Produtividade do milho no consorcio com braquiária

Walter Emmer Grasiany Bovino¹; Vivian Fernanda Gai;²

Resumo: A braquiária oferece vários benefícios para o solo além de fornecer alimento para animais. A *Brachiaria ruziziensis* é uma cultivar utilizada no consórcio com o milho, está cultivar tem se mostrado promissora em sua capacidade de descompactar o solo, aumentar níveis de matéria orgânica e produzir massa verde sem prejudicar a produtividade do milho. Desta forma o objetivo deste experimento foi avaliar o efeito de diferentes populações de braquiária sobre a descompactação do solo e produtividade do milho, juntamente com a produção de massa verde de braquiária. O experimento foi conduzido em uma propriedade rural no município de Rio Bonito do Iguaçu – Paraná, foi implantado em novembro de 2019 com término no mês de março de 2020. O delineamento utilizado foi em Blocos Casualizados (DBC), com seis tratamentos e quatro blocos, totalizando 24 unidades experimentais. Os tratamentos são: T1 – Testemunha, T2 – 2 kg ha⁻¹, T3 – 4 kg ha⁻¹, T4 – 6 kg ha⁻¹, T5 – 8 kg ha⁻¹, T6 – 10 kg ha⁻¹. Os seguintes parâmetros foram avaliados: Descompactação do solo pré-plantio e pós-colheita, produtividade do milho e produção de massa verde da *Brachiaria ruziziensis*. A produtividade do milho não foi afetada pelo consorcio de diferentes populações de *Brachiaria ruziziensis*, já a produção de massa verde de braquiária foi diretamente afetada pelas diferentes populações de sementes utilizadas na semeadura do experimento. A compactação do solo foi afetada positivamente havendo descompactação nas diferentes populações de sementes utilizadas na semeadura do consorcio milho-braquiária.

Palavras chave: Brachiaria ruziziensis; compactação do solo; massa verde.

Corn productivity in intercropping with brachiaria

Abstract: Brachiaria offers several benefits for the soil in addition to providing food for animals. Brachiaria ruziziensis is a cultivar used in the consortium with corn, this cultivar has shown promise in its ability to decompress the soil, increase levels of organic matter and produce green mass without harming the productivity of corn. Thus, the objective of this experiment was to evaluate the effect of different populations of brachiaria on soil decompression and corn productivity, together with the production of green mass of brachiaria. The experiment was conducted in a rural property in the municipality of Rio Bonito do Iguaçu - Paraná, it was implemented in November 2019 and ended in March 2020. The design used was in Randomized Blocks (DBC), with six treatments and four blocks, totaling 24 experimental units. The treatments are: T1 - Control, T2 - 2 kg ha-1, T3 - 4 kg ha-1, T4 - 6 kg ha-1, T5 - 8 kg ha-1, T6 - 10 kg ha-1. The following parameters were evaluated: Pre-planting and post-harvest soil unpacking, corn productivity and Brachiaria ruziziensis green mass production. Corn productivity was not affected by the intercropping of different populations of Brachiaria ruziziensis, whereas the production of green brachiaria was directly affected by the different populations of seeds used in sowing the experiment. Soil compaction was positively affected with decompression in the different populations of seeds used in sowing the corn-brachiaria intercropping.

Keywords: *Brachiaria ruziziensis*; soil compaction; green matter.

Introdução

Segundo Ceccon (2013) o consórcio milho braquiária vem se mostrando como uma alternativa na questão de aumento da produtividade agrícola, incremento na quantidade de palha e se mostra benéfico para o cultivo da soja em sucessão, aumentando o teor de matéria orgânica e trazendo melhorias nas propriedades químicas e físicas do solo.

Portanto, para dar continuidade a quantidade de palha exigida anualmente para o bom seguimento do sistema de plantio direto, é essencial a semeadura de culturas com bons índices de palhada, em quantidades adequadas e com processos que retardem a decomposição da cobertura (CECCON, 2013). Sendo assim deve-se ficar atento na escolha das espécies implantadas no cultivo de rotação ou sucessão, quanto à sua produção de massa seca e tempo de decomposição, características essas que estão intimamente ligadas aos atributos químicos do solo, dentre eles a CTC que afeta a dinâmica de cátions (ANDREOTTI *et al.*, 2008).

