Influência das bandejas de polietileno e bandejas de isopor novas e reutilizadas na produção de mudas de alface.

Willian Henrique Aparecido de Souza^{1*}; Cornélio Primieri¹

¹Curso de Agronomia, Universitário Assis Gurgacz (FAG), Cascavel, Paraná. ^{1*}willianhap8807@gmail.com

Resumo: O objetivo desse experimento foi comparar o desenvolvimento das mudas de alface através de bandejas de isopor e polietileno utilizadas para o plantio. O experimento foi conduzido em sistema protegido localizado na Fazenda Escola do Centro Universitário Assis Gurgacz, na cidade de Cascavel — Paraná, entre os dias 10 de dezembro de 2019 e 13 janeiro de 2020. O delineamento utilizado foi inteiramente casualizado (DIC), com quatro tratamentos e cinco repetições, totalizando 20 amostras. Os tratamentos foram: T1: testemunha (bandeja de isopor nova); T2: bandeja de isopor reutilizada; T3: bandeja de isopor esterilizada e T4: bandeja de polietileno. Os parâmetros avaliados foram comprimento da parte aérea, comprimento da raiz e massa fresca e seca da parte aérea e da raiz. O uso de bandeja esterilizada e a bandeja de polietileno nova foram as que apresentaram os melhores resultados para ambos os parâmetros em todos os tratamentos testados.

Palavras-chave: Hortaliças; Desenvolvimento; Produção.

Influence of new and reused polyethylene trays and Styrofoam trays on lettuce seedling production.

Abstract: The objective of this experiment was to compare the development of lettuce seedlings using Styrofoam and polyethylene trays used for planting. The experiment was conducted in a protected system located at the School Farm of the Centro Universitário Assis Gurgacz, in the city of Cascavel - Paraná, between December 10, 2019 and January 13, 2020. The design used was completely randomized (DIC), with four treatments and five repetitions, totaling 20 samples. The treatments were: T1: control (new Styrofoam tray); T2: reused Styrofoam tray; T3: sterilized styrofoam tray and T4: polyethylene tray. The parameters evaluated were shoot length, root length and fresh and dry shoot and root mass. The use of a sterile tray and a new polyethylene tray showed the best results for both parameters in all treatments tested.

Keywords: Vegetable. Seedlings. Production.

Introdução

A produção de hortaliças na região Oeste do Paraná aos poucos vai ganhando destaque, aumentando a renda do produtor rural, principalmente do pequeno produtor que não dispõe de áreas para produção de grãos. Na produção de alface o desenvolvimento inicial das mudas é a fase mais importante da produção dessa hortaliça e os produtores que até então utilizavam-se de bandejas de isopor estão migrando para bandejas de plástico em substituição as mesmas.

Segundo Sales *et al.* (2014) a alface é uma olerícola herbácea anual reconhecida por ser uma planta de clima temperado e introduzida pelos portugueses no Brasil a partir do século XVI. É usualmente cultivada em quase todo o território nacional e por ser rica em vitaminas e sais minerais é considerada de grande importância na alimentação, sendo uma das hortaliças folhosas mais consumida pelos brasileiros, essa hortaliça tem impacto na economia do país (AQUINO *et al.*, 2017).

Seu plantio pode ser limitado para algumas épocas do ano por ser oriunda de regiões de temperaturas amenas, quando exposta a altas temperaturas caso não utilizadas cultivares que são adaptadas, pode ocorrer problemas relacionados à fisiologia de desenvolvimento da planta e também ocorrência de pragas e doenças ocasionadas (FERREIRA *et al.*, 2018) .

A produção de mudas é caracterizada como uma das etapas mais importantes do ciclo produtivo da alface (LIMA *et al.*, 2017). Existem diferentes métodos de plantio para essa hortaliça sendo destacados o direto e o em bandejas, entre esses métodos se sobressai respectivamente o último, pois é o melhor método que existe no mercado para o preparo de mudas, por possibilitar melhor qualidade no resultado das mesmas que através deste manuseamento apresentam-se mais sadias, ocupam menor espaço e exigem menos mão de obra, além de ter maior aproveitamento das sementes e mudas (SOUZA e FRACARO, 2016).

De acordo com Silva *et al.* (2017) as bandejas evitam a competição entre plantas e diminuem o estresse das raízes durante o processo de transplante, há no mercado bandejas de poliestireno e polietileno, apresentando variações de uso entre os produtores, sendo que as primeiras bandejas produzidas foram de poliestireno expandido (isopor), e chegaram ao Brasil por volta da década de 90. Atualmente, prevalece o uso de bandejas de polietileno (plástico), sendo que essas são produzidas em plástico rígido podendo ser retornadas aos viveiros após o transplante, apresentando facilidade na sua limpeza (LIMA *et al.*, 2017).

