CENTRO UNIVERSITÁRIO – FAG JOÃO VICTOR BRAGA DE OLIVEIRA BRITTO

ANÁLISE EPIDEMIOLÓGICA DO DIABETES ENQUANTO FATOR DE RISCO PARA ÓBITO POR COVID-19 NO ESTADO DO PARANÁ

CENTRO UNIVERSITÁRIO – FAG JOÃO VICTOR BRAGA DE OLIVEIRA BRITTO

ANÁLISE EPIDEMIOLÓGICA DO DIABETES ENQUANTO FATOR DE RISCO PARA ÓBITO POR COVID-19 NO ESTADO DO PARANÁ

Trabalho apresentado à disciplina TCC como requisito parcial para obtenção da aprovação semestral no Curso de Medicina do Centro Universitário - FAG.

Orientador: Vagner Fagnani Linartevichi

Co-orientador: Marise Vilas Boas

Pescador

RESUMO

Atualmente o mundo enfrenta duas pandemias. Uma viral – a COVID-19 e uma antiga – o Diabetes. As duas estão em curso e aparentemente existe relação entre si. As infecções humanas por coronavírus são conhecidas há muito tempo, incluindo a síndrome respiratória aguda grave (SARS) e a síndrome respiratória do Oriente Médio (MERS). A partir de dezembro de 2019, um novo coronavírus – SARS-CoV-2, passou a circular pelo mundo, causando a COVID-19. Acredita-se que os casos graves tenham relação com outras doenças, tais como, hipertensão, diabetes e doenças cardiovasculares, embora diversos aspectos sobre a fisiopatologia da doença, a evolução clínica e o padrão de resposta imunológica ainda não tenham sido totalmente elucidados. O presente trabalho teve por objetivo analisar o número de óbitos por COVID-19 no estado do Paraná e a prevalência do DM entre os mesmos. Além disso, a análise temporal se deu antes e após o início da vacinação no estado. Foram realizados levantamentos no Plano Estadual de Saúde do Paraná, bem como em boletins epidemiológicos da secretaria de estado da saúde do estado do Paraná (SESA). Fez-se o uso das bases de dados SCIELO, MEDLINE e PUBMED, utilizando os idiomas português e inglês. Os termos usados para a pesquisa foram: COVID-19; co-morbidades; diabetes. Os descritores foram pesquisados de modo associado. Foram coletados os boletins epidemiológicos de doze meses para a análise dos dados, de Julho de 2020 até Junho de 2021. Mesmo há mais de um ano e meio a pandemia da COVID-19, revelada pelo número de óbitos, parece estar longe de um controle, pelo menos no estado do Paraná, o qual, foi possível observar um aumento no número de óbitos. A presença de DM se mostra como um importante fator predisponente à condição fatal, conforme também foi observado. Assim como em outros estudos, a população masculina paranaense se mostrou mais afetada. A presença de fatores de risco para complicações e óbitos por COVID-19 seguiu um perfil semelhante ao visto em outros estudos. E por fim, foi possível observar que mesmo com a vacinação, o número absoluto de óbitos aumentou, isto traz a condição de circulação de novas variantes, mesmo que neste contexto, a taxa de letalidade não sofreu variação. Embora pôde ser observado uma menor mortalidade nas idades mais avançadas após a vacinação, o que sugere a eficácia da mesma, o número de óbitos em idades mais jovens aumentou e a letalidade havendo DM como FR permaneceu constante o que traz a luz as recentes preocupações do ponto de vista de saúde pública como a obesidade e consequentemente o surgimento de DM2 na população mais jovem.

Palavras-chave: Epidemiologia. Comorbidade. Diabetes.

ABSTRACT

The world is currently facing two pandemics. A viral one – COVID-19 and an old one – Diabetes. The two are ongoing and apparently there is a relationship between them. Human coronavirus infections have been known for a long time, including severe acute respiratory syndrome (SARS) and Middle East respiratory syndrome (MERS). As of December 2019, a new coronavirus – SARS-CoV-2, began to circulate around the world, causing COVID-19. It is believed that severe cases are related to other diseases, such as hypertension, diabetes and cardiovascular diseases, although several aspects of the pathophysiology of the disease, the clinical evolution and the pattern of immune response have not yet been fully elucidated. This study aimed to analyze the number of deaths from COVID-19 in the state of Paraná and the prevalence of DM among them. In addition, the temporal analysis took place before and after the start of vaccination in the state. Surveys were carried out in the Paraná State Health Plan, as well as in epidemiological bulletins from the Paraná State Health Department (SESA). The SCIELO, MEDLINE and PUBMED databases were used, using Portuguese and English. The terms used for the search were: COVID-19; comorbidities; diabetes. The descriptors were searched in an associated way. Twelve-month epidemiological bulletins were collected for data analysis, from July 2020 to June 2021. Even more than a year and a half ago the COVID-19 pandemic, revealed by the number of deaths, seems to be far from a control, at least in the state of Paraná, which, it was possible to observe an increase in the number of deaths. The presence of DM is an important predisposing factor to the fatal condition, as was also observed. As in other studies, the male population of Paraná was more affected. The presence of risk factors for complications and deaths from COVID-19 followed a profile similar to that seen in other studies. And finally, it was possible to observe that even with vaccination, the absolute number of deaths increased, this brings the condition of circulation of new variants, even though in this context, the lethality rate did not change. Although a lower mortality could be observed at older ages after vaccination, which suggests its effectiveness, the number of deaths at younger ages increased and the lethality with DM as RF remained constant, bringing to light the recent concerns of public health point of view such as obesity and consequently the emergence of DM2 in the younger population.

Keywords: Epidemiology. Comorbidity. Diabetes.

SUMÁRIO

1. INTRODUÇÃO	6
2. FUNDAMENTAÇÃO TEÓRICA	8
2.1. COVID-19	8
2.2. COMPLICAÇÕES DE COVID-19 QUE LEVAM À UTI	10
2.3. INTERRELAÇÃO ENTRE COVID E DIABETES	12
2.4 DIABETES MELLITUS	13
3. METODOLOGIA	17
4. RESULTADOS E DISCUSSÃO	18
5. CONSIDERAÇÕES FINAIS	25
6. REFERÊNCIAS	26
7. CARTA DE ACEITE PARA PUBLICAÇÃO	31
8. PROJETO COOPEX	32
9. RELATÓRIO DOCXWEB	33

1. INTRODUÇÃO

O Diabetes Melittus (DM), é considerado um importante problema de saúde para todos os países, independentemente de seu grau de desenvolvimento. Estima-se que 8,8% da população mundial com 20 a 79 anos de idade (415 milhões de pessoas) vive com diabetes. Já em 2040, caso as tendências atuais persistirem, o número de pessoas com diabetes será superior a 642 milhões (1).

A doença é classificada como crônica, porém, no decorrer do tratamento, o paciente poderá apresentar episódios de descompensação, como hipoglicemia e as crises hiperglicêmicas (cetoacidose diabética e o estado hiperosmolar não cetótica). Dentre essas os episódios de hipoglicemia são frequentes, porém as crises hiperglicêmicas possuem uma mortalidade muito maior. A cetoacidose diabética (CAD) possui taxa de mortalidade de cerca 5% em centros especializados, enquanto a síndrome hiperosmolar não cetótica apresenta taxa em torno de 15% (2).

Atualmente o mundo enfrenta duas pandemias. Uma viral – a COVID-19 e uma antiga – o DM. As duas estão em curso e aparentemente existe relação entre si. As infecções humanas por coronavírus são conhecidas há muito tempo, incluindo a síndrome respiratória aguda grave (SARS) e a síndrome respiratória do Oriente Médio (MERS). A partir de dezembro de 2019, um novo coronavírus – SARS-CoV-2, passou a circular pelo mundo, causando a COVID-19 (3).

A situação clínica da COVID-19 tem se mostrado bastante variado e abrangente, desde uma infecção assintomática até manifestações severas que podem resultar em síndrome do desconforto respiratório agudo grave e morte (4). Acredita-se que os casos graves tenham relação com outras doenças, tais como, hipertensão, diabetes e doenças cardiovasculares, embora diversos aspectos sobre a fisiopatologia da doença, a evolução clínica e o padrão de resposta imunológica ainda não tenham sido totalmente elucidados (5).

A COVID- 19 foi declara uma pandemia global em 11 de março de 2020. Em 14 de março de 2021, mais de 119 milhões de casos, incluindo mais de 2,6 milhões de mortes foram relatadas em todo o mundo. Uma doença respiratória aguda causada pelo SARS-CoV-2, transmitido de pessoa para pessoa por meio de gotículas respiratórias (3). A mortalidade secundária está relacionada à idade, gravidade da doença e comorbidades. A mortalidade estimada é de 0,7- 2% para todos os pacientes; 10% para pacientes hospitalizados; 30-50% para pacientes em UTI; 37-88% para pacientes que carecem da utilização de ventilação mecânica invasiva ou oxigenação por membrana extracorpórea (6).