Existe viabilidade técnica e econômica da consorciação de milho com a forrageira (RICHETTI, 2012; GARCIA *et al.*, 2012). Entretanto, ainda existem dúvidas sobre a população adequada da braquiária para o cultivo, visando que as populações de plantas são estabelecidas com base em sementes puras viáveis (BRASIL, 1992), e nem sempre a população de plantas esperada é atingida, devido as condições adversas do campo.

Segundo Asmus, (2013) o consórcio milho-braquiária é uma tecnologia onde se cultivam as duas espécies juntas, tendo como objetivo a produção de grãos, palha de milho, palha de braquiária ou pasto.

A partir da colheita do milho no final do verão a forrageira tem objetivo de fornecer alimento para finalidade pecuária, e posteriormente, tem a função de formação de palhada para cobertura do solo, bem como o aumento de micro poros no solo através da grande massa do sistema radicular, gerando grandes benefícios para o sistema de plantio direto (ZANINE *et al.*, 2006).

O consórcio de culturas produtoras de grãos e forrageiras tropicais é possível, graças ao diferencial de tempo e espaço, no acúmulo de biomassa entre as espécies (KLUTHCOUSK e YOKOYAMA, 2003). De acordo com Jakelaitis *et al.* (2004), a competição existente entre as espécies pode inviabilizar o cultivo consorciado. Ainda segundo Kluthcousk e Yokoyama, (2003) o conhecimento no comportamento das espécies, pela competição por fatores de produção, torna-se de grande importância para o êxito na formação da pastagem no período de outono inverno, e para a produção satisfatória da cultura produtora de grãos.

O sistema vem sendo utilizado por alguns pesquisadores, os quais afirmam que, a forrageira não afeta a produção de grãos de milho (JAKELAITIS *et al.*, 2006). Portanto, o

consórcio, quando executado de maneira correta, propicia um aumento da quantidade de cobertura, melhorando a prática do plantio direto, ocasionando o aumento da produção da cultura subsequente, com a possibilidade de pastoreio antecipado (FREITAS e JAKELAITIS et al., 2005).

Assim o objetivo do trabalho foi avaliar o efeito das diferentes populações de braquiária sobre a descompactação do solo e a produtividade do milho.

Materiais e Métodos

O experimento foi conduzido em Rio Bonito do Iguaçu, PR, nas coordenadas 25.570781 - 52.570822 a 540 m de altitude em solo classificado como Latossolo Vermelho distroférrico de textura argilosa (EMBRAPA/EMATER; 1999).

O delineamento utilizado foi o DBC (delineamento de blocos casualizados) utilizando controle local com 4 blocos contendo 6 parcelas, cada parcela possui 5 linhas de 80 cm de largura e 5 m de comprimento. Os tratamentos foram constituídos por uma testemunha de milho sem braquiária e os demais tratamentos pelas populações de 2 kg ha⁻¹, 4 kg ha⁻¹, 6 kg ha⁻¹, 8 kg ha⁻¹ e 10 kg ha⁻¹ de sementes de braquiária semeadas a lanço em meio ao milho.

Antes da semeadura foi realizada a análise de compactação com o penetrômetro digital marca, Penetrologger, modelo ART.NR 06.15.01, com duas penetrações por plot (parcela).

A semeadura direta foi realizada no dia 18 de novembro de 2019, utilizando semeadora mecânica, marca Semeato, modelo (PAR 3000), para semeadura do milho espaçamento de 0,8 m entre linhas e as sementes depositadas a cinco centímetros de profundidade, e a semeadura da braquiária na mesma data realizada com a semeadora, marca Kuhn. O hibrido utilizado foi o AG9025PRO3 com população de 75 mil plantas ha⁻¹ e a braquiária utilizada foi de marca, Soesp Advanced, cultivar *Brachiaria ruziziensis*.

A adubação foi realizada utilizando 370 Kg ha⁻¹ na formulação de N-P-K 08-28-16 marca Fertilize, e duas aplicações de 200 Kg ha⁻¹ de ureia N 46% marca Yara, a 25 e 40 dias respectivamente pós semeadura.

