

1.2- JUSTIFICATIVA

O presente estudo teve início com o anseio de busca por uma melhor eficiência no processo de geração de vapor em caldeiras industriais que são largamente utilizadas atualmente. Desta forma, este estudo buscou responder a seguinte questão: É viável construir uma cobertura para o cavaco utilizado em caldeiras industriais?

Por consequência, os resultados obtidos nesta pesquisa poderão beneficiar todas as empresas que utilizam o vapor em sua linha de produção e que possuem caldeiras com combustível de cavaco, trazendo ganhos econômicos em virtude da melhor eficiência com a cobertura. Servirá também como subsídio para compreender a influência da umidade na queima da biomassa para geração de energia. Além disso, trará benefícios para a sociedade e o meio ambiente, pois será necessária uma menor quantidade de árvores (o cavaco é proveniente de árvores de eucalipto) para gerar a mesma quantidade de energia.

A caldeira utilizada como base para este estudo tem como seu combustível o cavaco de madeira de eucalipto e está localizada na cidade de Palotina, oeste paranaense, em uma cooperativa. A biomassa atualmente encontra-se no pátio da empresa sem uma cobertura e está sujeita a interferências climáticas.

1.3- CARACTERIZAÇÃO DO PROBLEMA

O referido estudo buscou analisar a umidade do cavaco e verificar a viabilidade da construção de uma cobertura em busca de uma melhor eficiência do processo, logo a pergunta considerada foi: É viável construir uma cobertura para o cavaco utilizado em caldeiras industriais?

1.4- DELIMITAÇÃO DA PESQUISA

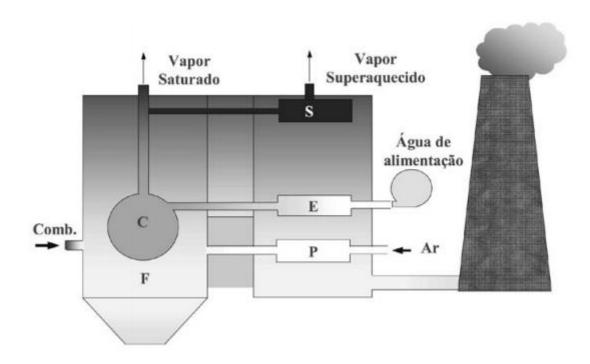
Neste trabalho analisou-se o processo de geração de vapor de uma fábrica de rações do oeste do Paraná, a qual utiliza uma caldeira em conjunto com a biomassa de cavaco de eucalipto em um período de 30 dias.

2 - REFERENCIAL TEÓRICO

2.1- CALDEIRA OU GERADOR DE VAPOR

Caldeiras ou geradores de vapor são os principais equipamentos da indústria que utilizam energia térmica para produção de energia, destinados a produzir e acumular vapor sob pressão superior à atmosférica (MARQUES, HADDAD e MARTINS, 2006).

Estes equipamentos transformam energia química ou elétrica em energia térmica, transmitindo essa energia para uma massa de água com o intuito de transformá-la em vapor saturado ou superaquecido (COPEL, 2005).


Segundo a NR 13, norma que regulamenta caldeiras e vasos de pressão, caldeiras são equipamentos designados a produzir e armazenar vapor sob pressão superior à atmosférica, a qual pode utilizar qualquer fonte de energia, excluindo os refervedores e equipamentos similares utilizados em unidades de processo (Brasil, 2006).

2.1.1- Principais componentes

As caldeiras são basicamente compostas por fornalha, caldeira ou vaso de pressão, superaquecedor, economizador, pré-aquecedor de ar e chaminé. Na fornalha acontece a combustão, onde o combustível que pode ser líquido, sólido ou gasoso entra em combustão, gerando o calor. A caldeira é o vaso de pressão onde a água é transformada para o estado de vapor. O superaquecedor tem a função de elevar a temperatura da água de alimentação. Este vapor superaquecido é imprescindível para a geração de energia, mas pouco usado no processo.

O vapor saturado é o mais utilizado nos processos industriais, pois tem aquecimento rápido e uniforme através do calor latente, melhora a qualidade dos produtos e a produtividade, pode-se controlar precisamente sua temperatura e pressão, possui alto coeficiente de troca térmica, é seguro e ainda apresenta baixo custo quando comparado ao superaquecido. O economizador também eleva a temperatura da água de alimentação, mas com o objetivo de evitar choques térmicos excessivos, o que poderia danificar os equipamentos. No pré-aquecedor de ar reaproveita-se o calor restante da combustão, pois trata-se de um trocador de calor que tem por finalidade aquecer o ar que será utilizado na queima do combustível, aumentando assim a eficiência caldeira. A chaminé garante a circulação dos gases quentes da combustão através de todos os sistemas pelo efeito de tiragem, podendo ser natural ou forçada por ventiladores.

No esquema apresentado (Figura 1) é possível compreender o fluxo do sistema (MARQUES, HADDAD e MARTINS, 2006).

Figura 1: Componentes de um gerador de vapor (C – Caldeira, F – Fornalha, E – Economizador, P – Pré-aquecedor, S – Superaquecedor).

(Fonte: MARQUES, HADDAD e MARTINS, 2006)

2.1.2 Descrição do funcionamento

2.1.2.1 Circuito dos fluidos gasosos

Para o entendimento do processo, considerou-se um sistema de geração de vapor completo, com economizador, pré-aquecedor de ar e tiragem induzida. O ar frio adentra no pré-aquecedor de ar por insuflamento através de um ventilador, se aquece e se projeta na fornalha, onde reage com o combustível, assegurando a sua queima contínua. Os gases da combustão resultantes da queima circulam por todos as partes da caldeira absorvendo energia até chegarem a chaminé e serem eliminados para a atmosfera. Neste trajeto, a maior parte do calor dos gases é transferido para a água, aquecendo o fluido no economizador, vaporizando-a na caldeira e elevando a pressão do sistema até a de projeto e para superaquecer no superaquecedor o vapor saturado do sistema (PERA, 1990).

2.1.2.2 Circuito da água

A água é mantida em nível constante no interior da caldeira, sendo controlada por uma bomba alimentadora manual ou automática, alimentando no gerador o peso de água conforme o que é gerado de vapor (PERA, 1990).

2.1.2.3 Formação de vapor

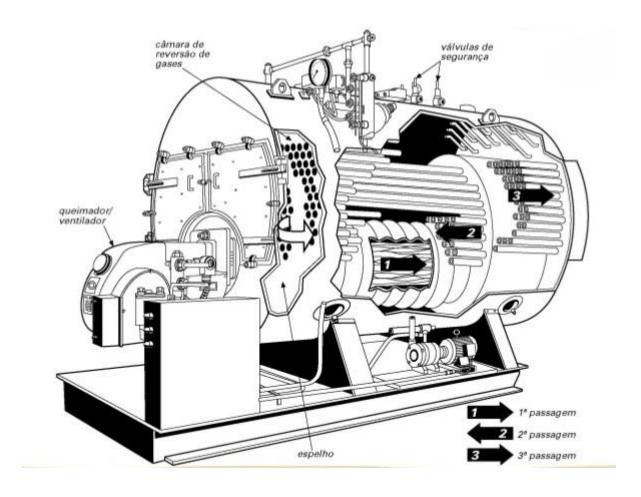
A água contida no interior da caldeira e mantida em nível de operação tem sua entalpia aumentada graças a queima de combustível na fornalha, até atingir a ebulição com formação de vapor. Caso a pressão no interior da caldeira seja atmosférica, o vapor se forma à temperatura de 99 °C ao nível do mar. Conforme a pressão do sistema se eleva, a temperatura aumenta segundo as leis de Boyle e Charles ou da Equação de Estados dos Gases, sendo os valores calculados pela equação de Koch (PERA, 1990).