Dado este exposto, o presente trabalho teve por objetivo analisar o número de óbitos por COVID-19 no estado do Paraná e a prevalência do DM entre os mesmos. Além disso, a análise temporal se deu antes e após o início da vacinação no estado.

2. FUNDAMENTAÇÃO TEÓRICA

2.1. COVID-19

O início da pandemia de COVID-19 (o novo coronavírus) se deu na China em uma cidade chamada Wuhan. Em primeiro momento houve um surto de pneumonia. Os primeiros afetados por esta condição pulmonar trabalhavam ou residiam ao redor de um mercado de produtos in natura (7).

Após a descoberta do vírus (o agente etiológico), foi denominada a doença COVID-19 baseado em radiografia de tórax, manifestações clínicas e testes sanguíneos. Este agente foi denominado de SARS-CoV-2 (figura 1), pertencente a uma família chamada Coronaviridae, neste processo pode ser utilizada, para a entrada do vírus, a enzima conversora de angiotensina II (ECA2), produzindo a SARS-CoV, ou chamada Síndrome Respiratória Aguda Grave induzida pelo coronavívus (8).

Ciclo de vida do SARS-CoV-2 Estrutura do SARS-CoV-2 Adesão viral e introdução do RNA Proteína Spike > ar > alimentos na célula do sangue Glicoproteína de > toque > objetos Morte da Célula célula do hospedeira hospedeir RNA Liberação Proteina do RNA viral e Nucleocapsideo sintese das proteinas virais Montagem de novas unidades virais

Figura 1 – Estrutura, rotas de transmissão e ciclo de replicação do SARS-CoV-2.

Estrutura proposta para o vírus da COVID-19, métodos de transmissão e ciclo de replicação do mesmo em uma célula pulmonar. RNA: ácido ribonucleico. Adaptado de Tang et al., 2020 (9).

Certos animais apresentam condições para serem hospedeiros deste vírus, no entanto, por até três horas, as gotículas podem estar presentes no ar, a transmissão no humano ocorre por meio de perdigotos (9). Nas vias aéreas, o vírus infecta as células epiteliais. Nem todos os casos há, porém, na presença de sintomas, os mesmos aparecem entre o 5º e 6º dia da contaminação e duram por até 14 dias. Os sintomas mais comuns são perda do paladar, dispneia, tosse seca, febre e alterações na pele. Quando grave, há perda da capacidade respiratória, angina e alterações dos movimentos ou fala (10).

Algumas pessoas são mais propensas à infeção pelo coronavírus principalmente as portadoras de doença renal, doença pulmonar obstrutiva crônica (DPOC) e doenças cardiovascular. Aparentemente as mortes estão correlacionadas às situações como doenças cardiovasculares ou o DM (11).

Após a infecção, os pacientes apresentam modificação na bilirrubina total, ferritina sérica, leucócitos, creatina quinase e nos níveis de IL6 (interleucina). Distúrbios destes marcadores são mais evidentes em pacientes em estado mais grave do que os sobreviventes. Assim como a diminuição das células de defesa é proporcional à gravidade da doença (12).

Ao longo da pandemia, tornou-se claro que são necessárias condições especiais de prevenção e tratamento para pacientes com comorbidades e condições subjacentes. Como por exemplo para pacientes que possuem doenças cardiovasculares, tal como a hipertensão arterial sistêmica (HAS), doença renal crônica, condições endócrinas, infecção por HIV, doenças neurológicas, obesidade, condições pulmonares, pacientes diabéticos, entre outras comorbidades (13). A gravidade baseada em sinais e sintomas em adolescentes e adultos é demonstrado no quadro 1.

Sintomas leves a graves podem surgir de 2 a 14 dias após a exposição, com período médio de incubação do vírus de 5 dias. Podendo ter pessoas assintomáticas, sendo 30% dos pacientes. Pacientes com a doença leve, não apresentando pneumonia viral e hipóxia, podem não precisar de hospitalização. Já as manifestações mais graves, requerem a hospitalização do paciente e cuidados que incluem pneumonia, hipoxemia, Síndrome de Desconforto Respiratório Agudo (SDRA), sepse, choque séptico, cardiomiopatia, arritmia e lesão renal aguda. Não há tratamento antiviral específico para COVID-19. Cuidados de suporte podem ajudar a aliviar os sintomas e devem incluir suporte de funções de órgãos vitais em casos graves (14).

Para casos leves, o recomendado é acompanhar o paciente por telefone, a cada 24 horas, até que se complete 14 dias do início dos sintomas, sendo por atenção primária ou por serviços de atenção domiciliar, não necessitando de internação hospitalar, apenas se necessário. Em Segundo a Portaria nº 454, de 20 de março de 2020, é definida as condições de afastamento e tratamento domiciliar, sendo importante tornar claro que o documento indica o afastamento ou o tratamento de indivíduos com qualquer sintoma respiratório o mais prévio possível, buscando a redução e controle da transmissibilidade da COVID-19 (3, 12, 14).

Quadro 1 – Sinais e sintomas para definições da gravidade da COVID-19

LEVE	MODERADO	GRAVE
Fadiga Anosmia Ageusia Náusea/Vômito Diarreia Dor de cabeça Tosse Dor de garganta Congestão nasal Sem evidência de pneumonia viral ou	MODERADO Febre (≥ 38 °C) Tosse Dispneia Taquipneia Sem sinais de pneumonia grave (incluindo SpO 2 de ≥ 90% no ar ambiente)	Febre Tosse Dispneia Taquipneia Sinais de pneumonia grave Sinais de dificuldade respiratória grave (uso de músculo acessório e/ou incapacidade de completar frases SpO 2 <90% no ar ambiente Frequência respiratória > 30 respirações / minuto
hipóxia		(normal: 12-20 irpm)

Adaptado de Santos-Neto et al., 2021 (14).

Já os casos moderados se referem aos pacientes que requerem de internação hospitalar para observação e acompanhamento clínico, porém sem apresentar gravidade para internação em UTI, pois não é mostrada instabilidade hemodinâmica. Contudo, não há necessidade de ventilação mecânica ou realizar outros procedimentos invasivos. São pacientes com alguma condição antecedente que os coloca no grupo de risco, sendo recomendado a estabilização clínica (sendo ausência de febre e dispneia por pelo menos 48 horas) e melhora de exames laboratoriais (12).

2.2. COMPLICAÇÕES DE COVID-19 QUE LEVAM À UTI

Normalmente, pelo que é observado, casos graves de COVID-19 podem evoluir, necessitando de leitos em UTI, como também, casos moderados ou leves podem se agravar. Porém, existem condições e fatores de risco que devem ser observados para prováveis complicações dos sintomas gripais que podem evoluir para casos graves da doença, como idade avançada e comorbidades, tais como: idosos ≥ 60 anos, pessoas que possuem doenças cardiovasculares, diabetes mellitus, hipertensão, doença pulmonar crônica, neoplasias hematológicas, câncer de pulmão ou doença metastática, doença renal crônica, obesidade e tabagismo, são os principais fatores que podem levar o indivíduo a ter complicações graves da doença, e consequentemente o uso de leito de UTI. Porém, vale ressaltar que indivíduos saudáveis de qualquer idade também podem evoluir com gravidade (15).

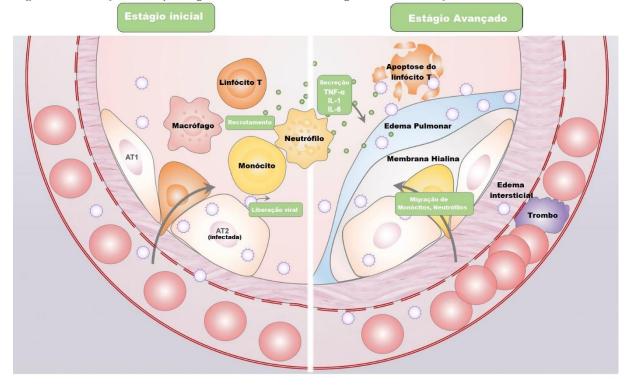


Figura 2 – Evolução imunopatológica da COVID-19 nos estágios inicial e avançado.

Figura adaptada de Wang et al., 2021 (16). AT1: célula alveolar pulmonar tipo 1. AT2: célula alveolar pulmonar tipo 2.

