DESEMPENHO ZOOTÉCNICO DE TILÁPIAS DO NILO CRIADAS EM TANQUE ESCAVADO SOB BAIXA TEMPERATURA NO MUNICÍPIO DE NOVA AURORA/PR

MORETTI, Gessica Adriana¹ GERALDO JUNIOR, Edvaldo²

RESUMO

Objetivou-se neste experimento avaliar o desempenho zootécnico de tilápias do Nilo, (*Oreochromisniloticus*) criadas em tanque escavado no município de Nova Aurora, região Oeste do Paraná. Durante o estudo, foi utilizado um lote de tilápias do Nilo com peso médio inicial de 801,83 g e comprimento total de 31,38 cm. O cultivo ocorreu em um tanque escavado, com área total de 3.500 m² de lâmina d'água, com renovação de água constante e uso de aerador elétrico. O período de experimento ocorreu entre os meses de agosto a outubro de 2019. Os peixes foram alimentados com ração comercial contendo 32% de proteína bruta, utilizando três tipos de ração com granulometrias diferentes de acordo com o crescimento dos peixes, sendo alimentados duas vezes ao dia com uma taxa de arraçoamento diária 1,4% da biomassa total dos tanque. As médias dos parâmetros de qualidade de água foram: temperatura 19,7 °C, oxigênio dissolvido 4,8 mg/L, pH 6,6 e amônia 1 ppm. As tilápias apresentaram uma taxa de crescimento médio de 131,6 g e conversão alimentar de 1:1,6. Este estudo demonstrou que tilápias do Nilo criadas em tanque escavado no município de Nova Aurora apresentaram boa taxa de crescimento no término do inverno e início da primavera.

PALAVRAS-CHAVE: Tilapicultura, desempenho zootécnico, produção, conforto térmico, desenvolvimento no frio.

1. INTRODUÇÃO

A piscicultura é uma atividade crescente dentre as pequenas propriedades rurais, uma vez que é uma atividade que gera receita extra para agregar a renda familiar. Segundo De Barros *et al.* (2011), a pratica da piscicultura ocorre em todas os estados brasileiros, e se diferenciam de acordo com o sistema de produção, as espécies e os volumes produzidos.

O Brasil se destaca na piscicultura mundialmente, devido alguns fatores essenciais como o clima quente, a vasta extensão territorial, a disposição de água, a produção de grãos e a infraestrutura. A espécie que mais se destaca na produção é a Tilápia do Nilo, devido sua adaptabilidade a diversas condições ambientais, atingindo rápido desempenho produtivo, além de apresentar grande rusticidade e boa aceitação pelo mercado consumidor (KUBITZA, 2009).

Segundo Kubitza (2009), a produção brasileira ocorre basicamente em viveiros, ou seja, tanques de terra, e em tanques rede. As tilápias atingem um peso médio comercial de 600g á 1 kg, em um período de 6 e 10 meses, a partir de alevinos com 0,5 g.

A criação de tilápias em tanque escavado é vantajosa, quando possibilita o uso mínimo de água além da descarga de efluentes. Pois através do reaproveitamento da água entre os cultivos, e a combinação do uso de alimento suplementar de baixo custo e o plâncton presentes nos viveiros,

¹Instituição: Discente do Centro Universitário da Fundação Assis Gurgacz. E-mail: gessicamoretti@hotmail.com

²Instituição: Docente do Centro Universitário da Fundação Assis Gurgacz. E-mail: edvaldogeraldojr@gmail.com

possibilita um melhor proveito de nutrientes administrados via fertilizantes e ração, e ocorre uma maior fixação de carbono através do plâncton. Isso permitirá uma produção com baixo custo, o que gera vantagens na produção de tilápias em comparação a outros pescados disponíveis no mercado (KUBTZA, 2009).

O Paraná se destaca na produção psícola nacional, atingindo 98 mil toneladas em 2017, da qual 91,7 mil toneladas foram originadas da produção de tilápias. O oeste Paranaense produz a maior parte do total de todo o estado, e em 2017 atingiu um abate e processamento de 160 toneladas de tilápias por dia, destinadas para 24 indústrias, na qual o filé predominou como produto final. A região oeste se destaca por representar cerca de 73% da produção do estado e em torno de 10% da produção brasileira, com destaque para a tilapicultura (KRAUSE, 2018).

Sendo assim, o objetivo deste trabalho foi acompanhar o desempenho zootécnico de tilápias do Nilo criadas em tanque escavado, no município de Nova Aurora – PR.