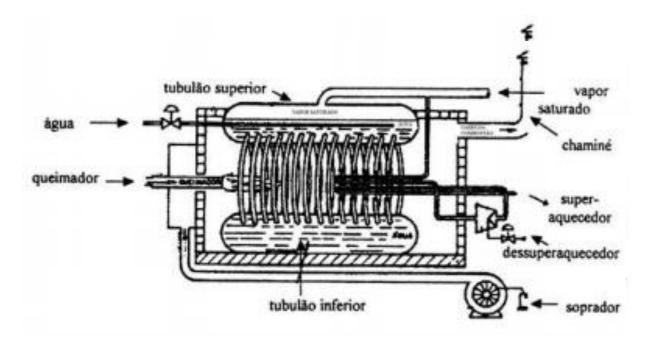
2.1.3 Classificação de caldeiras

As caldeiras segundo Marques, Haddad e Martins (2006) podem ser classificadas de diversas maneiras, mas de modo geral em dois grandes grupos: flamotubulares e aquatubulares.

2.1.3.1 Caldeiras flamotubulares

Neste equipamento (Figura 2), os gases quentes passam pelo interior de tubos, ao redor dos quais está a água a ser aquecida e evaporada. Os tubos são montados conforme os feixes dos permutadores de calor, com um ou mais passos dos gases de combustão através dos mesmos. São utilizadas apenas para pequenas quantidades de vapor e quando se deseja vapor de baixa pressão (LEITE e MILITÃO, 2008).



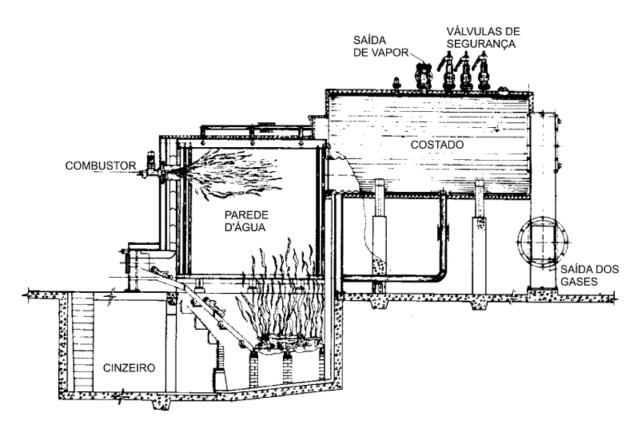

Figura 2: Caldeira flamotubular de 3 passes para combustíveis líquidos.

(Fonte: LEITE E MILITÃO, 2008)

Tem como principais vantagens o atendimento a aumentos instantâneos de demanda por vapor, devido ao grande volume de água, baixo custo e sua fácil fabricação e manutenção. Já como desvantagem, destaca-se a partida lenta, limite quanto a capacidade de pressão e a ocupação de um grande espaço com relação a área de aquecimento (MARQUES, HADDAD e MARTINS, 2006).

2.1.3.2 Caldeira aquatubular

Principal caldeira utilizada atualmente, com este equipamento é possível gerar maiores quantidades de vapor a pressões elevadas e altas temperaturas (LEITE e MILITÃO, 2008).


Figura 3: Caldeira aquatubular (Fonte: LEITE e MILITÃO, 2008)

Neste tipo de caldeira (Figura 3), a água circula no interior dos tubos e os gases da combustão circulam por fora, seu funcionamento está baseado na circulação natural da água, mantida pela diferença de densidade conseguida por diferença de temperatura entre dois conjuntos de tubos. Com a circulação natural da água limita-se a pressão de trabalho, e então para alcançar maiores pressões se faz necessário auxílio de uma bomba na circulação de água.

As vantagens deste tipo de caldeira estão na possibilidade de trabalho com alta capacidade e pressão, tem partida rápida devido ao baixo volume de água relativo à superfície de aquecimento e ocupa pouco espaço com relação a capacidade de produção. As desvantagens estão na questão da operação com pessoal qualificado, exige um tratamento de água rigoroso, além de possuir pouca capacidade no que diz respeito a demanda, devido ao baixo volume de água relativo (MARQUES, HADDAD e MARTINS, 2006).

2.1.3.3 Caldeira mista

A necessidade em utilizar combustíveis sólidos em caldeiras de pequenas capacidades fez com que surgisse no mercado uma solução híbrida, as chamadas caldeiras mistas (Figura 4). São compostas basicamente por uma caldeira flamotubular em conjunto de uma antecâmara de combustão com paredes revestidas de tubos de água. O combustível sólido é queimado na antecâmara através de grelhas de vários tipos, possibilitando assim o espaço necessário para os maiores volumes da câmara de combustão, requeridos na combustão dos sólidos, principalmente em grandes tamanhos, como lenhas em toras, cavacos, entre outros. Com a utilização das grelhas é possível a retirada das cinzas por baixo, no chamado cinzeiro SCHÜRHAUS (2008).

Figura 4: Caldeira mista (Fonte: SCHÜRHAUS, 2008)

As caldeiras mistas são uma solução prática e eficiente quando se tem disponibilidade de combustíveis sólidos a baixo custo. As mesmas não possuem todas as vantagens da aquatubular, como a segurança e sua eficiência, mas ainda podem ser utilizadas com combustíveis líquidos e gasosos com a instalação de um queimador apropriado. O rendimento

das caldeiras mistas é ainda inferior às flamotubulares, devido principalmente a perda de calor pela antecâmara SCHÜRHAUS (2008).

2.2 Combustíveis

Combustível, segundo Pera (1990), é toda substância, natural ou artificial, no estado sólido, líquido ou gasoso, capaz de reagir com o oxigênio do ar, mediante escorvamento, liberando energia calorífica e luminosa. Escapam desta definição os combustíveis nucleares. Uma substância para ser utilizada como combustível deve ser encontrada em abundância na natureza, liberar satisfatória quantidade de calor ao queimar e apresentar custo compatível com o seu emprego.

Os combustíveis que são utilizados em aquecimento e energia industrial apresentam características importantes, tais como: baixo custo por conteúdo energético, disponibilidade, facilidade no transporte e armazenamento, possibilidade de utilização dentro das tecnologias existentes, entre outras. Durante muito tempo, os combustíveis derivados de petróleo preencheram a maioria dessas características e foram o tipo mais utilizado industrialmente. Nas décadas recentes, outros tipos de combustíveis têm sido utilizados e pesquisados, principalmente aqueles que produzem menor impacto ambiental que os derivados de petróleo (BIZZO, 2003).

Os combustíveis utilizados na indústria possuem em sua composição principalmente (Tabela 1) os seguintes elementos:

Carbono	С
Hidrogênio	Н
Oxigênio	0
Enxofre	S
Nitrogênio	N
Água	H₂0
Cinzas	(Z)
· · · · · · · · · · · · · · · · · · ·	

Tabela 1: Composição dos combustíveis (Fonte: Bizzo, 2003)

O carbono e o hidrogênio são os elementos que mais contribuem para o poder calorífico do combustível e o oxigênio é geralmente encontrado em combustíveis vegetais, sendo que sua

presença diminui o poder calorífico do combustível. Embora o enxofre seja também um combustível, sua presença é prejudicial ao meio ambiente e aos equipamentos e seu poder calorífico é menor que o carbono e o hidrogênio. O nitrogênio é responsável pela formação de vários óxidos (N₂O, NO e NO₂) que provocam irritabilidade nas mucosas e também reagem com o ozônio da atmosfera (O₃). Outros elementos ocorrem eventualmente nos combustíveis em menores concentrações, mas com efeito não menos importante: níquel, vanádio, cálcio, sódio, potássio e manganês. Por fim a água, encontrada normalmente em todos os combustíveis, principalmente os sólidos, na forma de umidade, diminui o poder calorífico do combustível e aumenta a temperatura do ponto de orvalho do ácido sulfúrico, aumentando os problemas de corrosão (BIZZO, 2003).

2.3 Biomassa

Biomassa é o termo utilizado para definir matéria orgânica rica em carbono que tem origem recente vinda de organismos vivos (CEMIG, 2012).

A biomassa é um hidrocarboneto, como o petróleo, mas diferente dos combustíveis fósseis, pois tem átomos de oxigênio em sua composição, requerendo menos oxigênio do ar. Dessa forma, é um hidrocarboneto menos poluente, contudo, produz uma quantidade menor de energia, sendo o seu poder calorífico superior menor (NOGUEIRA, 2008).

A biomassa de lenha é amplamente utilizada no Brasil em aplicações domésticas e industriais para geração de vapor, possui baixo teor de cinzas, ausência de enxofre e umidade variável, o que depende do tempo e método de armazenamento do mesmo. A lenha quando cortada possui cerca de 50% de umidade, e quando empilhada e estocada ao ar livre atinge sua estabilidade de 3 a 6 meses com 15 a 25% de umidade (BIZZO, 2003).