No sistema respiratório, se caracteriza como uma Síndrome Respiratória Aguda Grave (SRAG), um agravamento do quadro clínico, podendo ter um aumento da frequência respiratória, desconforto respiratório, diminuição de saturação de oxigênio em ar ambiente e insuficiência respiratória (15). Este fato se dá por inúmeras alterações celulares e teciduais, conforme demonstrado na figura 2.

No estágio inicial da infecção, o SARS-CoV-2 internaliza em células alvo, tal como células brônquicas e células AT2, podendo induzir uma série de respostas imune. Na sequência, moléculas de sinalização inflamatória são liberadas pelas células infectadas, adicionalmente os macrófagos alveolar acabam por recrutar os monócitos, neutrófilos e linfócitos T. No estágio avançado o SARS-CoV-2 infecta as células endoteliais dos capilares alveolares, induzindo uma migração de monócitos e neutrófilos, matando os linfócitos T e acentuando a resposta inflamatória. Como consequência há edema intersticial, formação de membrana hialina, edema pulmonar e ativação da coagulação, contribuindo para formação de microtrombos que podem evoluir para embolia pulmonar. O desenvolvimento de uma sepse viral, conhecida como disfunção orgânica com risco à vida, pode ainda levar à falência múltipla dos órgãos (16).

Já no sistema cardiovascular estudos relatam lesão cardíaca aguda, que inclui desequilíbrio entre demanda e suprimento de O₂. Esses pacientes tendem a ser mais idosos, e

com mais comorbidades. As principais manifestações são arritmias, isquemia miocárdica e miocardite. Também é possível perceber o aparecimento de insuficiência renal. Cerca de 23% dos pacientes internados em UTI apresentam Lesão Renal Aguda (LRA) (17).

2.3. INTERRELAÇÃO ENTRE COVID E DIABETES

A evolução ruim dos infectados pela COVID-19 tem produzido inúmeros óbitos, seja pela contaminação rápida e pela, proliferação rápida a qual pode ser observada em todo o globo (18). O avanço da COVID-19 não é diferente no Brasil, onde já se propagou e produziu mais de meio milhão de óbitos (19), neste contexto, parece haver uma maior chance de infecção nos portadores de HAS e DM. Assim, para o Brasil esta interrelação é importante do ponto de vista epidemiológico uma vez que, HAS e DM são as doenças crônicas não transmissíveis de maior prevalência no país. Constituem as principais causas de mortes por doenças crônicas no país (19).

Conforme pode ser visto na figura 3, a infecção pelo coronavírus 2 da síndrome respiratória aguda grave (SARS-CoV-2) pode levar a níveis aumentados de mediadores inflamatórios no sangue, incluindo lipopolissacarídeo, citocinas inflamatórias e metabólitos tóxicos (20). A modulação da atividade das células natural killer (aumentada ou diminuída) e da produção de IFNγ pode aumentar a permeabilidade intersticial e/ou vascular para produtos pró-inflamatórios. Além disso, a infecção com SARS-CoV-2 leva ao aumento da produção de espécies reativas de oxigênio (21). Esses efeitos levam à fibrose pulmonar, lesão pulmonar aguda e síndrome do desconforto respiratório agudo. A produção de EROS e a ativação viral do sistema renina-angiotensina-aldosterona (via aumento da expressão de angiotensina II) causam resistência à insulina, hiperglicemia e dano endotelial vascular, todos contribuindo para eventos cardiovasculares, tromboembolismo e coagulação intravascular disseminada (22). A infecção também causa aumento nos componentes da coagulação como o fibrinogênio e dímero-D, levando a aumentos na viscosidade sanguínea e dano ao endotélio vascular, além de eventos cardiovasculares associados, tromboembolismo e coagulação intravascular disseminada (20, 23, 24, 25).

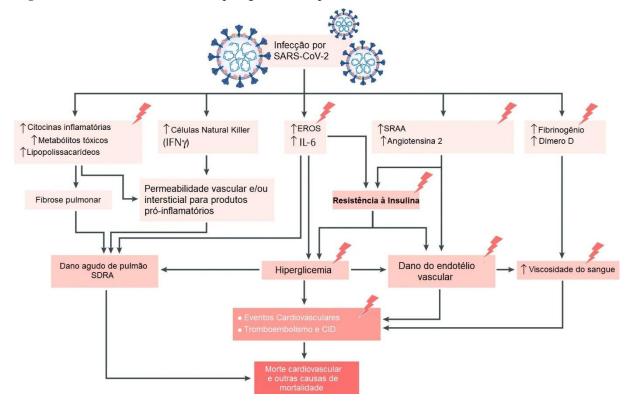


Figura 3 – Potenciais mecanismos patogênicos em pacientes com DM2 e COVID-19.

Figura adaptada de Lim et al., 2021 (20). Os raios indicam mecanismos que são acentuados em pacientes com diabetes mellitus tipo 2 (DM2). IFNγ: interferon gama; EROS: espécies reativas de oxigênio; IL6: interleucina 6; SRAA: sistema renina angiotensina aldosterona; SDRA: síndrome do desconforto respiratório agudo; CID: coagulação intravascular disseminada.

Em alguns estudos que avaliaram os principais fatores de risco (FR) relacionados à mortes por COVID-19 se destacam a HAS seguida do DM, acredita-se que estas duas doenças crônicas a HAS e DM produzem um processo hiper inflamatório o que torna o paciente mais susceptível às manifestações graves do COVID-19 (19, 21).

2.4 DIABETES MELLITUS

Em torno de 1500 AC, no Egito, papiros já faziam referência a uma doença que se caracterizava por emissão frequente e abundante de urina. Já no século II DC, na Grécia antiga, a enfermidade ganhou o nome de diabetes e foi-se observada a associação entre poliúria, polidipsia, polifagia e astenia. Mais adiante, médicos indianos teriam sido os primeiros a detectar a provável doçura da urina, o que só foi confirmado no século XVII, através dos estudos de Willis, o primeiro a provar que a urina de um paciente com diabetes que era "doce como mel" (26).

Atualmente, sabe-se que que diabetes mellitus (DM) engloba um conjunto de distúrbios metabólicos, o qual caracteriza-se por hiperglicemia causada por defeito na ação e/ou secreção

da insulina, o que leva a alterações no metabolismo de carboidratos, lipídios e proteínas, determinando, ao longo do tempo, o comprometimento da função e estrutura vascular de diferentes órgãos. Visto isso, é dito que a insulina atua na manutenção da glicemia em uma estreita faixa de variação nos estados alimentado e em jejum (27).

A doença representa um importante problema de saúde para todos os países, independentemente de seu grau de desenvolvimento. Inclusive, a Federação Internacional de Diabetes (International Diabetes Federation, IDF) estimou que 8,8% da população mundial com 20 a 79 anos de idade (415 milhões de pessoas) vive com diabetes. Já em 2040, caso as tendências atuais persistirem, o número de pessoas com diabetes será superior a 642 milhões (28).

A doença possui duas principais classificações, diabetes tipo 1 e 2 e diferenciá-las é essencial para definir o plano terapêutico. A tipo 1 geralmente é abrupta, tendo tendência a hiperglicemia grave e cetoacidose, atingindo principalmente em crianças e adolescentes. Já o diabetes tipo 2 em geral ocorre em adultos, com excesso de peso e história familiar da doença, apresenta-se de forma insidiosa, podendo ser, inclusive, diagnosticada após as complicações tardias da doença (29).

A doença é classificada como crônica, porém, no decorrer do tratamento, o paciente poderá apresentar episódios de descompensação, levando às complicações agudas da doença. Essas são a hipoglicemia e as crises hiperglicêmicas, nas quais incluem-se a cetoacidose diabética e o estado hiperosmolar não cetótica. Dentre essas os episódios de hipoglicemia são frequentes, porém as crises hiperglicêmicas possuem uma mortalidade muito maior. A cetoacidose diabética (CAD) possui taxa de mortalidade de cerca 5% em centros especializados, enquanto a síndrome hiperosmolar não cetótica apresenta taxa em torno de 15% (30).

A hipoglicemia caracteriza-se pela presença de glicose plamática inferior a 50 mg/dl. Os sintomas presentes incluem sintomas neurogênicos autonômicos e neuroglicopênicos. No primeiro grupo enquadram-se sudorese, taquicardia e tremores. Já no segundo há a presença de fome, fraqueza, tonturas, cefaleia e alterações do estado de consciência. Na maioria dos casos o paciente consegue reconhecer e até tratar a hipoglicemia, sendo que a regressão dos sintomas ocorre após normalização da mesma (31).

Já as crises hiperglicêmicas, que ocorrem quando há baixa adesão ao tratamento, a exemplo há o sedentarismo e o consumo excessivo de alimentos ou na presença de infecções ou outras doenças, como AVC, IAM e trauma (32).