2. FUNDAMENTAÇÃO TEÓRICA

2.1 PISCICULTURA

A piscicultura é um dos ramos da produção animal que mais cresce no mundo, perfazendo 52,5% da produção total de organismos aquáticos (FAO, 2018). Da mesma forma, a produção brasileira vem apresentando um crescimento vertiginoso nos últimos anos, no qual destaca-se mundialmente como o quarto maior produtor de tilápia, perdendo apenas para a China que lidera a produção mundial, seguida pela Indonésia e Egito (PEIXE BR, 2019). No ano de 2018 a produção de peixes Brasileira chegou a 722 mil toneladas, o que corresponde um aumento de 4,5% em comparação com o ano anterior (PEIXE BR, 2019).

O peixe contribui para a alimentação em diversas regiões, sendo uma fonte de proteína animal, além de outros nutrientes essenciais. No ano de 2006, foi consumido mais de 75% da produção mundial de peixes, o equivalente a uma média de 16,7 quilos anual por pessoa, e estimasse que até 2030 o consumo deve chegar a 20 quilos anual por pessoa (AES, 2013).

Segundo o Instituto Earth Policy (2013), a produção de pescado mundial cultivou 66 milhões de toneladas, ultrapassando a produção de carne bovina 63 milhões de toneladas. Parte desta atribuição é decorrente do aumento das áreas de cultivo, de melhoramento genético das espécies utilizadas no cultivo, e de auxilio de novas tecnologias.

A piscicultura tem grande potencial no Brasil, devido a sua extensão costeira, à sua zona econômica exclusiva e a sua dimensão territorial, que possui aproximadamente 13% da água doce renovável do planeta, além do país dispor de excelentes condições naturais, um clima propício e pela sua matriz energética (DA ROCHA *et al.*, 2013).

De acordo com Peixe-BR (2019), o estado do Paraná se tornou o maior produtor de peixes de cultivo, atingindo em 2018, cerca de 129.900 toneladas, com um aumento de 16% em relação ao ano de 2017. São Paulo se destaca em segundo lugar, com 73.200 mil toneladas, que cresceu 5.3% se comparada ao ano de 2017. Já a terceira posição, com 72.800 mil toneladas, pertence ao estado de Rondônia, no qual apresentou um decréscimo sobre o ano anterior (PEIXE-BR, 2019).

2.2 TILAPICULTURA

Algumas características fazem com que as tilápias sejam uma das espécies mais cultivadas comercialmente, são elas: a facilidade na reprodução e obtenção dos alevinos, reversão sexual, a aceitação dos diversos tipos de alimentação, a grande habilidade de aproveitar alimentos naturais em viveiros, a excelente conversão alimentar, bom crescimento quando cultivadas em sistema intensivo onde atingem rápido desempenho produtivo, a grande rusticidade, a grande características de suportar bem o intenso manuseio e os baixos níveis de oxigênio dissolvido durante a produção, e acima de tudo, sua grande resistências ás doenças, e a carne branca sem espinhos, com textura firme, com sabor pouco acentuado e com agradável aceitação comercial (KUBITZA, 2000).

A tilápia do Nilo pode ser criada em variáveis tipos de ambiente, fechados ou abertos, em água doce, marinha ou salobra, utilizando diferentes tecnologias para o cultivo (FURUYA *et al.*, 2010). Segundo Pezzato *et al.* (2004), as tilápias possuem hábito alimentar onívoro, possui grande habilidade para utilizar nutrientes e energia, tanto de origem animal quanto de origem vegetal, o que possibilita o uso rações formuladas com uso de dietas práticas com baixo custo ao produtor, e alto índice do valor nutricional ao peixe.

Segundo Peixe-BR (2019), o estado do Paraná é o maior produtor de tilápia do Brasil, que atingiu a produção de 123.00 toneladas, sendo que a tilápia do Nilo representa 94% da produção total dos peixes cultivados. O segundo maior estado produtor de tilápias é o estado de São Paulo, cuja tilápia representa 95% da produção do estado, o que equivale á 69.500 toneladas. O terceiro estado com maior produção de tilápias é Santa Catarina, produzindo 33.800 toneladas (PEIXE-BR, 2019).

Do total da produção de tilápias no estado do Paraná, 73% concentrasse na região oeste do estado, dentro a qual 57% da produção total do estado é decorrente das dez cidades mais produtoras

do estado (Tabela 1), as quais nove delas estão localizadas na região oeste do Paraná (LUCIZANI, 2018).