As bandejas devem ser preenchidas com substratos porosos, inertes e livres de doenças com características que favoreçam o eficaz desenvolvimento das raízes em função da adequada retenção de água, boa aeração, alta disponibilidade de nutrientes, baixo custo e longa durabilidade é fundamental no processo de produção das mudas (SILVA e QUEIROZ, 2014).

Segundo Balan *et al.* (2015) os substratos hortícolas, dividem-se em duas grandes categorias: os minerais e os orgânicos. Ainda de acordo com Balan os minerais apresentam como maior vantagem sua inércia química, como exemplo, a areia, vermiculita e a lã de rocha e orgânicos, a turfa, casca de arroz, casca de café, palha e serragens, já os de origem orgânica podem sofrer alguma decomposição durante o período em que estão em contato com as raízes das plantas e se essa decomposição for intensa, pode modificar o equilíbrio mineral do meio radicular. Para Cunha *et al.* (2014) os substratos de fontes orgânicas são responsáveis pela maior retenção de água e pelo fornecimento da maior parte dos nutrientes essenciais para o crescimento das mudas.

Diante disso o objetivo do trabalho foi comparar o desenvolvimento das mudas de alface através de bandejas de isopor e polietileno utilizadas para o plantio.

Material e Métodos

O experimento foi conduzido em sistema protegido localizado na Fazenda Escola do Centro Universitário Assis Gurgacz, na cidade de Cascavel-PR, possuindo as seguintes coordenadas geográficas, longitude 53° 27' 19'' oeste e latitude 24° 57' 21'' sul, estando a 782 metros do nível do mar.

O clima em todo Oeste do Paraná na classificação Köppen-Geiger é Cfa (clima temperado úmido com verão quente), apresentando uma temperatura média anual de 19°C (APARECIDO *et al.*, 2016).

O solo da região, por sua vez, é classificado como Latossolo Vermelho Distroférrico de textura argilosa e relevo suave ondulado (EMBRAPA, 2013).

O delineamento utilizado foi inteiramente casualizado (DIC), com quatro tratamentos e cinco repetições, totalizando 20 amostras. Os tratamentos foram: T1: testemunha (bandeja de isopor nova); T2: bandeja de isopor reutilizada; T3: bandeja de isopor esterilizada e T4: bandeja de polietileno.

Foram utilizadas bandejas de 200 células em isopor destinadas a produção de mudas de hortaliças, adquiridas no comércio local. As bandejas de isopor reutilizadas e bandejas de isopor esterilizadas já estão em uso por um produtor de hortaliças. Foi utilizada a cultivar de alface crespa alface gloriosa (*Lechuga Gloriosa*).

A semeadura das sementes foi realizada no dia 10 de dezembro de 2019, sendo utilizada a cultivar de alface americana. Foram plantadas uma semente em cada célula das bandejas. As bandejas foram preenchidas com substratos comercial específico para produção de hortaliça.

Após 30 dias da semeadura foram coletadas 20 mudas de alface de forma aleatória, por unidade experimental para avaliação, sendo que as raízes foram lavadas em água corrente para a retirada do substrato aderido. Os parâmetros avaliados foram altura da parte aérea e comprimento da raiz, com auxílio de uma régua graduada em milímetros, medindo-se da base da planta até o ápice da última folha completamente expandida. Além disso, foram avaliados massa fresca e seca da parte aérea e da raiz, na determinação da fitomassa seca as plantas foram colocadas em uma estufa a 60 °C, sendo retiradas quando apresentaram fitomassa constante, as quais foram pesadas em gramas com a utilização de balança de precisão.

Os resultados obtidos foram submetidos à análise de variância (ANOVA) e as médias comparadas pelo teste de Tukey ao nível de 5% de significância, com auxílio do programa estatístico ASSISTAT 7.7 (SILVA e AZEVEDO, 2016).

Resultados e Discussões

De acordo com a Tabela 1, observa-se no parâmetro comprimento da raiz que não houve diferença estatística entre os tratamentos em níveis de 5 % de significância pelo teste de Tukey, em ambos os tratamentos testados. Apenas no parâmetro comprimento da parte aérea ocorreram diferenças estatísticas.

Tabela 1 – Variáveis: comprimento da raiz (cm), comprimento da parte aérea (cm).

Tratamentos	comprimento da raiz	comprimento da parte aérea
	(cm)	(cm)
T1	6,37 a	2,54 b
T2	6,70 a	3,20 ab
T3	7,38 a	3,70 a
T4	7,71 a	3,66 a
CV %	11,32	15,95

Médias seguidas de uma mesma letra não diferem pelo teste Tukey à 5% de significância. T1= bandeja de isopor nova. T2= bandeja de isopor reutilizada. T3= bandeja de isopor esterilizada. T4= bandeja de polietileno. Fonte: o autor (2020).