O controle de plantas daninhas foi feito com i.a atrazine 500g L⁻¹ na dose de 2 L ha⁻¹, em pós-emergência do milho e das plantas daninhas. O controle de pragas foi realizado mediante duas aplicações de i.a imidacloprido + bifentrina 25g L⁻¹ e 50g L⁻¹ respectivamente na dosagem de 0,5 L ha⁻¹ a 10 e 30 dias pós-emergência do milho. A aplicação de fungicida foi realizada com 45 dias pós-emergência do milho utilizando i.a Mancozeb 750g kg⁻¹ na dosagem de 2,5 Kg ha⁻¹ + i.a Trifloxistribina com Protioconazole 150g L⁻¹ e 175g L⁻¹ na dosagem de 0,5 L ha⁻¹.

Em março de 2020, na maturidade fisiológica do milho avaliaram-se o rendimento de grãos, com umidade corrigida para 13%. A Braquiária foi avaliada simultaneamente com a colheita do milho mediante arranquio de 1m² por parcela, sendo anotados os dados de peso de massa verde.

Após a colheita a área foi dessecada com herbicida glifosato 445g L⁻¹ na dosagem de 3 L ha⁻¹. Após 45 dias de dessecação foi realizada a análise de compactação com o penetrômetro digital marca, Penetrologger, modelo ART.NR 06.15.01 com duas penetrações por plot (parcela).

Os dados obtidos foram submetidos a análise de variância (ANAVA) e os resultados comparados pelo teste de Tukey a 5% de significância.

Resultados e Discussão

O resumo da análise descritiva e análise de variância para os parâmetros produtividade de Milho e massa verde de Braquiária estão expressas na Tabela 1.

Tabela 1 – Resumo da análise descritiva e análise de variância dos parâmetros Produtividade do Milho e massa verde de Braquiária em kg ha⁻¹ em diferentes tratamentos de população de Braquiária consorciada com a cultura do Milho.

	Produtividade de	Produção de massa
Fontes de variação	Milho (kg ha ⁻¹)	verde (kg ha ⁻¹)
Tratamento		
T1 Braquiária 0 kg ha ⁻¹	12.937,47 a	
T2 Braquiária 02 kg ha ⁻¹	10.716,22 a	3.875,0 a
T3 Braquiária 04 kg ha ⁻¹	10.624,95 a	9.375,0 b
T4 Braquiária 06 kg ha ⁻¹	10.552,45 a	12.900,0 c
T5 Braquiária 08 kg ha ⁻¹	10.458,30 a	16.950,0 d
T6 Braquiária 10 kg ha ⁻¹	10.270,77 a	26.175,0 e
C.V.	16,29%	4,27%
Dms	4.090,21	1.334,94
p-valor	0,3335	0,0000

As médias seguidas de mesma letra não apresentam diferença significativa entre si pelo teste de Tukey ao nível de 5% de significância. C.V.: Coeficiente de variação. dms: Diferença mínima significativa. ns: não significativo.

Conforme observado as médias da produtividade do milho não apresentam grandes diferenças, a média do T 1 apresenta uma leve alta na produtividade do milho quando comparada com os demais tratamentos, porém não sendo significativa estatisticamente. A produção de massa verde da *Brachiaria ruziziensis* apresenta aumento gradativo com o

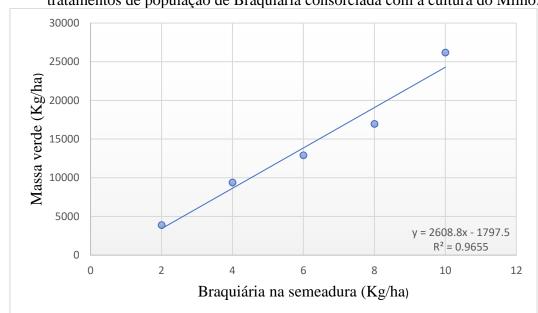
incremento na quantidade de sementes utilizadas na semeadura, todos os tratamentos apresentam diferenças significativas.

Assemelhando-se aos resultados obtidos por Kluthcouski *et al.* (2003), o milho solteiro não apresenta diferença de produtividade estatística quando comparado ao plantio de milho consorciado no sistema de integração lavoura-pecuária.

No sistema de integração lavoura-pecuária é possível alcançar quantidades altas de massa verde, chegando a 26.000 Kg ha⁻¹, na Tabela 1 pode-se observar que no intervalo do T 2 até o T 6 se obtêm uma alta de 85,2% na quantidade de massa verde, sem afetar a produtividade do milho.