Tabela1- As dez cidades que lideraram o ranking de produção de tilápias no Paraná em 2018.

CIDADES	PRODUÇÃO (KG)	
Nova Aurora	8.670.979	
Maripá	7.220.000	
Assis Chateubriand	7.000.000	
Toledo	6.600.000	
Palotina	6.500.000	
Nova Santa Rosa	5.000.000	
Cafelândia	2.806.000	
Alvorada do Sul	3.653.250	
Terra Roxa	2.700.000	
Marechal Candido Rondon	1.850.000	
TOTAL	52.000.229	

Fonte: Lucizani (2018).

3. MATERIAIS E MÉTODOS

O experimento realizado recebeu aprovação da COMISSÃO DE ÉTICA DO USO DE ANIMAIS (CEUA/FAG), do Centro Universitário Assis Gurgacz, na reunião de 29/08/2019 protocolo nº 1919, de acordo com as normas editadas pelo Conselho Nacional de Controle da Experimentação Animal (CONCEA), descrito na Lei de nº 11.794, de 8 de outubro de 2008.

O acompanhamento do desempenho zootécnico das tilápias ocorreu em uma propriedade rural, localizada no Município de Nova Aurora, oeste do Paraná. O presente estudo foi realizado durante o período de transição da estação de inverno para a primavera, totalizando 69 dias de experimentação.

Para o experimento, foi utilizado um lote de tilápias do Nilo (*Oreochromisniloticus*), alojadas em um tanque escavado de renovação constante de água, com aproximadamente 3.500 m^2 de lâmina d'água, numa densidade de 4,57 peixes por m², totalizando 16.000 peixes. O peso médio inicial foi de $801,83\pm230,71$ g o comprimento padrão inicial foi $25,83\pm3,61$ cm o comprimento total inicial foi de $31,38\pm2,59$ cm, a altura média inicial de $11,16\pm1,31$ cm, largura média de $4,82\pm0,49$ cm.

Os peixes foram alimentados com três tipos de rações comerciais com 32% de Proteína Bruta, com granulometrias iguais a 8mm, 10mm e 12mm de acordo com o crescimento dos peixes, sendo todos os tipos de rações extrusadas. Para alimentação foi fornecidos uma taxa de arraçoamento diária de 1,4% da biomassa do tanque, sendo administradas duas vezes ao dia.

A cada sete dias foi realizada a captura, utilizando-se de uma tarrafa, de alguns exemplares de tilápia, sendo selecionado aleatoriamente, uma amostra de 30 peixes para biometria. Para o manejo foi utilizado um reservatório com 60 litros de água dissolvidos em 6 gotas de óleo de cravo concentrado, onde os peixes foram emergidos durante um período médio de 3 minutos. Segundo Inoue&Moraes (2007), esta pratica é necessária para a imobilização dos indivíduos, pois a movimentação excessiva do manejo pode gerar acidentes aos peixes como quedas bruscas ou impactos em superfícies duras, além de dificultar a coleta de dados.

Os dados coletados foram: Peso (g), Comprimento total (cm), Comprimento padrão (cm), Altura (cm) e Largura (cm), utilizando uma balança digital (0,1) uma fita métrica, e um paquímetro graduado em centímetros, respectivamente. Também foram analisados os seguintes parâmetros físicos e químicos da água: temperatura, pH, amônia e oxigênio dissolvido, através do uso de um termômetro a laser digital com infravermelho, um teste de pH para água, um teste de amônia para água e um medidor de oxigênio dissolvido, respectivamente.

Em posse destes dados, será calculado a conversão alimentar aparente, ganho de peso, e consumo médio de ração. No qual foi utilizado o programa Excel (2013) para tabular os dados, fazer as médias e o desvio padrão, além da taxa de crescimento e a conversão alimentar.