Na Tabela 2 pode-se verificar a composição média da lenha seca.

Elemento	С	Н	0	N	Cinzas
% massa	50,2	6,1	43,4	0,2	0,2

Tabela 2: Composição média da lenha seca (Fonte: Bizzo, 2003)

O poder calorífico representa a quantidade de calor liberada na combustão em uma unidade de massa de determinado combustível, podendo ser classificado como superior e inferior. No poder calorífico superior, inclui-se no cálculo a energia aproveitada da vaporização da água, considerando-se que a água presente nos produtos da combustão esteja no estado líquido, e por isso, é considerada uma medida do calor máximo que pode se obter de determinado combustível. Já no poder calorífico inferior, desconsidera-se a energia do calor de vaporização da água, entendendo-se assim que a água deixa o processo na forma de vapor, sendo então uma medida mais realista do calor disponível após a combustão (MARQUES, HADDAD e MARTINS, 2006).

O poder calorífico inferior é muito influenciado pelo teor de umidade encontrado na lenha. Observa-se abaixo, na tabela 3, a influência da umidade no poder calorífico inferior (PCI):

% água	50	35	10
PCI (Kcal/Kg)	1990	2770	4070

Tabela 3: Relação de umidade e poder calorífico inferior (PCI) (Fonte: Bizzo, 2003)

2.3.1 Propriedades físicas da biomassa

As propriedades físicas da biomassa são extremamente importantes para caracterizar seu nível energético, tais como teor de umidade, massa específica, densidade e porosidade.

O teor de umidade se refere a massa de água contida na madeira, e vai depender do histórico da biomassa. Por exemplo, toras de madeiras deixadas ao tempo possuem 40 a 55% de umidade a base úmida, enquanto madeiras secas por processos térmicos podem alcançar 8%. Abaixo disso inicia-se o processo de decomposição da madeira, pois esta água faz parte da estrutura macro da mesma e está ligada as paredes de celulose. O teor de umidade pode ser expresso a base úmida e a base seca, sendo possível calculá-lo a partir de duas equações (Equações 1 e 2).

$$\omega_{bu} = \frac{m_{H_2O}}{m_{H_2O} + m_{bio seca}} = \% base umida$$
 (1)

$$\omega_{bs} = \frac{m_{H_2O}}{m_{bio\ seca}} = \%\ base\ seca \tag{2}$$

Onde, m_{H_2O} é a massa de água contida na biomassa, e $m_{bio\,seca}$ é a massa de biomassa seca (NOGUEIRA, 2008).

2.3.2 Biomassa no Brasil

De toda energia consumida pela indústria no Brasil, 53% é atendida por combustíveis, e o restante faz uso de energia elétrica. No quadro 1 pode-se observar a porcentagem de utilização dos combustíveis no setor industrial.

Combustível	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004
Bagaço de cana	17,9	17,7	17,2	18,2	20,1	20,7	16,2	19,9	21,2	22,0	22,3
Óleo combustível	19,2	19,5	20,9	20,6	19,5	16,2	14,6	12,2	11,2	9,3	7,7
Coque de carvão mineral	16,7	16,8	16,0	15,1	14,3	12,2	13,4	12,8	12,8	12,3	11,9
Lenha	12,8	12,2	11,6	11,1	11,4	11,0	11,0	10,4	9,4	9,5	9,5
Carvão vegetal	11,5	10,9	9,6	8,8	7,7	8,3	8,9	7,9	7,9	8,9	10,1
Gás natural	5,1	5,1	5,9	6,3	6,0	6,5	8,0	9,2	10,7	10,7	11,6
Outras fontes primárias renováveis	5,1	5,3	5,4	5,4	5,5	6,0	6,2	6,2	6,4	7,1	7,0
Carvão mineral	2,6	3,1	4,1	4,7	4,5	5,3	5,8	5,6	5,8	6,0	6,3
Gás de coqueria	2,6	2,6	2,4	2,3	2,2	1,8	1,9	1,8	1,7	1,8	1,8
Outras	6,4	6,8	6,8	7,4	8,9	12,0	14,1	14,1	12,9	12,4	11,8

Quadro 1: Consumo percentual de combustíveis no setor industrial

(Fonte: MARQUES, HADDAD e MARTINS, 2006, p.358)

O Brasil possui uma particularidade em seu setor energético, pois grande parte é correspondente de energias renováveis, essa representava cerca de 60% em 1970 e em 2004 era de 42%, diminuição justificada pela redução no consumo do álcool como combustível automobilístico. A biomassa e seus derivados representavam 26% do consumo total de energia em 2004, enquanto a hidroeletricidade representava 16% (MARQUES, HADDAD e MARTINS, 2006).

A biomassa é muito empregada na produção de energia, detendo o segundo lugar na matriz elétrica nacional, perdendo apenas para hidroeletricidade. Segundo o Balanço Energético Nacional (BEN) de 2008, a biomassa foi responsável pela oferta de 18 TWh (terawatts-hora), volume 21% superior ao obtido em 2006. Em novembro de 2008 existiam instaladas no país 302 termelétricas movidas a biomassa, gerando 5,7 megawatts (ANEEL, 2008).

2.3.3 Eucalipto

Considerando-se o grupo de biomassas florestais o eucalipto se destaca, devido principalmente a sua fácil aplicação em diferentes solos. Este é utilizado para a geração de energia em diferentes configurações que envolve espaçamento entre árvores e diferentes ciclos de corte. É a principal espécie para as florestas energéticas por apresentar rápido crescimento, alta produtividade e facilidade de adaptação (CORTEZ, 2008).

Pode-se verificar no Quadro 2 a comparação da composição do eucalipto em conjunto com outros tipos de biomassa de base seca:

	CAVACO DE SERRARIAS	SERRAGEM	CAVACO DE FLORESTAS	RECICLADO	LENHA	PELLET	
Origem	Costaneiras e sobras de madeira das serrarias	Serrarias, resíduo inerente ao ato de serrar	Resíduos do manejo dos reflorestamentos (galhos e ponteiras)	Madeira de Descarte (lixo)	Resíduos do manejo de reflorestamentos	Biomassa de reflorestamentos	
Madeira	Pinus ou Eucaliptus	Pinus ou Eucaliptus	Pinus ou Eucaliptus	Diversos Tipos	Pinus ou Eucaliptus	Madeira de pinus ou eucalipto, cana e outros	
Granulometria	2 x 4 x 8	Fino	2 x 4 x 8	2 x 4 x 8	6 a 20 [cm] de diâmetro	Cilíndricas de Ø6 [cm] x 5 a 20 [mm] de comprimento	[cm]
Umidade	35 a 45	35 a 45	16 a 30	16 a 20	16 a 30 ⁴	inferior a 10%	[%]
P_{CI}	2100 a 2400	2100 a 2400	2600 a 3200	3200 a 3600	2500 a 3500	4400	[kcal/kg]
٥	380 a 420	350		220 a 250			[kg/m³]
ρ					250 a 600	680	[kg / m³st]

Quadro 2: Origem e dados técnicos do eucalipto e outros tipos de biomassa (**Fonte**: SCHÜRHAUS, 2008, p.27)

2.4 Combustão

É uma reação química de oxidação de materiais combustíveis. Os reagentes, comumente o oxigênio do ar e um hidrocarboneto, colidem entre si causando sua destruição. Os elementos químicos formados dessa destruição se recombinam formando novas espécies químicas chamadas de produtos, os quais são diferentes dos reagentes. A combustão é uma reação exotérmica entre um combustível e um comburente que libera calor e eventualmente luz (NOGUEIRA, 2008).

A combustão pode ser representada pelo esquema abaixo:

$$Combustivel + Ar = \underbrace{CO_2 + SO_2 + H_2O}_{1} + \underbrace{N_2 + O_2}_{2} + \underbrace{CO + H_2 + CH_4}_{3} + \underbrace{fuligem + cinzas}_{4}$$

No caso da biomassa, cada um dos grupos numerados de 1 a 4 corresponde a:

- Produtos da oxidação completa: CO₂ , SO₂ e H₂° Como o conteúdo de enxofre da biomassa é quase sempre baixo, a percentagem de SO₂ é quase desprezível.
- 2. Ar em excesso $(N_2 + O_2)$ e eventualmente a umidade do combustível e do ar.
- 3. Produtos gasosos (CO, H2 e CH4) e sólidos (fuligem) de combustão incompleta.
- 4. Fração mineral não combustível da biomassa (cinzas).