A cetoacidose diabética ocorre devido a uma complexa alteração do metabolismo da glicose e dos ácidos graxos, levando a uma deficiência absoluta ou relativa de insulina, junto a

isso há o aumento de glucagon, catecolaminas, cortisol e hormônio do crescimento, hormônios contra-reguladores. Porém, esses hormônios, devido a hiperglicemia, a desidratação e aos distúrbios eletrolíticos, mantêm-se elevados, agravando mais ainda o quadro glicêmico (32). A manutenção desse mecanismo leva a hipovolemia, pois a água do meio intracelular é desviada para o meio extracelular. Por fim, a não utilização de acetoácidos causam perda de bicarbonato, o que por sua vez leva à acidose metabólica. Geralmente, os pacientes que apresentarão tal descompensação são crianças e adultos jovens (33).

O diagnóstico do DM2 é uma controvérsia entre os profissionais, os exames mais utilizados atualmente são o de glicemia em jejum que se baseia na coleta do sangue periférico após o paciente estar no mínimo 8 horas em jejum calórico os valores padrões determinados pela (OMS) são: inferior ou igual a 100 miligramas por decilitro de sangue (mg/dL) conhecido como normoglicemia, entre 101 e 126 mg/dL são parâmetros para pré-diabéticos e acima de 126 mg/dL já possui diabetes estabelecida (34).

O TOTG é o conhecido teste de tolerância à glicose se baseia em uma coleta de sangue em jejum e a outra 2 horas após a ingestão 75 gramas (g) de glicose dissolvida em água e administrada oralmente permitindo a avaliação após a sobrecarga de glicose, este teste é de suma importância, pois evidencia uma das primeiras alterações na DM que é a perda de secreção da insulina. Os valores padrões determinados pela (OMS) são: inferior a 140 mg/dL parâmetros normoglicemia, entre 140 mg/dL e 200 mg/dL são considerados parâmetros para pré diabéticos ou com risco aumentado e acima de 200 mg/dL diabetes estabelecida (35).

Hb A1c ou hemoglobina glicada não é um teste recomendado para diagnóstico de DM por ser uma medida indireta dos níveis de glicose no sangue, pode sofrer várias alterações e interferências na glicação da hemoglobina o que torna preferível o teste de tolerância à glicose, porém esse exame é bom para um acompanhamento refletindo os valores glicêmicos dos últimos 4 meses (36). Na ausência de sintomas tende a necessidade de repetição dos exames alterados para confirmação do diagnóstico.

A glicemia ao acaso é um exame onde o sangue é coletado sem o paciente estar em jejum e a qualquer horário o valor de referência e acima de 200 mg/dL, caso o paciente apresente sintomas como polidipsia ou poliúria não há necessidade da confirmação por segunda dosagem (34, 35).

Indivíduos com hereditariedade para DM2 tem maior probabilidade de desenvolver disfunção microvascular no tecido cutâneo, estudos apontam que a relação entre DM2 e doenças cardiovasculares começa cedo desde a fase de intolerância a glicose e logo após a DM2, nos pacientes com pressão arterial e glicemia dentro dos padrões normais (impostos pelas agências

responsáveis) parentes de primeiro grau de pacientes que possuíam a DM2 foram apresentados resultados de disfunção endotelial e resistência à insulina o que torna tais pacientes mais suscetíveis a o desenvolvimento de aterosclerose (37).

De um ponto de vista mais clínico as principais patologias referentes à DM2 e o sistema microvascular são a neuropatia (perca de sensibilidade em nervos inferiores) retinopatia (distúrbios ou perca da visão) e nefropatia (doença renal), o tratamento tem sido baseado justamente no controle glicêmico o que se demonstrou eficaz e retardou significativamente a progressão das patologias microvasculares citadas acima, porém de acordo com um estudo realizado pelo United Kingdom Prospective Diabetes Study (UKPDS) o controle deve ser altamente estrito e com o acompanhamento profissional adequado levando em consideração o uso de medicamentos via oral ou até mesmo da insulina humana para melhor controle (38).

As doenças macrovasculares estão relacionadas ao comprometimento aterosclerótico das artérias coronarianas e são as principais causas de morte entre esses pacientes cerca de 50% dos casos, os indivíduos morrem por doenças cardíacas principalmente infarto agudo do miocárdio, como nas doenças microvasculares os pacientes podem apresentar complicações logo ao início da doença se apresentando mais grave em pacientes do DM2, há grande variação das complicações crônicas em relação com as populações estudadas, porém em grande parte dos grupos os pacientes apresentam risco de duas a quatro vezes mais de desenvolver doenças vasculares periféricas, cardíacas e sofrer um acidente vascular cerebral, em relação a pacientes não diabéticos (39).

3. METODOLOGIA

Este estudo teve como base metodológica a revisão de literatura, fundamentada através de uma pesquisa em bibliografias que abordam os contextos da COVID-19 e do diabetes. Além disso, caracteriza-se como um estudo explorativo longitudinal, uma vez que foram analisados dados epidemiológicos públicos de maneira interpretativa, obtendo resultados acerca da situação pandêmica no estado do Paraná.

Para a execução deste trabalho, foram realizados levantamentos em livros, publicações periódicas, no Plano Estadual de Saúde do Paraná, bem como em boletins epidemiológicos da secretaria de estado da saúde do estado do Paraná (SESA). Fez-se o uso das bases de dados SCIELO, MEDLINE e PUBMED, utilizando os idiomas português e inglês. Os termos usados para a pesquisa foram: COVID-19; co-morbidades; diabetes. Os descritores foram pesquisados de modo associado. A seleção foi executada a partir da leitura criteriosa dos materiais, incluindo no estudo apenas a literatura que atendeu à temática. Os dados obtidos foram analisados e discutidos de forma descritiva e comparativa.

Foram coletados os boletins epidemiológicos de doze meses para a análise dos dados, de Julho de 2020 até Junho de 2021. Tendo como base o ínicio da vacinação em 18 de janeiro de 2021 no qual a partir de maio outros grupos prioritários começaram a ser vacinados (40, 41).

Os dados obtidos foram tabulados no software Microsoft Excel® e foram realizadas comparações estatísticas em matriz quadrada por meio do teste X^2 e dois grupos distintos foram comparados utilizando se o teste T de *Student*. Para ambos a diferença significativa foi dada quando p<0,05.

4. RESULTADOS E DISCUSSÃO

No final do mês de junho de 2021 o Paraná contabilizava mais de 30 mil óbitos pela doença, e o Brasil passava do meio milhão de óbitos. Os detalhes desta comparação são mostrados na tabela 1. Comparativamente o número de casos e óbitos no Brasil aumentaram 725% e 572%, respectivamente. No Paraná, também houve este aumento, no entanto 2,3 e 2,8 vezes maior. Em comparação este fato pode, pelo menos em parte, ser explicado pela maior cobertura de notificações que o Paraná apresenta frente ao restante do país, logo, com maior notificação, haverá consequentemente um maior número de registros (30, 41). Estudos semelhantes conduzidos em Alagoas no Brasil (17), em outros países (15), e até mesmo o comparativo entre os estados brasileiros mostram um perfil semelhante ao encontrado no presente trabalho (19).

Tabela 1 – Comparação absoluta de casos e óbitos por COVID-19 no Paraná e no Brasil no período estudado.

	Br	asil	I	Paraná
	Julho 2020	Junho 2021	Julho 2020	Junho 2021
Casos	2.552.265	18.513.305	75.300	1.278.051
Óbitos	90.134	515.985	1.899	30.539
Letalidade*	3,53	2,78	2,52	2,38
Aumento %				Paraná x Brasil***
Casos**	725,3		1697,2	2,3
Óbitos	572,4		1608,1	2,8

Fonte: o autor. * Comparação em percentual dos óbitos mediante aos números de casos confirmados. ** Comparação percentual de aumento entre os dados brutos nos dois meses relatados. *** Comparação em número de vezes que o aumento no Paraná foi maior que o aumento brasileiro.

Embora tenha havido uma leve diminuição na taxa de letalidade o teste do X² não demonstrou uma diferença estatística nesta evolução (p=0,62). Já com relação à taxa de aumento de número de casos e óbitos o teste do X² revelou uma diferença significativa, no qual, no Paraná este aumento foi superior ao do país (p=0,001). Assim como em outros estudos (23, 24, 25), neste, vimos que houve um número ligeiramente maior de óbitos no sexo masculino (57,5%). Conforme pode ser observado na tabela 2.

Tabela 2 – Evolução dos óbitos no período estudado para os sexos masculino e feminino.