O experimento foi conduzido em condições normais de campo, onde não sofreu grandes problemas com fatores climáticos que segundo Brambilla, (2009) podem ocasionar diferentes resultados, como a época de implantação, os arranjos de plantio, a aplicação de herbicidas, a presença de plantas daninhas, a fertilidade do solo e as condições hídricas.

A produtividade do milho apresentou uma linha estável, sem diferença estatística de produtividade, demonstrando que o aumento gradativo da população de Braquiária não se mostra como fator determinante para a produtividade do milho.


Os resultados obtidos estão de acordo com os apresentados por Kluthcouski *et al.* (2003), que concluíram não haver redução significativa da produtividade do milho solteiro comparado com a consorciação.

Segundo Alvarenga *et al.* (2006) o consórcio milho e braquiária, na média, reduz a produtividade do milho em até 5%, entretanto, em muitas vezes verifica-se que não há diferença significativa comparado ao milho solteiro.

Pode-se dizer que neste caso a Braquiária não afetou a produtividade do milho, segundo Crusciol *et al.* (2007) o cultivo do milho consorciado com braquiária pode ocasionar menor produtividade devido a competição entre espécies, mas não é regra, visto que existem muitas variáveis como clima, solo e manejo.

Os resultados não se assemelham aos de Borghi *et al.* (2006), que afirma que o consorcio da forrageira com o milho diminui a produtividade do mesmo, mas propõe uma alternativa que pode ser tomada para minimizar eventuais perdas de produtividade no consorcio, o controle químico da braquiária com subdoses de herbicida, visando um atraso no desenvolvimento da forrageira, podendo alcançar maiores produtividades no consórcio do que o milho solteiro.

A Figura 2 mostra os dados para o parâmetro massa verde, em que é analisado a quantidade de kg de massa verde de Braquiária por hectare.

Figura 1 - Análise de regressão para o parâmetro massa verde em kg ha⁻¹ em diferentes tratamentos de população de Braquiária consorciada com a cultura do Milho.

No parâmetro massa verde todos os tratamentos se diferem, neste caso o T 1 se impõe como testemunha já que não possui Braquiária, pode-se observar que se tem uma constante crescente em linha retilínea.

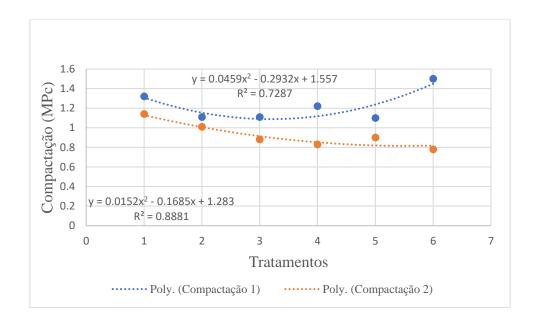
Segundo Pariz (2010), a produção de massa verde só é afetada quando utilizado doses de herbicidas visando controlar o crescimento da Braquiária, pois caso contrário a forrageira se desenvolve normalmente.

Segundo Locatelli *et al.* (2019), a palhada é o fator principal de um bom plantio direto, visando uma melhor microbiota no solo, mantendo maiores teores de matéria orgânica e reconstituindo perfil de solo.

A manutenção da palhada e cobertura diminui a temperatura do solo devido a formação de barreira física, ocasionando menores perdas de água por evaporação, além disso, a cobertura com palha protege o solo contra o impacto da chuva, aumenta a infiltração de água e reduzindo a erosão (FRANCHINI *et al.*, 2012; BALBINOT JUNIOR *et al.*, 2017). Por isso é indispensável para a conservação do solo e da água, sendo assim é de extrema importância realizar a integração lavoura-pecuária garantindo um bom índice de massa verde.

A Tabela 2 mostra o resumo da análise descritiva e análise de variância dos parâmetros compactação do solo em dois momentos, sendo eles anterior a semeadura e posterior a colheita, ambos feitos em todos os tratamentos e realizados a 40cm de profundidade em unidade de Mega Pascal.

Tabela 2 – Resumo da análise descritiva e análise de variância dos parâmetros compactação do solo em diferentes tratamentos de população de Braquiária consorciada com a cultura do Milho.