Figura 5: Reação de combustão (Fonte: SCHÜRHAUS, 2008)

A combustão se inicia quando a mistura atinge seu ponto de inflamação, onde a oxidação que ocorria lentamente, agora se propaga rapidamente. O ponto de inflamação é característico de cada combustível, assim como a combustão irá ocorrer de forma diferente de acordo com a natureza do combustível em questão. Nos combustíveis sólidos, por exemplo, a combustão ocorre inicialmente nos produtos voláteis, queimando-os até a formação dos produtos gasosos que entram finalmente em combustão (MARQUES, HADDAD e MARTINS, 2006).

3 METODOLOGIA

Esta pesquisa teve finalidade descritiva e experimental, na qual foram coletados dados a campo para realizar uma análise, buscando-se evidenciar o problema e propor uma solução.

Os dados coletados referiam-se a umidade presente na biomassa de cavaco de eucalipto, utilizado em uma Caldeira Weco HR1510, com capacidade de produção de 12 toneladas/hora de vapor. Para tal, utilizou-se um equipamento medidor de umidade, específico para biomassa e granulados, fabricado pela empresa Marrari, modelo M75 (Figura 6).

Figura 6: Medidor de umidade para biomassa e granulados

(Fonte: Marrari, 2019)

Com o referido equipamento pode-se obter a umidade com exatidão, pois o mesmo é calibrado e o resultado é instantâneo. Este foi utilizado para coletar amostras de cavaco no pátio da empresa (Figura 7) onde está localizado o cavaco, sujeito a interferências climáticas visto não haver cobertura.

Figura 7: Pátio onde a biomassa fica sujeita às intempéries climáticas (Fonte: Autor, 2019)

As amostras foram coletadas em pontos aleatórios do pátio com o equipamento medidor de umidade. Para uma melhor exatidão nos resultados foram coletadas amostras em dois pontos do pátio no período da manhã durante aproximadamente 2 meses, alternando-se entre os dias da semana. Os dados foram armazenados em uma tabela no software *Ms Excel*, obtendo-se em seguida a média da umidade durante este período (Anexo 1).

Foi calculado o rendimento da caldeira a partir do método direto (equação 3), onde é dividido o valor de energia produzida na caldeira pela energia do combustível:

$$\eta = \frac{\dot{m}_v (hv - hl)}{\dot{m}_c \cdot PCI} \tag{3}$$

Sendo:

 η : eficiência da caldeira

mv: vazão mássica de vapor (kg/s)

hv: entalpia do vapor produzido (kJ/kg)

*h*l: entalpia da água de entrada (kJ/kg)

mc: vazão mássica de combustível (kg/s)

PCI: poder calorífico inferior (kcal/kg)

Com o rendimento da caldeira foi então calculado o consumo específico pelo método direto observado na equação 3, apenas isolando-se a variável:

$$\dot{m}_c = \frac{\dot{m}_v (hv - hl)}{\eta \cdot PCI} \tag{4}$$

Em seguida foi calculado o poder calorífico útil (PCU) na base úmida (equação 5) segundo Brito (1993) para se realizar uma comparação da quantidade de calor liberada, descontando-se a o calor utilizado para evaporar a massa de água presente no cavaco:

$$PCU = PCI (1 - u) - 600u \tag{5}$$

Neste estudo foi considerado um valor ideal de umidade de 32%, sendo todo o valor acima deste considerado como gasto para empresa, pois acima disso se trata da umidade capilar que pode ser retirada naturalmente. Com o PCU obtido, para termos de comparação, calculouse o consumo específico utilizando a PCU através da equação 6:

$$\dot{m}_c = \frac{\dot{m}_v \left(hv - hl \right)}{\eta \cdot PCU} \tag{6}$$

Com todos os cálculos feitos para cada teor de umidade, foi então calculado o consumo específico acima do ideal (32%) a partir da equação 7:

$$\dot{m}c = \dot{m}c_{fixo} - \dot{m}c_{variável} \tag{7}$$

Onde:

mc fixo = consumo específico a umidade de 32%

mc variável = consumo específico de acordo com a umidade encontrada

Para se obter o valor gasto mensal excedente devido a umidade acima do ideal, utilizouse a equação 8:

Custo excedente mensal =
$$((\dot{m}c_{fixo} - \dot{m}c_{variável}) \cdot dias \cdot horas \cdot \frac{R\$}{1000})$$
 (8)

Onde:

mc fixo = consumo específico a umidade de 32%

mc variável = consumo específico de acordo com a umidade encontrada

dias = dias trabalhados no mês

horas = horas trabalhados no dia

R\$ = valor da tonelada de cavaco de eucalipto

Conhecendo o valor gasto mensalmente devido a umidade contida na biomassa, levantou-se o custo para construção de um galpão que protegeria o material das intempéries climáticas. As dimensões desse galpão podem ser consultadas na Tabela 4.

ESTRUTURA METÁLICA PARA COBERTURA DO CAVACO

Dimensões (largura x comprimento x altura)

30 x 15 x 7 metros

Tabela 4: Dimensões da cobertura para o cavaco (Fonte: Autor, 2019)

Com o valor necessário para construção da cobertura foi feito o cálculo de retorno de investimento, tendo em vista o valor que a empresa gasta em biomassa devido às intempéries climáticas a qual ela fica exposta. O cálculo de retorno foi efetuado segundo a equação 9:

$$Payback = \frac{Investimento\ inicial}{valor\ poupado\ mensalmente} \tag{9}$$

Onde:

Investimento inicial = Incluso todos os custos envolvidos até a finalização da cobertura em estrutura metálica como material, mão de obra e equipamentos.

Valor poupado mensalmente = Valor que a empresa economizará mensalmente em cavaco de eucalipto.

Com o objetivo de fazer uma análise mais completa calculou-se os juros compostos, trazendo os valores futuros para valores presentes. Para esse cálculo, considerou-se uma taxa mensal correspondente a inflação média atual (Equação 10):

$$VP = \frac{VF}{(1+i)^n} \tag{10}$$

Onde:

VP = Valor presente, valor no tempo "0"

VF = Valor futuro a ser descontado a taxa de juros

i = Taxa de juros, neste caso mensal

n = tempo em meses

4 RESULTADOS E DISCUSSÕES

No local onde realizou-se esse estudo, duas fábricas de rações utilizam o vapor da caldeira analisada, e por isso, a necessidade de vapor constante e de qualidade é de interesse da empresa. Além disso, o não suprimento do mesmo gera paradas de produção que resultam em grandes prejuízos para empresa.

4.1 Coleta de dados

Figura 8: Coleta de amostras utilizando o medidor de umidade para biomassa (Fonte: Autor, 2019)

Os dados de umidade amostrados em dois pontos aleatórios do pátio durante dois meses com o medidor de umidade para granulados (Figura 8), bem como a média do período podem ser observados no Quadro 3.

DATA	COLETA PONTO 1	COLETA PONTO 2
12-ago-19	34,80%	35,20%
13-ago-19	35,20%	38,10%
14-ago-19	33,50%	34,00%
16-ago-19	32,00%	33,20%
19-ago-19	36,10%	35,00%
20-ago-19	36,60%	37,60%
21-ago-19	36,20%	36,00%
23-ago-19	30,00%	32,00%
26-ago-19	31,50%	32,00%
28-ago-19	34,50%	35,00%
31-ago-19	43,50%	46,40%
03-set-19	35,10%	33,00%
05-set-19	31,20%	29,70%
10-set-19	33,70%	34,20%
12-set-19	32,20%	32,50%
14-set-19	33,10%	32,40%
16-set-19	40,30%	40,80%
24-set-19	33,80%	32,50%
25-set-19	34,00%	35,20%
03-out-19	37,20%	38,50%
04-out-19	37,20%	38,50%
07-out-19	35,50%	35,70%
09-out-19	40,90%	40,10%
11-out-19	37,10%	36,50%
13-out-19	50,20%	46,90%
	MÉDIA	35,15%

Quadro 3: Coleta de amostras de cavaco de eucalipto e sua respectiva umidade (Fonte: Autor, 2019)

4.2 Cálculos efetuados

Em decorrência de alterações feitas na caldeira optou-se pelo cálculo do rendimento atual do equipamento, desconsiderando o valor apresentado pelo fabricante, para assim trazer um valor mais confiável a pesquisa.