			2020	0		2021							
Mês	7	8	9	10	11	12	1	2	3	4	5	6	Total
Homem	754	772	732	428	540	1039	1079	1055	2721	3288	2289	2500	17197
Mulher	509	541	496	295	394	774	836	700	2103	2562	1729	1767	12706
Total	1263	1313	1228	723	934	1813	1915	1755	4824	5850	4018	4267	29903

Fonte: o autor.

Na tabela 3 podemos observar o número de casos de óbitos nas diferentes faixas etárias. Assim como em outros estudos (21, 24, 25) o maior número de óbitos está nas idades mais avançadas. Este fato pode ser explicado, pelo menos em parte, pelas próprias características da senescência, assim como, pelo fato da presença de outras condições clínicas, normalmente associadas com o avanço da idade (22, 37, 38).

Tabela 3 – Número de óbitos nas diferentes faixas etárias para o sexo masculino e feminino durante o período estudado.

Faixa etária	Masculino	Feminino	Total
>80	2808	2624	5432
70-79	3979	2982	6961
60-69	4287	3131	7418
50-59	3310	2190	5500
40-49	1760	1092	2852
30-39	806	478	1284
20-29	215	160	375
10-19	25	36	61
06-09	1	1	2
00-05	6	12	18
Total	17197	12706	29903

Fonte o autor. Faixa etária em anos.

Considerando que houve uma mudança no perfil etário com relação aos óbitos ao longo dos meses, na tabela 4, é mostrada uma comparação entre as diferentes faixas de idade durante tempo incluso no estudo.

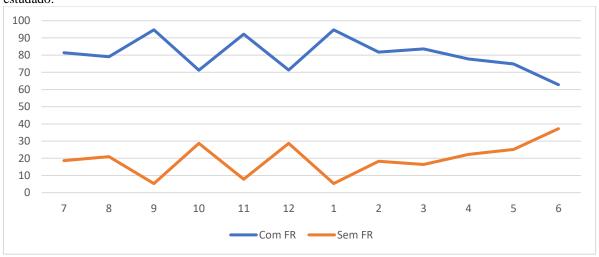
Tabela 4 – Número de novos óbitos em diferentes faixas etárias agrupadas no período estudado.

			20	020					2				
Mês	7	8	9	10	11	12	1	2	3	4	5	6	Aumento
Faixa etária													
>80	298	304	322	185	256	437	411	514	891	884	426	504	1,69
50-79	823	876	767	457	608	1213	1304	1078	3233	4086	2794	2640	3,2
20-49	140	129	133	80	69	161	196	155	690	865	788	1105	7,9
<20	2	4	6	1	1	2	4	8	10	15	10	18	9

Fonte: o autor. Aumento: valor do último mês dividido pelo valor do primeiro mês estudado.

Nesta tabela 4 é importante notar que embora tenha havido aumento no número de casos de óbitos em todas as faixas etárias destacamos que o perfil nos óbitos se alterou de modo importante. Dando ênfase para os menores de 20 anos o qual houve um aumento em 9 vezes no número de casos, em seguida, um aumento de quase 8 vezes no espaço etário entre 20 e 49 anos.

Com relação ao fator de risco, do total de óbitos, 78,8 % dos pacientes apresentavam pelo menos um fator de risco, enquanto que, 21,2% dos óbitos não relataram a presença de nenhum tipo de fator. A tabela 5 traz uma variação temporal do percentual de óbitos na presença ou ausência de fatores de risco. Este dado corrobora aos encontrados em diferentes metanálises desenvolvidas em 2020 e 2021, as quais demonstram que quanto maior o número de fatores de riscos associados maior também, a taxa de mortalidade (15, 16, 17, 21).


Tabela 5 – Variação temporal e percentual de óbitos considerando a presença de fatores de risco.

		2021										
Mês	Mês 7 8 9 10 11 12 1									4	5	6
Com FR	81	79	95	71	92	71	95	82	84	78	75	63
Sem FR	19	21	5	29	8	29	5	18	16	22	25	37

Fonte: o autor. FR: fator de risco.

Neste contexto, cabe uma colocação a respeito da diminuição da taxa de óbitos com a presença de fator de risco. Enquanto que o número de óbitos sem fator de risco passou a um aumento progressivo a partir de fevereiro de 2021. Esse resultado seria esperado considerando que os grupos de risco passaram a receber a vacinação no mês de janeiro. Na figura 4 é possível analisar este perfil. De Julho de 2020 a Fevereiro de 2021 o teste T de *Student* mostra uma diferença com relação à presença do fator de risco (p=0,001), porém não há uma diferença dentro do próprio grupo com ou sem fator de risco ao longo deste período (p=0,6; p=0,2, respectivamente). No entanto a partir de Fevereiro de 2021 até o mês de Junho 2021 o teste t mostra uma tendência de queda no número de óbitos com fator de risco e um aumento nos casos na ausência deste fator (p=0,05 e p=0,049, respectivamente.

Figura 4 – Variação temporal do percentual de óbitos na presença ou ausência de fator de risco durante o período estudado.

Fonte: o autor. FR: Fator de Risco.

Atualmente considera-se 16 situações como fatores de risco para óbitos por COVID-19. A distribuição dos óbitos e a presença dos fatores de risco é demonstrada na tabela 6. O perfil elencado no presente trabalho corrobora outros executados tanto na China, quanto em revisões sistemáticas, os quais sugerem que a idade, condições cardiovasculares pré-existentes e o DM são as principais comorbidades diretamente relacionadas com os óbitos por COVID-19 (4, 5, 7, 9, 11, 12).

Tabela 6 – Fatores de risco associados aos óbitos por COVID-19 no estado do Paraná.

Fator de Risco	n	%
Idoso	16841	37,31
Doença Cardiovascular	10891	24,13
Diabetes mellitus	7400	16,39
Obesidade	3363	7,45
Doença Neurológica	1694	3,75
Pneumopatias	1473	3,26
Doença renal crônica	1398	3,10
Imunodeficiência	730	1,62
Asma	610	1,35
Doença hepática	352	0,78
Doença hematológica	196	0,43
Síndrome de Down	85	0,19
Gestante	58	0,13
até 42 dias após o parto	20	0,04
menor de 6 anos	15	0,03
Indígena	14	0,03
Total	45140	100,00

Fonte: o autor.

Cabe ressaltar que o número de óbitos com fatores de risco é superior ao valor total de mortes uma vez que, um mesmo paciente pode apresentar mais do que um fator de risco associado. Em valores absolutos, ser idoso, a presença de uma condição cardiovascular e o diabetes foram os principais fatores associados.

A tabela 7 mostra a evolução do número de óbitos em pacientes com fator de risco diabetes ao longo do período estudado e faz uma comparação com o número total de óbitos no período. Na sequência um percentual deste valor. Em média, no intervalo entre Julho e Janeiro, o DM enquanto FR representou 30,9% dos óbitos, já no comparativo Fevereiro a Junho este percentual baixou para 23,8%. Nestes dois períodos de tempo tem-se os momentos pré e pós vacinação de parte da população (19, 30, 41).

Tabela 7 – Evolução temporal dos casos novos de óbitos totais e em pacientes portadores de diabetes.

			202	20				2021					
	jul	ago	set	out	nov	dez	jan	fev	mar	abr	mai	jun	
Óbitos													
Totais	1263	1313	1229	724	934	1213	2624	1645	4823	5850	4018	4267	
DM+	167	778	260	394	118	549	280	420	785	1473	797	1379	
%	13,2	59,3	21,2	54,4	12,6	45,3	10,7	25,5	16,3	25,2	19,8	32,3	

Fonte: os autores. DM+: pacientes os quais concomitantemente ao óbito por COVID-19 foi relatada a presença de DM. %: percentual de pacientes com FR DM comparado com o número total de óbitos.

Na tabela 8 é possível observar uma comparação percentual na presença dos fatores de risco entre os óbitos por COVID-19 em dois momentos, pré e pós vacina. Neste contexto o teste t de *Student* mostra que não houve uma diferença para a presença do DM que variou de 30,9 a 23,8%; o fato dos óbitos ocorrerem em pessoas idosas (65,2 e 54,6%) ou a presença de um problema cardiovascular (48,8 e 35,2%), no entanto houve um aumento significativo na presença da obesidade enquanto FR para os óbitos em um momento pós início da vacinação (de 4 para 12,4%). Conforme demonstrado anteriormente o número de óbitos na população acima de 60 anos diminuiu significativamente após a vacinação (este enquanto grupo prioritário). Este resultado demonstrado na tabela 8 sugere que a obesidade se encontra então espalhada em todas as faixas etárias na população do Paraná.

Tabela 8 - Comparação percentual na presença dos fatores de risco entre os óbitos por COVID-19 em dois momentos, pré e pós vacina.