4. ANÁLISES E DISCUSSÃO DOS RESULTADOS

Os parâmetros químicos e físicos da água (Temperatura, pH, Amônia, e Oxigênio Dissolvido) apresentaram as seguintes médias ao longo da pesquisa: 19,7 °C; 6,6 mg/L; 1 ppm; 4,8 mg/L; respectivamente. Estando dentro da faixa recomendada para a espécie (KUBTZA, 2000). Segundo o mesmo autor, a temperatura da água ao atingir temperaturas abaixo de 20 °C o apetite reduz, de forma significativa, além de se tornarem mais susceptível ás doenças e ao manuseio. Para Meurer (2002), a qualidade da água esta diretamente relacionada com o desempenho zootécnico dos peixes. Os parâmetros de qualidade da água mais avaliados são: oxigênio dissolvido, a temperatura, o pH, o nitrogênio amoniacal, amônia e a alcalinidade. Na produção de tilápias a temperatura se destaca como um fator muito importante para o desenvolvimento, pois os peixes são pecilotérmicos, ou seja sua capacidade de manutenção da temperatura corporal, relacionasse com a temperatura da água, desta forma necessitam de um temperatura ideal para seu desenvolvimento (MEURER, 2002). Segundo Kubitza (2000) as tilápias possuem um conforto térmico ideal entre 27 a 32°C, qualquer temperatura acima o abaixo destas, acarreta na diminuição do apetite e crescimento.

Devido um determinado período da pesquisa, ter ocorrido durante a estação do inverno, havia a probabilidade dos dados coletados sob a temperatura serem inferiores as temperaturas ideais para o desenvolvimento das tilápias. Segundo Alexandre Filho (2008) relata, em seu trabalho, que existe um retardo no crescimento de tilápias nilóticas durante o período de inverno, em razão da diminuição do consumo alimentar, proporcionando um menor peso quando da saída do lote.

Para Kubitza (2000), a fase de criação das tilápias nilóticas durante a pesquisa é conhecida como quarta fase ou engorda, onde possui uma duração de 80 dias no qual os peixes atingem o peso de 450 g a 1000 g. Sendo assim os dados iniciais e finais obtidos na pesquisa estão tabulados na Tabela 2.

Tabela 2 – Médias biometrias iniciais e finais da pesquisa.

PARAMETROS	INICIAL	FINAL	DESVIO
			PADRÃO
Peso	801,83	933,43	± 230,71 g
Comprimento total	31,38	33,08	$\pm 2,59$ cm
Comprimento padrão	25,83	27,43	± 3,61cm
Altura	11,16	11,31	± 1,31 cm
Largura	4,82	5,13	$\pm 0.49 \text{ cm}$

Ao final do cultivo os animais apresentaram um ganho de peso de 131,6 g, sendo um ganho de peso diário de 1,9 g. O consumo total de ração ao longo dos 69 dias foi de 13.415,91 kg, sendo o consumo médio por peixe, durante o experimento foi de 838 g. Tendo em vista que a temperatura é um fator que interfere no desenvolvimento dos peixes, devido afetar diretamente o metabolismo do mesmo, altera o regime alimentar, o consumo de oxigênio dissolvido, a digestibilidade e como consequência interfere no desempenho produtivo (CAMPANA *et al.*, 1996), desta forma quando criadas sob baixas temperaturas podem não atingir, seu máximo potencial produtivo.

Os peixes apresentaram uma conversão alimentar aparente de 1:1,6. De acordo com Kubitza (1999), sob condições adequadas de temperatura, a conversão alimentar (CA) deve variar entre 1,3 a 1,5 podendo ocorrer piora nos índices de CA (1,5 a 1,7) como consequência uma redução na taxa de crescimento em virtude da diminuição no plâncton disponível e a redução na qualidade da água. Segundo Meurer (2002), a quantidade ingerida de alimento variam devido alguns fatores, mas principalmente decorre de acordo com a temperatura da água, da quantidade de arraçoamento e o tamanho do peixe. Por isto a importância de um manejo correto, com ela se evita o desperdício de alimento aumentando o desempenho dos peixes.

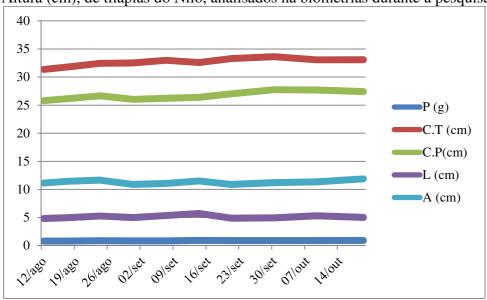


Gráfico 1- Evolução do Peso (g), Comprimento Total (cm), Comprimento Padrão (cm), Largura (cm), Altura (cm), de tilápias do Nilo, analisados na biometrias durante a pesquisa.

5. CONSIDERAÇÕES FINAIS

Estudos sobre aspectos físicos e químicos da água como a temperatura além de análises biométricas dos peixes são muito importante para acompanhar seu desempenho produtivo. Sendo assim o estudo demonstrou que o desenvolvimento da tilápia do Nilo durante o período da pesquisa se apresentou de forma linear crescente, visto que o início da pesquisa ocorreu no final do inverno e início da primavera, onde a temperatura sofre uma variação crescente.