Utilizando-se a equação 3, as entalpias foram encontradas na tabela do anexo A, realizando-se a conversão das mesmas (1 kcal/Kg é 4,184 kj/kg). Para o PCI considerou-se 4300 Kcal/kg obtido a partir da tabela no anexo A:

$$\eta = \frac{\dot{m}_v (hv - hl)}{\dot{m}_c \cdot PCI} \tag{3}$$

Onde:

 $\dot{m}_v = 8500 \text{ Kg/h}$

hv = 661,74 Kcal/kg

hl = 90,80 Kcal/kg

 $\dot{m}_c = 2300 \text{ Kg/h}$

PCI = 4300 Kcal/kg

Com o rendimento da caldeira geradora de vapor foi possível obter o consumo específico, utilizando o poder calorífico inferior da biomassa de eucalipto pela equação 4:

$$\dot{m}_c = \frac{\dot{m}_v (hv - hl)}{\eta \cdot PCI} \tag{4}$$

Onde:

 $\dot{m}_v = 8500 \text{ Kg/h}$

hv = 661,74 Kcal/kg

hl = 90,80 Kcal/kg

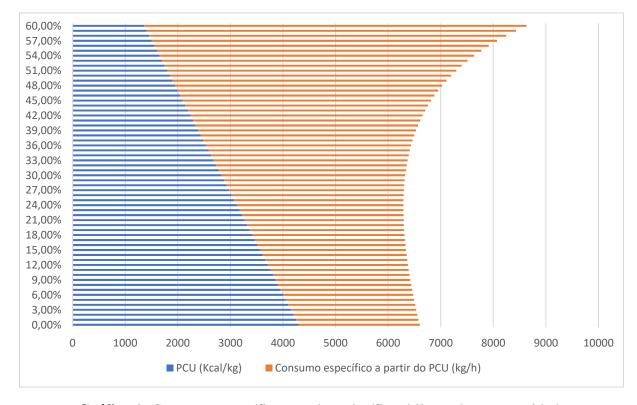
 $\eta = 0.4905 = 49.05 \%$

PCI = 4300 Kcal/kg

Para cada umidade, foi calculado o seu poder calorífico útil, com base na equação 5:

$$PCU = PCI (1 - u) - 600u \tag{5}$$

Onde:


PCI = 4300 Kcal/kg

u = Umidade encontrada na amostra (%)

A partir do poder calorífico útil, calculou-se o consumo específico segundo a equação 6, para se comparar como se comporta o consumo específico para todas as faixas de umidade:

$$\dot{m}_c = \frac{\dot{m}_v \left(hv - hl \right)}{\eta \cdot PCU} \tag{6}$$

Com os cálculos efetuados, pode se observar no Gráfico 1 o comportamento do consumo específico com o acréscimo de umidade na biomassa:

Gráfico 1: Consumo específico e poder calorífico útil com base na umidade (Fonte: Autor, 2019)

4.2 Estimativas financeiras

A caldeira onde a biomassa deste estudo é utilizada tem sua configuração de fabricação descrita na tabela 5.

Fabricante	Weco S. A.
Modelo	HR1510
Pressão máxima de trabalho (PMTA)	10 kg/cm²
Superfície de aquecimento	347 m²
Ano de fabricação	2003
Capacidade de Operação	12000 Kg/h
Categoria	В

Tabela 5: Características da caldeira mista utilizada na fábrica de rações (Fonte: Autor, 2019)

No entanto, devido alterações feitas no equipamento, calculou-se seu rendimento novamente pela equação 3, na qual considerou-se sua capacidade de operação usual de 8500 kg/h. O cálculo foi efetuado após os custos adicionais devido a umidade no cavaco para esta condição de operação, utilizando como base a umidade ideal de 32%.

Utilizou-se a equação 5 para se obter o poder calorífico útil de cada faixa de umidade.

$$PCU = PCI (1 - u) - 600u \tag{5}$$

Posteriormente calculou-se o consumo específico, segundo a equação 6, para se obter o custo que o excesso de umidade traz a empresa:

$$\dot{m}_c = \frac{\dot{m}_v \left(hv - hl \right)}{\eta \cdot PCU} \tag{6}$$

Para o custo excedente utilizou-se a equação 8, considerando que a caldeira da empresa opera de segunda a sábado 24 horas por dia, somente no sábado encerrando sua produção as

21:00 horas e retornando no domingo as 21:00 horas. O custo da tonelada de cavaco de eucalipto atualmente é R\$145,00.

Custo excedente mensal =
$$((\dot{m}c_{fixo} - \dot{m}c_{variável}).dias.horas.\frac{R\$}{1000})$$
 (8)

Com o auxílio do programa Ms Excel, obteve-se o quadro 4:

Umidade (%)	PCU (Kcal/kg)	Consumo específico a partir do PCU (kg/h)	cífico a partir umidade acima de umidade acima de		lade acima de	Gasto anual, para umidade acima de 32% (R\$)		
32,00%	2732	3621,51	0,00	R\$	-	R\$	-	
33,00%	2683	3687,65	66,14	R\$	5.984,36	R\$	71.812,32	
34,00%	2634	3756,25	134,74	R\$	12.191,37	R\$	146.296,47	
35,00%	2585	3827,45	205,94	R\$	18.633,70	R\$	223.604,38	
35,15%	2577,65	3838,37	216,86	R\$	19.621,17	R\$	235.454,08	
36,00%	2536	3901,41	279,90	R\$	25.324,98	R\$	303.899,75	
37,00%	2487	3978,27	356,76	R\$	32.279,93	R\$	387.359,16	
38,00%	2438	4058,23	436,72	R\$	39.514,45	R\$	474.173,37	
39,00%	2389	4141,47	519,96	R\$	47.045,73	R\$	564.548,81	
40,00%	2340	4228,19	606,68	R\$	54.892,43	R\$	658.709,21	
41,00%	2291	4318,62	697,11	R\$	R\$ 63.074,79		756.897,43	
42,00%	2242	4413,01	791,50	R\$	71.614,80	R\$	859.377,54	
43,00%	2193	4511,61	890,10	R\$	80.536,44	R\$	966.437,25	
44,00%	2144	4614,72	993,21	R\$	89.865,88	R\$	1.078.390,55	
45,00%	2095	4722,66	1101,15	R\$	99.631,73	R\$	1.195.580,80	
46,00%	2046	4835,76	1214,25	R\$	109.865,36	R\$	1.318.384,27	
47,00%	1997	4954,41	1332,90	R\$	120.601,18	R\$	1.447.214,16	
48,00%	1948	5079,04	1457,53	R\$	131.877,10	R\$	1.582.525,21	
49,00%	1899	5210,09	1588,58	R\$	143.734,93	R\$	1.724.819,15	
50,00%	1850	5348,09	1726,58	R\$	156.220,90	R\$	1.874.650,81	
51,00%	1801	5493,60	1872,09	R\$	169.386,29	R\$	2.032.635,45	
52,00%	1752	5647,24	2025,73	R\$	183.288,09	R\$	2.199.457,13	
53,00%	1703	5809,73	2188,22	R\$	197.989,89	R\$	2.375.878,65	
54,00%	1654	5981,84	2360,33	R\$	213.562,77	R\$	2.562.753,19	
55,00%	1605	6164,46	2542,95	R\$	230.086,51	R\$	2.761.038,15	
56,00%	1556	6358,59	2737,08	R\$	247.650,96	R\$	2.971.811,48	
57,00%	1507	6565,34	2943,83	R\$	266.357,62	R\$	3.196.291,38	
58,00%	1458	6785,98	3164,47	R\$	286.321,65	R\$	3.435.859,78	
59,00%	1409	7021,98	3400,47	R\$	307.674,24	R\$	3.692.090,85	
60,00%	1360	7274,97	3653,46	R\$	330.565,47	R\$	3.966.785,62	

Quadro 4: Custo excedente gerado devido a umidade na biomassa

(Fonte: Autor, 2019)

Levantou-se o custo para a construção da cobertura, obtendo-se um valor de R\$120.000,00. Com este valor, calculou-se o retorno do investimento.