Mês	7	8	9	10	11	12	1	média	2	3	4	5	6	média	р
DM	13,2	59,3	21,2	54,4	12,6	45,3	10,7	30,9	25,5	16,3	25,2	19,8	32,3	23,8	0,34
Idoso	71,8	74,7	50,6	100,0	30,9	100,0	28,3	65,2	60,5	43,0	58,2	45,6	65,6	54,6	0,36
CV	30,5	74,0	56,0	78,3	18,3	66,9	17,8	48,8	38,4	27,8	35,2	28,9	45,6	35,2	0,23
OB	3,4	10,4	5,7	4,0	4,2	12,0	4,0	6,2	8,6	8,2	12,7	13,7	18,9	12,4	0,02

Fonte: os autores. DM: diabetes mellitus; CV: condição cardiovascular; OB: obesidade. P: valor de significância estatística no teste T de *Student* unicaudal para população heteroscedástica.

A figura 5 mostra a evolução da presença dos principais fatores de risco ao longo do tempo estudado. Na evolução das linhas é possível observar uma similaridade de perfil dos fatores idade, problema cardiovascular e DM, o que pode sugerir tratar-se de pacientes únicos com múltiplas comorbidades. No entanto, quando se trata da obesidade, condição que, sozinha também é um fator de risco para o desenvolvimento do DM a tendência dele, enquanto FR é estar mais presente entre os óbitos, mesmo após a vacinação.

Alguns mecanismos são sugeridos para explicar a propensão do desenvolvimento da COVID-19 em portadores destas comorbidades. Em um primeiro momento, a inflamação, a desregulação da hemostasia, a desregulação do sistema nervoso simpático e a ativação do

sistema renina angiotensina aldosterona (SRAA), considerando que a invasão das células se dá pela utilização da ECA pelo vírus (22).

No DM, existe uma maior produção de angiotensina 2 (AT2), uma vez que o próprio DM altera o SRAA. A instalação de um processo inflamatório, diminuição da secreção à insulina, aumento da produção de radicais livres e diminuição da sensibilidade tecidual à insulina são resultados do aumento da disponibilidade de AT2 (20, 23).

Neste contexto temos um ciclo vicioso no qual, o DM leva ao aumento da produção de AT2. A grande disponibilidade de AT2 gera um processo imune no qual há aumento da produção de moléculas de adesão e ativação dos mecanismos de inflamação dos tecidos. Fatores que predispõe o organismo à infecções. Este processo, justificaria, pelo menos em parte o fato o maior comprometimento de pacientes com DM às complicações causadas pela COVID-19 (22). Por sua vez, as células acometidas pelo vírus induzem morte celular programada e acentuam os processos inflamatórios, gerando um meio mais susceptível à infecção (22, 24).

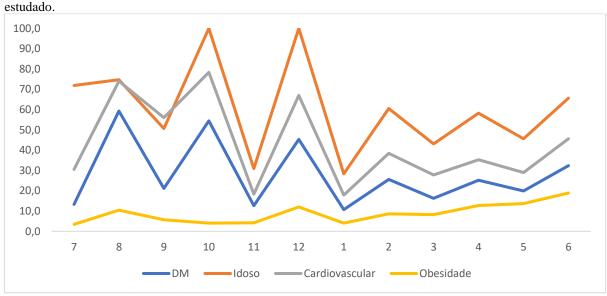


Figura 5 - Evolução do percentual de óbitos perante a presença dos principais fatores de risco ao longo do tempo estudado.

Fonte: o autor. O eixo Y demonstra o percentual da presença do fator de risco entre os óbitos. O eixo X representa os meses estudados, variando de 07/2020 a 06/2021.

Na tabela 9 abaixo, é demonstrada a taxa de letalidade estimada do DM entre os meses de Agosto de 2020 e Junho de 2021. Nesta, houve a separação em dois momentos, pré vacina, compreendendo os meses até Janeiro, e o momento pós-vacina (Fevereiro a Junho). A taxa de letalidade se deu pelo valor percentual de óbitos dentro dos casos confirmados e hospitalizados por COVID portadores de DM. Embora não seja a maneira ideal para se dar a dimensão total da doença, trata-se da única maneira que este dado foi trazido pela secretaria de saúde do

Paraná. Quando calculada a média destes dois períodos, o teste T de *Student* revela que houve uma diferença entre o número de casos e de óbitos porém a letalidade permanece constante, ou seja, aproximadamente 41%, tanto pré quanto pós vacinação.

Tabela 9 - Taxa de letalidade estimada do DM entre os meses de Agosto de 2020 e Junho de 2021.

					Pré		Pós								
_	DM	ago	set	out	nov	dez	jan	Média	fev	mar	abr	mai	jun	Média	P
	Casos*	960	773	942	753	1760	645	972,2	1190	1811	3068	2037	3643	2350	0,01
	Óbitos	778	260	394	118	549	280	396,5	420	785	1473	797	1379	970,8	0,01
]	Letalidade	81	33,6	41,8	15,7	31,19	43,4	41,13	35,29	43,35	48,01	39,13	37,85	40,73	0,48

Fonte: os autores. Pré ou Pós vacinação. *nesta tabela o número de casos com comorbidade, diferentemente das tabelas anteriores começa em Agosto pois não há este dado em Julho nos boletins informativos da SESA-PR. Teste t de *Student*.

Neste último conjunto de dados foi possível observar que mesmo com a vacinação o número absoluto de óbitos aumentou, isto se justifica pelo menos em parte pela circulação de novas variantes, tanto no Brasil (19) quanto no Paraná (40, 41). Porém neste contexto, a taxa de letalidade não sofreu variação. Embora pode ser observado uma menor mortalidade nas idades mais avançadas após a vacinação, o que sugere a eficácia desta ferramenta, o número de óbitos em idades mais jovens aumentou e a letalidade havendo FR como DM permaneceu constante o que traz a luz as recentes preocupações do ponto de vista de saúde pública como a obesidade e consequentemente o surgimento de DM2 na população mais jovem, a qual, com a falta de vacina para todos permanece a mercê da COVID-19 (34, 35, 36).

5. CONSIDERAÇÕES FINAIS

Mesmo há mais de um ano e meio a pandemia da COVID-19, revelada pelo número de óbitos, parece estar longe de um controle, pelo menos no estado do Paraná, o qual, foi possível observar um aumento no número de óbitos. A presença de DM se mostra como um importante fator predisponente à condição fatal, conforme também foi observado. Assim como em outros estudos, a população masculina paranaense se mostrou mais afetada. A presença de fatores de risco para complicações e óbitos por COVID-19 seguiu um perfil semelhante ao visto em outros estudos.

E por fim, foi possível observar que mesmo com a vacinação, o número absoluto de óbitos aumentou, isto traz a condição de circulação de novas variantes, mesmo que neste contexto, a taxa de letalidade não sofreu variação. Embora pôde ser observado uma menor mortalidade nas idades mais avançadas após a vacinação, o que sugere a eficácia da mesma, o número de óbitos em idades mais jovens aumentou e a letalidade havendo DM como FR permaneceu constante o que traz a luz as recentes preocupações do ponto de vista de saúde pública como a obesidade e consequentemente o surgimento de DM2 na população mais jovem.

6. REFERÊNCIAS

- 1. International Diabetes Federation. IDF Diabetes Atlas. (International Diabetes Federation, 2019).
- 2. Sociedade Brasileira de Diabetes. Diretrizes da Sociedade Brasileira de Diabetes 2019-2020. Diretrizes da Sociedade Brasileira de Diabetes 2019-2020 (2019).
- 3. World Health Organization. WHO Coronavirus Disease (COVID-19) Dashboard. (2020).
- 4. Andersen, et al. The proximal origin of SARS-CoV-2. Nat. Med. (2020) doi:10.1038/s41591-020-0820-9.
- 5. Zhou, et al. Clinical course and risk factors for mortality of adult in patients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet. 2020 Mar 28;395(10229):1054-1062. doi: 10.1016/S0140-6736(20)30566-3. Erratum in: Lancet. 2020 Mar 28;395(10229):1038.
- 6. Guo, et al. Diabetes is a risk factor for the progression and prognosis of COVID-19. Diabetes Metab Res Rev. 2020 Mar 31:e3319. doi:10.1002/dmrr.3319.
- 7. Li, et al. COVID-19 patients' clinical characteristics, discharge rate, and fatality rate of metaanalysis. Journal of Medical Virology, 2020; 92: 577-583.
- 8. Liu, et al. Composition and divergence of coronavirus spike proteins and host ACE2 receptors predict potential intermediate hosts of SARS-CoV-2. Journal of Medical Virology, 2020: 01-07.
- 9. Tang, et al. A materials-science perspective on tackling COVID-19. *Nat Rev Mater* **5**, 847–860 (2020). https://doi.org/10.1038/s41578-020-00247-y
- 10. Rodrigues-Morales, et al. Clinical, laboratory and imaging features of COVID-19: A systematic review and meta-analysis. Travel Medicine and Infectious Disease, 2020; 34: 1-13.