Desta forma como o desempenho zootécnico das tilápias do Nilo dependeram da interferência da temperatura, os peixes não atingiram o máximo de seu potencial de desempenho, visto que não estavam em seu conforto térmico ideal.

REFERÊNCIAS

AGRICULTURE AND ENVIRONMENTAL SERVICES - **AES. Fish to 2030.** 2013 Disponível em: https://openknowledge.worldbank.org/bitstream/handle/10986/17579/831770WP0P11260ES 003000Fish0to02030.pdf?sequence=1. Acessado em: 14/10/2019.

ALEXANDRE FILHO, Luiz. **Desempenho Produtivo e Econômico da Tilápia do Nilo** (*Oreochromis Niloticus*) cultivada em tanques-rede nos períodos de inverno e verão, no Rio do Corvo-Paraná. 2008 Tese (Doutorado em Zootecnia). Universidade Estadual de Maringá, 2008.

CANPANA, S. E.; MOHN, R. K.; SMITH, S. J.; CHOUINARD, G. A. Spatial implications of a temperature-based growth model for Atlantic cod (*Gadus morhua*) off the eastern coast of Canada. Canadian Journal of Fisheries and Aquatic Sciences, 53: 2912-2914. 1996.

DA ROCHA, C. M. C.; DE RESENDE, E. K.; ROUTLEDGE E. A. B.; LUNDSTEDT L. M. Avanços na pesquisa e no desenvolvimento da aquicultura brasileira. **Pesquisa Agropecuária Brasileira.** v.48, n. 8, Brasília, 2013.

DE BARROS, A. F.; MARTINS, M. I. E. G.; DE SOUZA, O. M. Caracterização da piscicultura na microrregião da baixada cuiabana, Mato Grosso, Brasil. **Boletim do Instituto de Pesca.** v. 37, n. 3, p. 262-273, São Paulo, 2011.

EARTH POLICY INSTITUTE. **Farmed Fish Production Overtakes Beef** 2013. Disponível em: http://www.earth-policy.org/plan_b_updates/2013/update114. Acessado em: 14/10/2019.

FAO. The state of world fisheries and aquaculture. Meeting the sustainable development goals. Rome: 2018.

FURUYA, W. M. *et al.* **Tabelas brasileiras para a nutrição de tilápias.** Ajinomoto Animal Nutrition, São Paulo. 2010. 98p.

INOUE, L. A. K. A.; MORAES, G. Óleo de Cravo: Um Anestésico Alternativo para o Manejo de Peixes. **Empresa Brasileira de Pesquisa Agropecuária.** Manaus, julho, 2007.

KRAUSE, R. Oeste do Paraná é grande produtor de peixe. **O Presente Rural.** 2018 Disponível em: https://opresenterural.com.br/oeste-do-parana-e-grande-produtor-de-peixe/ Acessado em: 20/09/2019.

KUBITZA, F. Nutrição e Alimentação de Tilápias – Parte II – Final. **Panorama da Aquicultura**. Ed. 53, 1999.

KUBITZA, F. O status atual e as tendências da tilapicultura no Brasil. **Revista Panorama da Aquicultura.** Ed. 124, 2011.

KUBITZA, F. Produção de tilápias em tanques de terra e estratégias avançadas no manejo. **Revista Panorama da Aquicultura**. Ed. 115, 2009.

KUBITZA, F. Qualidade da água, sistemas de cultivo, planejamento da produção, manejo nutricional e alimentar e sanidade - Parte 1. **Panorama da Aquicultura**. v. 10, n. 59, maio/junho, 2000.

LUCIZANI, J. N. Oeste do Paraná em Números. Observatório territorial. Foz do Iguaçu, 2018.

MEURER, F. Produção de Tilápias. *In*: **Anais do XXIII congresso paranaense dos estudantes de zootecnia e XVIII semana da zootecnia**. Maringá, 2002.

PEXE BR, ASSOCIAÇÃO BRASILEIRA DE PISCICULTURA. Produção brasileira cresce 4,5% e atinge 722.560 t. **ANUÁRIO Peixe BR da Piscicultura 2019.** São Paulo: ABP, 2019, p. 12-16.

PEZZATO, L. E. *et al.* Nutrição de Peixes. In: CYRINO, J.E.P. *et al.* (Ed.). Tópicos **especiais em piscicultura de água doce tropical intensiva.** São Paulo: Tec Art, 2004. p.75-169.