Aplicando-se a equação 10 e utilizando-se uma taxa mensal de 0,20% obteve-se o quadro 5:

PERIODO (MÊS)	FLUXO	DE CAIXA	VALOR PRESENTE (VP)	VP ACUMULADO
0	-R\$	120.000,00	-R\$ 120.000,00	-R\$ 120.000,00
1	R\$	19.621,17	R\$ 19.582,01	-R\$ 100.417,99
2	R\$	19.621,17	R\$ 19.542,92	-R\$ 80.875,07
3	R\$	19.621,17	R\$ 19.503,92	-R\$ 61.371,15
4	R\$	19.621,17	R\$ 19.464,99	-R\$ 41.906,17
5	R\$	19.621,17	R\$ 19.426,13	-R\$ 22.480,03
6	R\$	19.621,17	R\$ 19.387,36	-R\$ 3.092,68
7	R\$	19.621,17	R\$ 19.348,66	R\$ 16.255,99
8	R\$	19.621,17	R\$ 19.310,04	R\$ 35.566,03
9	R\$	19.621,17	R\$ 19.271,50	R\$ 54.837,52
10	R\$	19.621,17	R\$ 19.233,03	R\$ 74.070,56
11	R\$	19.621,17	R\$ 19.194,64	R\$ 93.265,20
12	R\$	19.621,17	R\$ 19.156,33	R\$ 112.421,53
Tempo Payback	Desconta	do	Aproximadamente 6 i	meses e 5 dias

Quadro 5: Retorno do investimento utilizando *Payback* descontado (Fonte: Autor, 2019)

. O valor pago na tonelada do cavaco de eucalipto pela empresa é R\$145,00 levando a um custo excedente mensal de R\$19.621,17. Calculando o *payback* descontado, chegou-se a um retorno de investimento inicial de 6 meses e 5 dias.

Com os cálculos apresentados, fica evidente o quão maléfico é a umidade para a biomassa, considerando-se o rendimento para o gerador de vapor e também em custos desnecessários.

5 CONCLUSÃO

O presente trabalho buscou provar a viabilidade da construção de uma cobertura para a biomassa de eucalipto utilizada na alimentação de uma caldeira geradora de vapor, por meio de coleta de amostras a campo, utilizando um equipamento específico medidor de umidade para biomassa granulada, a fim de se obter a média da umidade utilizada.

O estudo ocorreu em uma fábrica de rações no oeste do Paraná, a qual utiliza uma caldeira mista com capacidade de 12000 kg/h de vapor, com eficiência calculada de aproximadamente 51%. Nesta fábrica é mantida a biomassa picada de eucalipto ao tempo, sofrendo interferências climáticas.

Considerando o valor de 32% como ideal para umidade do cavaco, a umidade encontrada nas coletas foi de 35,15%, o que representou um aumento no consumo de 216,86 kg/h de combustível, refletindo no fim do mês, considerando-se o valor de R\$145,00 a tonelada do combustível, um custo excedente de R\$19.621,17.

Mostrou-se válida a construção da cobertura para o cavaco, tendo em vista o volume consumido pela empresa e o rápido retorno do investimento, sendo esse de aproximadamente 6 meses.

Pode-se notar como a umidade é prejudicial no poder calorífico do combustível estudado, sendo que uma simples variação na umidade pode refletir queda no poder calorífico e em altos custos para a empresa.

Deve-se ainda salientar que tivemos um período atípico com baixo índice pluviométrico na região no ano de 2019, o que interferiu no resultado final da pesquisa, demonstrando que o retorno do investimento inicial poderia ocorrer em um menor prazo do que o encontrado ao final da pesquisa.

6 SUGESTÃO DE TRABALHOS FUTUROS

- Comparativo entre os cavacos de pinus e eucaliptos, analisando seu poder calorifico e consumo específico em decorrência da umidade;
- Análise de fontes energéticas alternativas para utilização em caldeiras industriais;
- Análise do rendimento de caldeiras em função do seu tempo de operação.

REFERÊNCIAS BIBLIOGRÁFICAS

ALFA LAVAL AALBORG, **Tabela do poder calorífico inferior**, Disponível em: <www. http://www.aalborg-industries.com.br/downloads/poder-calorifico-inf.pdf> Acesso em: 17 out.2019.

ANEEL, **Atlas de energia elétrica do Brasil** / Agência Nacional de Energia Elétrica. 3. ed. – Brasília: Aneel, 2008. Disponível em:http://www.aneel.gov.br/livros. Acesso em: 04 set.2019.

BIZZO, Waldir A. **Geração, distribuição e utilização de vapor.** Campinas: FEM/Unicamp, 2003.

BRITO, J. O. Expressão da produção florestal em unidades energéticas. Em Congresso Florestal Panamericano, 1, Congresso Florestal Brasileiro, 7, 1993, Curitiba, Anais...Curitiba: Sociedade Brasileira de Silvicultura, 1993, p.280-282.

BRASIL. NR-13 - **Manual Técnico de Caldeiras e Vasos de Pressão**. ed. Comemorativa 10 anos da NR-13(da Portaria nº 23/94). Brasília: Ministério do Trabalho, 2006.

COPEL - COMPANHIA DE ENERGIA PARANAENSE, **Manual de eficiência energética na indústria**. Paraná: Diretora de distribuição DDI, 2005.

CORTEZ, C. L. et al. Análise do processo produtivo do eucalipto no sistema "short rotation" para uso como combustível em uma usina termoelétrica. In: Congresso internacional de bioenergia, 4., 2009. Anais... Curitiba, 2009. p. 1-7.

GONCALVES, José E.; SARTORI, Maria M. P.; LEAO, Alcides L.. **Energia de briquetes produzidos com rejeitos de resíduos sólidos urbanos e madeira de Eucalyptus grandis**. Disponível em: http://www.scielo.br/scielo.php?script=sci_arttext&pid=S1415-43662009000500021&lng=en&nrm=iso. Acesso em: 17 Out. 2019.

LEITE, Nilson Ribeiro; MILITÃO, Renato de Abreu. **Tipos e aplicações de caldeiras.** Escola Politécnica da USP, São Paulo, 2008.

MARQUES, Milton César Silva; HADDAD, Jamil; MARTINS, André Ramon Silva. Conservação de energia: eficiência energética de equipamentos e instalações. Itajubá: Fupai, 2006.

NOGUEIRA, M. F. M.; RENDEIRO, G. (2008). Caracterização Energética da Biomassa Vegetal. BARRETO, Eduardo José Fagundes (Coord). Combustão e Gaseificação da Biomassa Sólida: Soluções Energéticas para a Amazônia. Brasília: Ministério de Minas e Energia, 2008.

PERA, Hildo. Geradores de vapor: um compendio sobre conservação de energia com vistas à preservação da ecologia. 2ª edição. São Paulo: Fama, 1990.

SCHURHAUS, Patric. **Produtos e propriedades energéticas da madeira.** União da Vitória, Centro Universitário de União da Vitória – UNIUV, 2007.

VAN WYLEN, Gordon John; SONNTAG, Richard Edwin. **Fundamentos da termodinâmica. Limusa**:, 2009.