- 11. Yang, et al. Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: a single-centered, retrospective, observational study. Lancet Respiratory Medicine, 2020; 8: 475-482.
- 12. Henry, et al. Hematologic, biomechanical and immune biomarker abnormalities associated with severe illness and mortality in coronavirus disease 2019 (COVID-19): a meta-analysis. Clinical Chemistry and Laboratory Medicine, 2020; 58: 1021-1028
- 13. Ayres. A metabolic handbook for the COVID-19 pandemic. Nature Metabolism, p. 1-14, 2020.
- 14. Santos-Neto, et al. COVID-19: Diagnostic methodologies . RSD [Internet]. 2021May14;10(5):e48810515114. Available from: https://www.rsdjournal.org/index.php/rsd/article/view/15114
- 15. Guan, et al. (2020). Clinical characteristics of coronavirus disease 2019 in China. New England Journal of Medicine, 382(18), 1708–1720. https://doi.org/10.1056/NEJMoa2002032
- 16. Wang, et al. COVID-19 in early 2021: current status and looking forward. *Sig Transduct Target Ther* **6**, 114 (2021). https://doi.org/10.1038/s41392-021-00527-1
- 17. Oliveira, et al. Temporal analysis of suicide attempts attended at an emergency hospital in agreste Alagoas, Brazil. RSD [Internet]. 2021Jun.25 [cited 2021Jul.27];10(7):e58110716815. Available from: https://www.rsdjournal.org/index.php/rsd/article/view/16815
- 18. Gupta, et al. Clinical considerations for patients with diabetes in times of COVID-19 epidemic. Diabetes & Metabolic Syndrome: Clinical Research & Reviews, 2020; 14: 211-212
- 19. BRASIL, Ministério da Saúde. Painel informativo Coronavírus. Disponível em https://opendatasus.saude.gov.br/dataset/bd-srag-2021/resource/42bd5e0e-d61a-4359-942e-ebc83391a137. Acesso em 20 de Junho de 2021.

- 20. Lim, S., Bae, J.H., Kwon, HS. *et al.* COVID-19 and diabetes mellitus: from pathophysiology to clinical management. *Nat Rev Endocrinol* **17**, 11–30 (2021). https://doi.org/10.1038/s41574-020-00435-4
- 21. Zhou, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. The Lancet, 2020; 395: 1054-1062.
- 22. Bode, et al. Glycemic Characteristics and Clinical Outcomes of COVID-19 Patients Hospitalized in the United States. J Diabetes Sci Technol. 2020 Jul;14(4):813-821. doi: 10.1177/1932296820924469.
- 23. Tadic, et al. COVID-19 and diabetes: Is there enough evidence? The Journal of Clinical Hypertension, 2020; 22: 943-948
- 24. Tay, et al. The Trinity of COVID-19: imunnity, inflamation and intervention. Nature Reviews, 2020; 363-374.
- 25. Kumar, et al. Is diabetes mellitus associated with mortality and severity of COVID-19? A meta-analysis. Diabetes Metab Syndr. 2020 Jul-Aug;14(4):535-545. doi: 10.1016/j.dsx.2020.04.044.
- 26. Arduino F. O diabetes ontem e hoje. In: Diabetes Mellitus. Rio de Janeiro: Guanabara Koogan. 1980. 414p.
- 27. Couri et al.,. Secondary prevention of type 1 diabetes mellitus: stopping immune destruction and promoting beta-cell regeneration. Braz J Med Biol Res. 2006;39(10):1271-80.
- 28. AMERICAN DIABETES ASSOCIATION. Standards of Medical Care of Diabetes, 2014. Diabetes Care, New York, v. 37, Supl.1, p. s14-S80, 2014.
- 29. Grillo, et al. Educação em diabetes na atenção primária: um ensaio clínico randomizado Cad. Saúde Pública, Rio de Janeiro, 32(5): e00097115, mai, 2016.

- 30. PARANÁ SESA Secretaria de Saúde. Boletim diário epidemiológico COVID-19. https://www.saude.pr.gov.br/sites/default/arquivos_restritos/files/documento/2020-12/informe_epidemiologico_31_12_2020.pdf
- 31. Azevedo, et al. Emergências no diabetes mellitus. In Medicina Intensiva Abordagem pratica. 1ª edição. Barueri SP: Manole, 2013. 477 492.
- 32. Diretrizes da Sociedade Brasileira de Diabetes (2015-2016) / Adolfo Milech...[et. al.]; organização José Egidio Paulo de Oliveira, Sérgio Vencio São Paulo: A.C. Farmacêutica, 2016.
- 33. Freitas MC, Foss MC. Cetoacidose diabética e estado hiperglicêmico hiperosmolar. Medicina, Ribeirão Preto. 2003; 36:389-93.
- 34. SBD Sociedade Brasileira de Diabetes. Posicionamento Oficial SBD no 01/2019. Conduta terapêutica no diabetes tipo 2: algoritmo SBD 2019. Disponível em: https://www.diabetes.org.br/publico/images/pdf/sbd dm2 2019 2.pdf.
- 35. SBD Sociedade Brasileira de Diabetes; Diretrizes 2019-2020. Disponível em: https://www.diabetes.org.br/profissionais/images/DIRETRIZES-COMPLETA-2019-2020.pdf.
- 36. Diabetes care. American Diabetes Association. Classificação e diagnóstico de diabetes: Padrões de atendimento médico em diabetes 2021 Disponível em: https://doi.org/10.2337/dc21-S002
- 37. Balletshofer, et al. A disfunção endotelial é detectável em parentes de primeiro grau jovens normotensos de indivíduos com diabetes tipo 2 em associação com resistência à insulina. American Heart Association, 2000 Disponível em: https://www.ahajournals.org/doi/full/10.1161/01.CIR.101.15.1780
- 38. Aguiar, et al. A microcirculação no diabetes: implicações nas complicações crônicas e tratamento da doença. Arq Bras Endocrinol Metab vol.51 no.2 São Paulo Mar. 2007. Disponível em: http://dx.doi.org/10.1590/S0004-27302007000200009.

- 39. Scheffel, et al. Prevalência de complicações micro e macrovasculares e de seus fatores de risco em pacientes com diabetes melito do tipo 2 em atendimento ambulatorial. Rev. Assoc. Med. Bras. vol.50 no.3 São Paulo July/Sept. 2004. Disponível em: https://doi.org/10.1590/S0104-42302004000300031
- 40. PARANÁ, 2021. https://www.saude.pr.gov.br/Noticia/Parana-completa-dois-meses-de-vacinacao-contra-Covid-19
- 41. PARANÁ, 2021. https://www.saude.pr.gov.br /sites/default/arquivos_restritos/files/documento/2021-05/10-05-2021.pdf

7. CARTA DE ACEITE PARA PUBLICAÇÃO

Fag Journal of Health

http://fjh.fag.edu.br

Cascavel, 18 de Julho de 2021.

Carta de Aceite

O editor da FAG Journal of Health tem o prazer de comunicar que o artigo: "ANÁLISE EPIDEMIOLÓGICA DO DIABETES ENQUANTO FATOR DE RISCO PARA ÓBITO POR COVID-19 NO ESTADO DO PARANÁ" de autoria de **João Victor Braga de Oliveira Britto, Marise Vilas Boas Pescador, Vagner Fagnani Linartevichi** foi aceito para a publicação na sessão "artigos originais" sob o DOI 10.3598/fjh.v3i4.470

A citação do artigo poderá ser dada da seguinte maneira: Britto, J. V., Pescador, M., & Linartevichi, V. (2021). ANÁLISE EPIDEMIOLÓGICA DO DIABETES ENQUANTO FATOR DE RISCO PARA ÓBITO POR COVID-19 NO ESTADO DO PARANÁ. FAG JOURNAL OF HEALTH (FJH), 3(4). https://doi.org/10.35984/fjh.v3i4.470

O referido artigo encontra-se *in press* e estará disponível na edição de **Outubro/Dezembro** de 2021.

*O link doi passará a ser funcional 15 dias após a publicação online do artigo.