De acordo com a Tabela 1, pode ser verificado que não ocorreram diferenças estatísticas em níveis de 5% de significância pelo teste de Tukey, entre os tratamentos testados para o parâmetro comprimento da raiz.

Balan *et al* (2015) comparou quatro tipos de bandeja visando a produção de mudas de alface e constatou que houve diferenças significativas em níveis de 5 % de significância pelo teste de Tukey no parâmetro comprimento da raiz das mudas de alface entre as bandejas de isopor e as descartáveis. O que difere com os resultados obtidos na Tabela 1.

Conforme a Tabela 1 verifica-se que houve diferenças estatísticas em níveis de 5 % de significância pelo teste de Tukey no parâmetro comprimento da parte aérea, onde os tratamentos bandeja de isopor reutilizada, bandeja de isopor esterilizada e bandeja de polietileno nova ficaram estatisticamente iguais entre si, onde apenas o tratamento bandeja de isopor nova apresentou menor resultado neste parâmetro.

Silva *et al* (2017) em sua pesquisa onde testaram a formação de mudas de alface em diferentes bandejas e substratos não encontraram diferenças significativas em níveis de 5 % pelo teste de Tukey para o parâmetro comprimento da parte aérea das mudas, já com relação ao comprimento da raiz houve diferença significativa entre as bandejas. O que vem a diferir do experimento de acordo com a Tabela 1.

De acordo com a Tabela 2, observa-se no parâmetro massa fresca da raiz que houve diferença estatística em níveis de 5 % de significância pelo teste de Tukey, onde os tratamentos bandeja de isopor esterilizada e polietileno nova obtiveram o mesmo resultado, já o tratamento bandeja de isopor reutilizada seguido pelo tratamento bandeja de isopor esterilizada foram iguais entre si, onde apenas o tratamento bandeja de isopor nova apresentou menor resultado neste parâmetro.

Tabela 2 – Variáveis: massa fresca da raiz (g), massa seca da raiz (g).

Tratamentos	massa fresca da raiz	massa seca da raiz
	(g)	(g)
T1	1,70 c	0,35 b
T2	3,44 bc	0,42 ab
T3	4,80 ab	0,53 a
T4	6,94 a	0,54 a
CV %	30,88	20,16

Médias seguidas de uma mesma letra não diferem pelo teste Tukey à 5% de significância. T1= bandeja de isopor nova. T2= bandeja de isopor reutilizada. T3= bandeja de isopor esterilizada. T4= bandeja de polietileno. Fonte: o autor (2020).

Conforme a Tabela 2 verifica-se que houve diferenças estatísticas em níveis de 5 % de significância pelo teste de Tukey no parâmetro massa seca da raiz, onde os tratamentos bandeja de isopor reutilizada, bandeja de isopor esterilizada e bandeja de polietileno nova, ficaram estatisticamente iguais entre si, onde apenas o tratamento bandeja de isopor nova apresentou menor resultado neste parâmetro.

Balan *et al* (2015 observou em seu estudo como resultado diferenças estatísticas significativas entre os tipos de bandeja em níveis de 5 % de significância pelo teste de Tukey no parâmetro massa fresca da raiz das mudas de alface . O que corrobora com resultados obtidos na Tabela 2.

Silva *et al* (2017) obteve como resultado em sua pesquisa diferenças estatísticas significativas entre os tipos de bandeja em níveis de 5 % de significância pelo teste de Tukey no parâmetro massa seca da raiz, pois a massa seca do sistema radicular foi superior para as bandejas de isopor quando comparado com as bandejas de polietileno. O que difere com os resultados obtidos na Tabela 2.

De acordo com a Tabela 3, observa-se no parâmetro massa fresca da parte aérea que não houve diferença estatística em níveis de 5 % de significância pelo teste de Tukey, em ambos os tratamentos testados.

Tabela 3 – Variáveis: massa fresca da parte aérea (g), massa seca da parte aérea (g).

Tratamentos	massa fresca da parte aérea	massa seca da parte aérea
	(g)	(g)
T1	5,30 a	0,84 b
T2	7,48 a	1,21 ab
T3	8,80 a	1,34 a
T4	9,20 a	1,00 ab
CV %	40,32	21,19

Médias seguidas de uma mesma letra não diferem pelo teste Tukey à 5% de significância. T1= bandeja de isopor nova. T2= bandeja de isopor reutilizada. T3= bandeja de isopor esterilizada. T4= bandeja de polietileno. Fonte: o autor (2020).

Conforme a Tabela 3, verifica-se que houve diferenças estatística em níveis de 5 % de significância pelo teste de Tukey no parâmetro massa seca da parte aérea, onde os tratamentos bandeja de isopor reutilizada, bandeja de isopor esterilizada e bandeja de polietileno nova, ficaram estatisticamente iguais entre si, sendo que os tratamentos bandeja de isopor reutilizada e bandeja de polietileno também tiveram o mesmo resultado, onde apenas o tratamento bandeja de isopor nova apresentou menor resultado neste parâmetro.