Fontes de variação	Compactação pré- semeadura (Mpa)	Compactação pós colheita (Mpa)
Tratamento		
T1 Braquiária 0 kg ha ⁻¹	1,32 a	1,14 b
T2 Braquiária 02 kg ha ⁻¹	1,11 a	1,01 a b
T3 Braquiária 04 kg ha ⁻¹	1,11 a	0,88 a b
T4 Braquiária 06 kg ha ⁻¹	1,22 a	0,83 a
T5 Braquiária 08 kg ha ⁻¹	1,10 a	0,90 a b
T6 Braquiária 10 kg ha ⁻¹	1,50 a	0,78 a
C.V.	26,05%	12,39%
Dms	0,7359	0,2631
p-valor	0,4544	0,0057

As médias seguidas de mesma letra não apresentam diferença significativa entre si pelo teste de Tukey ao nível de 5% de significância. C.V.: Coeficiente de variação. dms: Diferença mínima significativa. ns: não significativo. Fonte: O autor (2020).

O analise de compactação anterior a semeadura apresenta normalidade entre os tratamentos não se diferenciando estatisticamente entre si, demonstrando uma compactação em níveis aceitáveis. Quando observado a análise pós colheita identifica-se uma diferença entre os tratamentos, onde o T 1 se assemelha ao 2; 3 e ao T 5, porém se difere dos Tratamentos 4 e 6. Quando comparados as análises 1 e 2 assim chamados respectivamente de pré semeadura e pós colheita, observa-se que todos os tratamentos da análise pós colheita tiveram diminuição na compactação, como é demonstrado pela análise de regressão (Figura 3).

A Figura 3 traz a análise de regressão dos parâmetros compactação do solo anterior a semeadura e posterior a colheita, nela pode-se fazer a comparação entre os dois parâmetros, avaliando-os juntamente com a quantidade de Braquiária aplicada nos tratamentos.

Figura 3 - Análise de regressão dos parâmetros de compactação pré-plantio e pós colheita medidos a 40 cm de profundidade em unidade de Mega Pascal (MPc).

Todos os tratamentos apresentaram menor compactação no Teste 2, demonstrando que a integração lavoura-pecuária auxilia da descompactação do solo. Alguns tratamentos apresentam linhas inversamente proporcionais exceto os Tratamentos 1; 2 e 5. A maioria dos Tratamentos do Teste 2 se mantiveram abaixo de 1 Mega Pascal de compactação, e o Tratamento 6 que apresentava maior índice foi o que mais se destacou, visivelmente a maior quantidade de população de Braquiária contribui para a descompactação do solo, chegando a 48% de diminuição da compactação no T6.

Assemelhando-se aos resultados obtidos por Severiano *et al.* (2013) plantas forrageiras possuem um sistema radicular agressivo que permite a habilidade de penetrar no solo em camadas compactadas, a Braquiária tem a capacidade de alcançar camadas profundas de solo.

Calonego *et al.* (2011) trabalharam com o cultivo de braquiária em consórcio com o milho conduzido por dois anos consecutivos e apresentaram como resultados uma redução de resistência mecânica e à penetração, tendo assim uma melhora na estrutura do solo.

Conclusões

A produtividade de milho não é afetada com o consorcio de diferentes populações de *Brachiaria ruziziensis*. A produção de massa verde de braquiária aumentou linearmente com o incremento no número de sementes utilizadas na semeadura de integração lavoura-pecuária milho e *Brachiaria ruziziesis*.

Houve diminuição na compactação do solo em todos os tratamentos com diferentes populações de sementes utilizadas na semeadura do consorcio milho-braquiária.

Referências

ALVARENGA, R. C.; COBUCCI, T.; KLUTHCOUSKI, J.; WRUCK, F. J.; CRUZ, J. C.; GONTIJO NETO, M. M. **A cultura do milho na Integração Lavoura-Pecuária**. Sete Lagoas: Embrapa Milho e Sorgo, 2006. 12 p. (Embrapa Milho e Sorgo. Circular Técnica, 80).

ANDREOTTI, M.; ARALDI, M.; GUIMARÃES, V.F.; JUNIOR, E.F.; BUZETTI, S. Produtividade do milho safrinha e modificações químicas de um latossolo em sistema plantio direto em função de espécies de cobertura após calagem superficial. *Acta Scientiarum Agronomy*, Maringá, v.30, n.1, p.109-115, 2008.

ASMUS, Nematoides em cultivos integrados. Embrapa Agropecuária Oeste. Brasília, p. 145-164, 2013.