ANEXO A - TABELA PODER CALORÍFICO INFERIOR

PODER CALORÍFICO INFERIOR

COMBUSTÍVEL	PCI
Álcool de cana	5.500 kcal/l
Aparas vinilo	6.300 kcal/kg
Bagaço de cana (20% ÁGUA)	3.200 kcal/kg
Bagaço de cana (50% ÁGUA)	1.800 kcal/kg
Bambú (10% água)	3.700 kcal/kg
Borra de café	1.570 kcal/kg
Carvão de babaú	7.000 kcal/kg
Carvão mineral - Cambuí/PR	6.200 kcal/kg
Carvão mineral - Charqueadas/ RS	3.100 kcal/kg
Carvão mineral - Mina do leão/ RS	4.200 kcal/kg
Carvão mineral - Tubarão/ SC	4.500 kcal/kg
Carvão vegetal	7.500 kcal/kg
Casca de árvore	2.200 kcal/kg
Casca de algodão	3.000 kcal/kg
Casca de amêndoa dendê	4.800 kcal/kg
Casca de arroz (12% água)	3.300 kcal/kg
Casca de babaçu	4.000 kcal/kg
Casca de cacau (8% água)	3.900 kcal/kg
Casca de café	3.800 kcal/kg
Casca de cajú	4.700 kcal/kg
Casca de côco	4.000 kcal/kg
Casca de eucalípto	3.750 kcal/kg
Casca de tanino úmido (68% água)	800 kcal/kg
Casca de soja	3.300 kcal/kg
Cavaco (eucalípto)	4.300 kcal/kg
Cavacos de pinho	2.500 kcal/kg
Coque de gás	5.400 kcal/kg

COMBUSTÍVEL	PCI
Coque de lenha	7.600 kcal/kg
Coque metalúrgico	7.200 kcal/kg
Fibras de palmeira (48% de água)	2.000 kcal/kg
Fibras de palmito	3.800 kcal/kg
Filme polietileno	5.600 kcal/kg
Gás de água	4.000 kcal/Nm3
Gás de água carburetado	6.000 kcal/Nm ³
Gás de alto forno	700 kcal/Nm ³
Gás de biodigestor (biogás)	5.000 kcal/Nm3
Gás de coqueira	4.300 kcal/Nm3
Gás de gasogênio	1.260 kcal/Nm3
Gás de nafta	4.220 kcal/Nm3
Gás GLP (50%)	11.025 kcal/kg
Gás natural	9.065 kcal/Nm3
Lascas de madeira	3.300 kcal/kg
Lenha (40% água)	2.400 kcal/kg
Lenha (sêca) (12% água)	3.680 kcal/kg
Madeira de caixotes	3.800 kcal/kg
Madeira muito sêca	4.800 kcal/kg
Madeira pinho (sêca ao ar)	3.500 kcal/kg
Madeira verde	2.500 kcal/kg
Óleo combustível 1A	9.750 kcal/kg
Óleo combustível 1B	9.940 kcal/kg
Óleo combustível 2A	9.550 kcal/kg
Óleo combustível 2B	9.920 kcal/kg
Óleo combustível 3A	9.500 kcal/kg
Óleo combustível 3B	9.870 kcal/kg

COMBUSTÍVEL	Inferior Heat Power			
Óleo de algodão	8.050 kcal/l			
Óleo de amendoim	8.000 kcal/l			
Óleo de babaçú	7.770 kcal/l			
Óleo de soja	8.125 kcal/l			
Óleo diesel	8.620 kcal/l			
Palha de amendoim (12% água)	3.100 kcal/kg			
Palha de trigo (20% ÁGUA)	3.200 kcal/kg			
Papel	4.200 kcal/kg			
Piche alcatrão	8.600 kcal/kg			
Pó de linho	4.000 kcal/kg			
Pó de madeira fino (sêco)	4.000 kcal/kg			
Pó de madeira grosso (sêco)	4.200kcal/kg			
Pó de tabaco	2.300 kcal/kg			
Querosene	8.300 kcal/l			
Recortes de couro (14% ÁGUA)	4.400 kcal/kg			
Resíduos de juta	3.800 kcal/kg			
Restos de borracha	4.000 kcal/kg			
Sementes de girassol (9,5% água)	4.300 kcal/kg			
Serragem de pinho (40% água)	2.000 kcal/kg			
Serragem sêca (20% água)	3.500 kcal/kg			
Serragem + Cepilho (sêco)	4.600 kcal/kg			
Sisal (11% água)	3.400 kcal/kg			
Sobra de serraria (pinho)	4.160 kcal/kg			
Tecido nailon	7.300 kcal/kg			
Trapos de pano	4.200 kcal/kg			
Turfa (séca ao ar) (25 à 6% água)	3000 - 5000 kcal/kc			

Fonte: Alfa Laval Aalborg (2019)

ANEXO B - PROPRIEDADES TERMODINÂMICAS DA ÁGUA

Tabela B.1 -Propriedades termodinâmicas da água

Tabela B.1.1 Água saturada: tabela em função da temperatura Volume específico Energia interna Entalpia Entropia (m^3/kg) (kJ/kg) (kJ/kg) (kJ/kg K) Líquido Vapor Líquido Vapor Vapor Liquido Vapor Liquido Temp. Pressão Evap. Evap. Evap. °C kPa sat. sat sat. sat. sat. sat sat sat. T Р ħ, h_{b} ħ, Ŋ 4 4, U, s_{l} s_k ٤, 0,01 0,6113 0,001000 206,132 0,00 2375,33 2375,33 0,00 2501,35 2501,35 0.0000 9,1562 9.1562 2489,57 5 0,8721 0,001000 147,118 20,97 2361,27 238224 20,98 2510,54 0,0761 8,9496 9.0257 10 1,2276 0,001000 106,377 41,39 2347,16 2389,15 41,99 2477,75 2519,74 0,1510 8,7496 8,9007 15 1,705 0,001001 77,925 62,98 2333,06 2396,04 62,96 2465,93 2528,91 0,2245 8,5569 8,7813 20 2,339 0,001002 57,7897 83,94 2318,98 2402,91 83,94 2454,12 2538,06 0,2968 8,3706 8,6671 25 0,001003 43,3593 104,86 2304,90 2409,76 104,87 2442,30 2547,17 0,3673 8,1905 8,5579 30 4,246 0,001004 32,8922 125,77 2290,81 2416,58 125,77 2430,48 2556.25 0,4369 8,0164 8,4533 7,8478 35 5,628 0.001006 25,2158 146,65 2276.71 2423.36 146,66 2418.62 2565,28 0.5052 8,3530 40 7,384 0,001008 19,5229 167,53 2262,57 2430,11 167,54 2406,72 2574,26 0.5724 7,6845 8,2569 45 9,583 0,001010 15,2581 188,41 2248,40 2436,81 188,42 2394,77 2583,19 0,6386 7,5261 8,1647 50 0.001012 209.30 2234.17 2443.47 209.31 2382.75 2592.06 0.7037 7.3725 12,350 12.0318 8.0762 55 0,001015 9,56835 230,19 2219,89 2450,08 230,20 2370,66 2800,86 0.7679 7,2234 7,9912 15.758 2809.59 7,9095 60 0.001017 251.09 2205,54 2456,63 251,11 2358,48 0,8311 7,0784 19 941 7 67071 0.001020 2191.12 2463.12 2346.21 2618.24 0.8934 65 272.00 272.08 6.9375 7.8309 25.03 6.19656 70 31,19 0.001023 292,93 2176,62 2489.55 292,96 2333,85 2626,80 0.9548 6,8004 5.04217 7.7552 313,87 0,001026 2162,03 2475,91 313,91 2321,37 2835.28 1,0154 6,6670 75 38.58 4.13123 7.6824 2308,77 80 47,39 0.001029 3.40715 334.84 2147,36 2482,19 334,88 2643.66 1,0752 6,5369 7.6121 355,82 6,4102 0,001032 2132,58 2488,40 355,88 2296,05 2651.93 1,1342 飯 57.83 2.82757 7.5444 2117,70 90 2494,52 376,90 2283,19 2660,09 7,4790 0.001036 2.36058 376.82 1,1924 6,2868 70,14 95 84,55 0,001040 1,98186 397,86 2102,70 2500,56 397,94 2270,19 2668,13 1,2500 6,1659 7,4158 2067,58 419,02 100 101,3 0,001044 1,67290 418,91 2506.50 2257,03 2676,05 1,3068 6,0480 7,3548 105 120,8 0,001047 1,41936 440,00 2072,34 2512,34 440,13 2243,70 2683,83 1,3629 5,9328 7,2958 110 143,3 0,001052 1,21014 461,12 2056,96 2518,09 461,27 2230,20 2691,47 1,4184 5,8202 7,2386 115 169,1 0,001058 1,03658 482,28 2041,44 2523,72 432,46 2216,50 2698,96 1,4733 5.7100 7.1832 0,001060 503,48 2025,76 2529,24 503,68 2202,61 2706,30 1,5275 5,6020 120 198.5 0.89186 7.1295 125 232,1 0,001065 0,77059 524,72 2009,91 2534,63 524,96 2188,50 2713,46 1,5812 5,4962 7,0774 130 270,1 0,001070 0,66850 546,00 1993,90 2539,90 546,29 2174,16 2720,46 1,6343 5,3925 7,0269 313,0 0,001075 567,34 1977,69 2545,03 567,67 2159,59 2727,26 1,6869 5,2907 135 0.58217 6.9777 140 361,3 0,001080 0,50885 588,72 1961,30 2550,02 589,11 2144,75 2733,87 1,7390 5,1906 6,9298 1944,69 2129,65 2740,26 145 415,4 0.001085 0.44632 610,16 2554.86 610.61 1,7906 5,0926 6.8832 2559,54 2114,26 2746,44 150 475.9 0.001090 0.39278 631.66 1927.87 632.18 1.8417 4.9960 6.8378 543,1 0,001096 0,34676 653,23 1910,82 2584,04 653,82 2098,56 2752,39 1,8324 4,9010 155 6,7934 160 617,8 0.001102 0.30706 674,85 1883,52 2568.37 675,53 2082,55 2758.09 1,9426 4,8075 6.7501 696,55 165 700.5 0.001108 0.27269 1875.97 2572,51 697.32 2066,20 2763.53 1.9924 4,7153 6.7078 170 1858 14 2576,46 2049,50 2768,70 2,0418 4,6244 791.7 0.001114 0.24283 718.31 719.20 6,6683 892.0 0.001121 1840.03 2580.19 2032,42 2773.58 2.0909 4.5347 6,6256 175 0.21680 740,16 741,16 4,4461 180 1002.2 0,001127 0,19405 762,08 1821,62 2583,70 763,21 2014,96 2778.16 2.1395 6,5857