Balan *et al* (2015) não encontram diferenças estatísticas significativas em níveis de 5% de significância pelo teste de Tukey, para o parâmetro massa fresca da parte aérea das mudas de alface o que demonstra que os diferentes tipos de bandejas influenciaram no crescimento da parte aérea das mudas de alface. O que corrobora com resultados obtidos na Tabela 3.

Silva *et al* (2017) observou em seu estudo diferenças estatísticas significativas entre os tipos de bandeja em níveis de 5 % de significância pelo teste de Tukey no parâmetro massa seca da parte aérea, pois a massa seca da parte foi superior para as bandejas de isopor quando comparado com as bandejas de polietileno. O que corrobora com os resultados obtidos na Tabela 3, que apresentou maiores resultado para as bandejas de isopor esterilizada e reutilizada.

Conclusão

Conclui-se com esse trabalho que o uso de bandeja esterilizada e a bandeja de polietileno nova foram as que apresentaram os melhores resultados para ambos os parâmetros em todos os tratamentos testados.

Referências

- APARECIDO, L. E. O, ROLIM, G. S., RICHETTI, J., SOUZA, P. S., JOHANN, J. A.; Köppen, Thornthwaite and Camargo climate classifications for climatic zoning in the Stae of Paraná, Brasil. **Ciência e Agrotecnologia**, v.40, n. 4, p. 405-417, 2016.
- AQUINO, F. C.; SILVA, H. P.; NEVES, J. M. G.; COSTA, A. C.; AQUINO, F. F.; COSTA, C. P. M. Desempenho de cultivares de alface sob cultivo hidropônico nas condições do norte de minas gerais. **Revista Brasileira de Agricultura irrigada**, v.11, n.3, p. 1382 1388, 2017.
- BALAN, J. A. O.; OIKAWA, S. M.; VERNILO, G. C.; PRADELA, V. A. Comparação de quatro tipos de bandejas visando a produção de mudas de alface. **Colloquium Agrariae.** vol. 11, n. Especial, p. 23-29, 2015.
- CUNHA, C.; GALLO, A. S.; GUIMARÃES, N. F.; SILVA, R. F. Substratos alternativos para produção de mudas de alface e couve em sistema orgânico. **Scientia Plena**. v. 10, n. 11, 2014.
- EMPRESA BRASILEIRA DE PESQUISA AGROPECUÁRIA. **Sistema Brasileiro de Classificação de Solos.** 3 ed. Ver. ampl. Brasília: EMBRAPA, 2013, p. 353.
- FERREIRA, T. A.; TAVARES, A. T.; SILVA, E. H. C.; VENTURA, L. V. R.; NASCIMENTO, I. R. Reação de cultivares de alface a Meloidogyne raça 1 e 2, em condições de temperatura elevada. **Pesquisa Aplicada & Agrotecnologia**. v.11, n.3, p.31-39, 2018.
- LIMA, T. J. L.; CECCHERINI, G. J.; SALA, F. C; PEIXOTO, C. Mudas de *Lactuca Sativa L*. produzidas em diferentes formatos e volumes de bandejas. **Revista Científica UNAR**. v.15, n. 2, p.117-125, 2017.
- SALES, F. A. L.; FILHO, J. A. D. B.; BARBOSA, J. P. R. A. D; VIANA, T. V. A.; FREITAS, C. A. S. Telas agrícolas como subcobertura no cultivo de alface hidropônica. 2014. **Ciência Rural**. v.44, n.10, p.1755-1760, 2014.
- SILVA, A. C.; SILVA, V. S. G.; MANTOVANELLI, B. C.; SANTOS, G. M. Formação de mudas de alface em diferentes bandejas e substrato. **Revista da Universidade Vale do Rio Verde**. v. 15, n. 1, p. 465-471, 2017.
- SILVA, E. C., QUEIROZ, R. L. Formação de mudas de alface em bandejas preenchidas com diferentes substratos. **Biosci. J.** v.30, n.3, p. 725-729, 2014.
- SILVA, F. A. S.; AZEVEDO, C. A. V. The Assistat Software Version 7.7 and its use in the analysis of experimental data. **African Journal of Agricultural Research,** v. 11, n. 39, p. 3733-3740, 2016.

SOUZA, D. E.; FRACARO, A. A. **Análise das perdas na produção de mudas de alface no município de Jales**. VIII Sintagro – Simpósio Nacional de Tecnologia em Agronegócio.2016. Disponível em: < http://www.fatecjales.edu.br/sintagro/images/anais/tematica2/analise-dasperdas-na-producao-de-mudas-de-alface-no-municipio-de-jales.pdf>. Acesso em: 25 de ago. de 2019.