BRAMBILLA, JEFERSON ALTAIR et al. Produtividade de milho safrinha no sistema de integração lavoura-pecuária, na região de Sorriso, Mato Grosso. **Revista Brasileira de Milho e Sorgo**, v. 8, n. 03, 2009.

BORGHI, E.; CRUSCIOL, C. A. C.; COSTA C. Desenvolvimento da cultura do milho em consorciação com Braquiária brizantha em sistema de plantio direto. **Energia Agrícola**, Botucatu, v. 21, p. 19-33, 2006.

BRASIL. Ministério da Agricultura e Reforma Agrária. Tolerâncias. In: **Regras para análise de sementes**. Brasília: SNAD/DNDV/CLAV, 1992. cap.12, p.229-254.

CALONEGO, J. C.; BORGHI, E.; CRUSCIOL, C. A. C. Intervalo hídrico ótimo e compactação do solo com cultivo consorciado de milho e braquiária. **Revista Brasileira de Ciência do Solo**, 35:2183-2190, 2011.

CECCON, Consórcio milho-braquiária, 2013, em DF. Brasília: Embrapa Agropecuária Oeste.

CRUSCIOL, C. A. C.; BORGHI, E. Consórcio de milho com braquiária: produção de forragem e palhada para o plantio direto. **Revista Plantio Direto**, Passo Fundo, v. 1, n.100, p. 10-14, 2007.

FREITAS, F.C.L.; FERREIRA, F.A.; FERREIRA, L.R. Cultivo consorciado de milho para silagem com *Brachiaria brizantha* no sistema de plantio convencional. *Planta Daninha*, Viçosa-MG, v.23, n.4, p.635-644, 2005.

JAKELAITIS, A.; SILVA, A.A.; FERREIRA, L.R.; SILVA, A.F.; FREITAS, F.C.L. Manejo de plantas daninhas no consórcio de milho com capim-braquiária (*Brachiaria decumbens*). **Planta Daninha**, v.22, p.553-560, 2004

- KLUTHCOUSKI, J.; YOKOYAMA, L.P. Opções de integração lavoura-pecuária. In: KLUTHCOUSKI, J.; STONE, L.F.; AIDAR, H. **Integração lavoura-pecuária**. 1.ed. Santo Antonio de Goiás: Embrapa Arroz e Feijão, 2003. p.129-141.
- LOCATELLI, J. L. et al. Desempenho da sucessão soja/milho influenciado pelo consórcio milho/braquiária, adubação nitrogenada e densidade de plantas. **Embrapa Soja-Capítulo em livro científico (ALICE)**, 2019.
- MARIN, C.M.; SANTOS, E.L., BALBINOT JUNIOR, A.A. **Produtividade e componentes de rendimento da soja em função da quantidade de palha de milho e braquiária**, VIII Congresso Brasileiro da Soja. Centro Universitário Filadélfia de Londrina Unifil, Campus Palhano, Londrina, PR. 2017.
- PARIZ, C, M; FERREIRA, R, L; SÁ, M, E; ANFREOTTI, M; CHIODEROLI, C. A; RIBEIRO, A, P. Qualidade de sementes de Braquiária e avaliação da produtividade de massa seca, em diferentes sistemas de integração lavoura-pecuária sob irrigação, **Pesquisa Agropecuária Tropical**, Goiânia, vol. 40, núm. 3, julio-septiembre, 2010, pp. 330-340.
- RICHETTI, A. **Viabilidade econômica da cultura do milho safrinha**, 2012, em Mato Grosso do Sul. Dourados: Embrapa Agropecuária Oeste, 2012. 8 p. (Embrapa Agropecuária Oeste. Comunicado técnico, 172).
- SEVERIANO, C, E; NETO, J, F; GUIMARÃES, W, F; ANDRADE, R; MAIS, G, A; COSTA, C, A, P. **Descompactação biológica do solo por forrageiras do gênero Brachiaria em sistema de integração agricultura-pecuária no sudoeste goiano**, XXXIV Congresso Brasileiro de Ciência do Solo. Florianópolis, 2013.
- ZANINE, A. de M.; SANTOS, E.M.; FERREIRA, D. de J.; CARVALHO, G.G.P. de. Potencialidade da integração lavoura-pecuária: relação planta-animal. **Revista Eletrónica de Veterinaria**, v.7, 2006.