Fonte: Van Wylen (2009)

Tabela B.1.1 (continuação) Água saturada: tabela em função da temperatura

		Volume er (m³/		Ene	ergia inte (kJ/kg)	rna	Entalpia (kJ/kg)			Entropia (kJ/kg K)			
Temp. °C	Pressão kPa	Líquido sat.	Vapor sat.	Líquido sat	Evap.	Vapor sat.	Liquido sat.	Evap.	Vapor sat.	Líquido sat.	Evap.	Vapor sat.	
T	Р	Vj	ν,	u_l	u_{b}	U,	h,	h_{lr}	h,	Sj	$s_{l_{\ell}}$	8,	
185	1122,7	0,001134	0,17409	784,08	1802,90	2586,98	785,36	1997,07	2782,43	2,1878	4,3596	6,5464	
190	1254,4	0,001141	0,15654	806,17	1783,84	2590,01	807,61	1978,76	2786,37	2,2358	4,2720	6,5078	
195	1397,8	0,001149	0,14105	828,36	1764,43	2592,79	829,96	1959,99	2789,96	2,2835	4,1863	6,4697	
200	1553,8	0,001156	0,12736	850,64	1744,66	2595,29	852,43	1940,75	2793,18	2,3308	4,1014	6,4322	
205	1723,0	0,001164	0,11521	873,02	1724,49	2597,52	875,03	1921,00	2796,03	2,3779	4,0172	6,3951	
210	1906,3	0,001173	0,10441	895,51	1703,93	2599,44	897,75	1900,73	2796,48	2,4247	3,9337	6,3584	
215	2104,2	0,001181	0,09479	918,12	1682,94	2601,06	920,61	1879,91	2800,51	2,4713	3,8507	6,3221	
220	2317,8	0,001190	0,08819	940,85	1661,49	2602,35	943,61	1858,51	2802,12	2,5177	3,7683	6,2960	
225	2547,7	0,001199	0,07849	963,72	1639,58	2603,30	966,77	1836,50	2803,27	2,5639	3,6863	6,2502	
230	2794,9	0,001209	0,07158	996,72	1617,17	2603,89	990,10	1813,85	2803,95	2,6039	3,6047	6,2146	
235	3060,1	0,001219	0,06536	1009,88	1594,24	2604,11	1013,61	1790,53	2804,13	2,6557	3,5233	6,1791	
240	3344,2	0,001229	0,05976	1033,19	1570,75	2603,95	1037,31	1766,50	2803,81	2,7015	3,4422	6,1436	
245	3648,2	0,001240	0,05470	1056,69	1546,68	2603,37	1061,21	1741,73	2802,95	2,7471	3,3612	6,1083	
250	3973,0	0,001251	0,05013	1080,37	1522,00	2602,37	1085,34	1716,18	2801,52	2,7927	3,2802	6,0729	
255	4319,5	0,001263	0,04598	1104,26	1496,68	2600,93	1109,72	1689,80	2799,51	2,8382	3,1992	6,0374	
260	4688,6	0,001276	0,04220	1128,37	1470,64	2599,01	1134,35	1662,54	2796,89	2,8837	3,1181	6,0018	
265	5081,3	0,001289	0,03877	1152,72	1443,87	2596,60	1159,27	1634,34	2793,61	2,9293	3,0368	5,9661	
270	5496,7	0,001302	0,03564	1177,33	1416,33	2593,68	1184,49	1605,16	2789,65	2,9750	2,9551	5,9301	
275	5941,8	0,001317	0,03279	1202,23	1387,94	2590,17	1210,05	1574,92	2784,97	3,0208	2,8730	5,8337	
280	6411,7	0,001332	0,03017	1227,43	1358,66	2586,09	1235,97	1543,55	2779,53	3,0667	2,7903	5,8570	
285	6909,4	0,001348	0,02777	1252,98	1328,41	2581,38	1262,29	1510,97	2773,27	3,1129	2,7069	5,8198	
290	7436,0	0,001366	0,02557	1278,89	1297,11	2575,99	1289,04	1477,08	2766,13	3,1593	2,6227	5,7821	
295	7992,8	0,001384	0,02354	1305,21	1264,67	2569,87	1316,27	1441,78	2758,05	3,2061	2,5375	5,7436	
300	8581,0	0,001404	0,02167	1331,97	1230,99	2562,96	1344,01	1404,93	2748,94	3,2533	2,4511	5,7044	
305	9201,8	0,001425	0,01996	1359,22	1135,94	2555,16	1372,33	1366,38	2738,72	3,3009	2,3633	5,6642	
310	9856,6	0,001447	0,01835	1387,03	1159,37	2548,40	1401,29	1325,97	2727,27	3,3492	2,2737	5,6229	
315	10547	0,001472	0,01687	1415,44	1121,11	2536,55	1430,97	1283,48	2714,44	3,3981	2,1821	5,5803	
320	11274	0,001499	0,01549	1444,55	1080,93	2525,48	1461,45	1238,64	2700,08	3,4479	2,0882	5,5361	
325	12040	0,001528	0,01420	1474,44	1038,57	2513,01	1492,84	1191,13	2683,97	3,4987	1,9913	5,4900	
330	12845	0,001561	0,01300	1505,24	993,68	2496,91	1525,29	1140,58	2665,85	3,5506	1,8909	5,4416	
335	13694	0,001587	0,01186	1537,11	945,77	2482,88	1558,98	1096,37	2645,35	3,6040	1,7863	5,3903	
340	14588	0,001638	0,01080	1570,26	894,26	2464,53	1594,15	1027,86	2622,01	3,6593	1,6763	5,3356	
345	15525	0,001685	0,00978	1605,01	838,29	2443,30	1631,17	964,02	2595,19	3,7169	1,5594	5,2763	
350	16514	0,001740	0,00881	1641,81	776,58	2418,39	1670,54	893,38	2563,92	3,7776	1,4336	5,2111	
355	17554	0,001807	0,00787	1681,41	707,11	2388,52	1713,13	813,59	2526,72	3,8427	1,2951	5,1378	
360	18651	0,001892	0,00694	1725,19	626,29	2351,47	1760,48	720,52	2481,00	3,9146	1,1379	5,0525	
365	19807	0,002011	0,00599	1776,13	526,54	2302,67	1815,96	605,44	2421,40	3,9983	0,9487	4,9470	
370	21028	0,002213	0,00493	1843,84	384,69	2228,53	1890,37	441,75	2332,12	4,1104	0,6868	4,7972	
374,1	22069	0,003155	0,00315	2029,58	0,00	2029,58	2099,26	0,00	2099,26	4,4297	0,0000	4,4297	