Atenciosamente

os Editores

Danila M. Bernardi
Prof. Daniela Miotto Bernardi, PhD

Prof. Marcelo Taglietti, PhD

FAG Journal of Health

ISSN 2674-550X

Centro Universitário da Fundação Assis Gurgacz © 2021 Published by FAG Journal of Health

8. PROJETO COOPEX

PROJETO DE PRODUÇÃO CIENTÍFICA CADASTRADO EM 25/05/2021 PROJETO 7828

Diabetes Mellitus como fator de risco no óbito por SARS-cov19 no município de Cascavel-PR

Proponente: João Victor Braga De Oliveira Britto jvboliveira

Curso: Medicina

Início da Projeto: 11/01/2021 Término da Projeto: 30/07/2021 Grupo de Pesquisa: Farmacologia Linha de Pesquisa: Ciências Básicas

Assunto/Tema:

ANÁLISE EPIDEMIOLÓGICA DO DIABETES ENQUANTO FATOR DE RISCO PARA ÓBITO POR COVID-19 NO ESTADO DO PARANÁ

Justificativa:

A Diabetes Melittus (DM), é considerada um importante problema de saúde para todos os países, independentemente de seu grau de desenvolvimento. Estima-se que 8,8% da população mundial com 20 a 79 anos de idade (415 milhões de pessoas) vive com diabetes. Já em 2040, caso as tendências atuais persistirem, o número de pessoas com diabetes será superior a 642 milhões. (1) A doença é classificada como crônica, porém, no decorrer do tratamento, o paciente poderá apresentar episódios de descompensação, como hipoglicemia e as crises hiperglicêmicas (cetoacidose diabética e o estado hiperosmolar não cetótica). Dentre essas os episódios de hipoglicemia são frequentes, porém as crises hiperglicêmicas possuem uma mortalidade muito maior. A cetoacidose diabética (CAD) possui taxa de mortalidade de cerca 5% em centros especializados, enquanto a síndrome hiperosmolar não cetótica apresenta taxa em torno de 15%. (2) Atualmente o mundo enfrenta duas pandemias. Uma viral – a COVID-19 e uma antiga – o DM. As duas estão em curso e aparentemente existe relação entre si. As infecções humanas por coronavírus são conhecidas há muito tempo, incluindo a síndrome respiratória aguda grave (SARS) e a síndrome respiratória do Oriente Médio (MERS). A partir de dezembro de 2019, um novo coronavírus – SARS-CoV-2, passou a circular pelo mundo, causando a COVID-19.

A situação clínica da COVID-19 tem se mostrado bastante variado e abrangente, desde uma infecção assin-tomática até manifestações severas que podem resultar em síndrome do desconforto respiratório agudo grave e morte. Acredita-se que os casos graves tenham relação com outras doenças, tais como, hipertensão, diabetes e doenças cardiovasculares, embora diversos aspectos sobre a fisio-patologia da doença, a evolução clínica e o padrão de resposta imunológica ainda não tenham sido totalmente eluci-dados.(5,6)

9. RELATÓRIO DOCXWEB

Relatório DOCxWEB: https://www.docxweb.com

Título: analise epidemiologica do diabetes enquanto fator

Data: 29/07/2021 22:40 Usuário: Vagner Linartevichi Email: linartevichi@gmail.com

WEB | Ajuda

Autenticidade em relação a INTERNET

Autenticidade Calculada:

96 %

Autenticidade Total: 96 %

Ocorrência de Links

Ocorrência Fragmento

> http://www.rbac.org.br/artigos/covid-19-e-diabetes-relacao-entre-duas-pandemias-1%

distintas/

Texto Pesquisado

ANÁLISE EPIDEMIOLÓGICA DO DIABETES ENQUANTO FATOR DE RISCO PARA ÓBITO POR COVID-19 NO ESTADO DO PARANÁ O Diabetes Melittus (DM), é considerado um importante problema de saúde para todos os países, independentemente de seu grau de desenvolvimento. Estima-se que 8,8% da população mundial com 20 a 79 anos de idade (415 milhões de pessoas) vive com diabetes. Já em 2040, caso as tendências atuais persistirem, o número de pessoas com diabetes será superior a 642 milhões (1).

A doença é classificada como crônica, porém, no decorrer do tratamento, o paciente poderá apresentar episódios de descompensação, como hipoglicemia e as crises hiperglicêmicas (cetoacidose diabética e o estado hiperosmolar não cetótica). Dentre essas os episódios de hipoglicemia são frequentes, porém as crises hiperglicêmicas possuem uma mortalidade muito maior. A cetoacidose diabética (CAD) possui taxa de mortalidade de cerca 5% em centros especializados, enquanto síndrome hiperosmolar não cetótica apresenta taxa em torno de 15% (2).

Atualmente o mundo enfrenta duas pandemias. Uma viral - a COVID-19 e uma antiga - o DM. As duas estão em curso e aparentemente existe relação entre si. As infecções humanas por coronavírus são conhecidas há muito tempo, incluindo a síndrome respiratória aguda grave (SARS) e a síndrome respiratória do Oriente Médio (MERS). A partir de dezembro de 2019, um novo coronavírus - SARS-CoV-2, passou a circular pelo mundo, causando a COVID-19 (3).

A situação clínica da COVID-19 tem se mostrado bastante variado e abrangente, desde uma infecção assintomática até manifestações severas que podem resultar em síndrome do desconforto respiratório agudo grave e morte (4). Acredita-se que os casos graves tenham relação com outras doenças, tais como, hipertensão, diabetes e doenças cardiovasculares, embora diversos aspectos sobre a fisiopatologia da doença, a evolução clínica e o padrão de resposta imunológica ainda não tenham sido totalmente elucidados (5).

A COVID- 19 foi declara uma pandemia global em 11 de março de 2020. Em 14 de março de 2021, mais de 119 milhões de casos, incluindo mais de 2,6 milhões de mortes foram relatadas em todo o mundo. Uma doença respiratória aguda causada pelo SARS-CoV-2, transmitido de pessoa para pessoa por meio de gotículas respiratórias (3). A mortalidade secundária está relacionada à idade, gravidade da doença e comorbidades. A mortalidade estimada é de 0,7- 2% para todos os pacientes; 10% para pacientes hospitalizados; 30-50% para pacientes em UTI; 37-88% para pacientes que carecem da utilização de ventilação mecânica invasiva ou oxigenação por membrana extracorpórea (6).

Dado este exposto, o presente trabalho teve por objetivo analisar o número de óbitos por COVID-19 no estado do Paraná e a prevalência do DM entre os mesmos. Além disso, a análise temporal se deu antes e após o início da vacinação no estado.

O início da pandemia de COVID-19 (o novo coronavírus) se deu na China em uma cidade chamada Wuhan. Em primeiro momento houve um surto de pneumonia. Os primeiros afetados por esta condição pulmonar trabalhavam ou residiam ao redor de um mercado de produtos in natura (7).

Após a descoberta do vírus (o agente etiológico), foi denominada a doença COVID-19 baseado em radiografia de tórax, manifestações clínicas e testes sanguíneos. Este agente foi denominado de SARS-CoV-2 (figura 1), pertencente a uma família chamada Coronaviridae, neste processo pode ser utilizada, para a entrada do vírus, a enzima conversora de angiotensina II (ECA2), produzindo a SARS-CoV, ou chamada Síndrome Respiratória Aguda Grave induzida pelo coronavívus (8).

Figura 1 – Estrutura, rotas de transmissão e ciclo de replicação do SARS-CoV-2.

Estrutura proposta para o vírus da COVID-19, métodos de transmissão e ciclo de replicação do mesmo em uma célula pulmonar. RNA: ácido ribonucleico. Adaptado de Tang et al., 2020 (9).

Certos animais apresentam condições para serem hospedeiros deste vírus, no entanto, por até três horas, as gotículas podem estar presentes no ar, a transmissão no humano ocorre por meio de perdigotos (9). Nas vias aéreas, o vírus infecta as células epiteliais. Nem todos os casos há, porém, na presença de sintomas, os mesmos aparecem entre o 5º e 6º dia da contaminação e duram por até 14 dias. Os sintomas mais comuns são perda do paladar, dispneia, tosse seca, febre e alterações na pele. Quando grave, há perda da capacidade respiratória, angina e alterações dos movimentos ou fala (10). Algumas pessoas são mais propensas à infeção pelo coronavírus principalmente as portadoras de doença renal, doença

pulmonar obstrutiva crônica (DPOC) e doenças cardiovascular. Aparentemente as mortes estão correlacionadas às situações como doenças cardiovasculares ou o DM (11).

Após a infecção, os pacientes apresentam modificação na bilirrubina total, ferritina sérica, leucócitos, creatina quinase e nos níveis de IL6 (interleucina). Distúrbios destes marcadores são mais evidentes em pacientes em estado mais grave do que os sobreviventes. Assim como a diminuição das células de defesa é proporcional à gravidade da doença (12).

Ao longo da pandemia, tornou-se claro que são necessárias condições especiais de prevenção e tratamento para pacientes com comorbidades e condições subjacentes. Como por exemplo para pacientes que possuem doenças cardiovasculares, tal como a hipertensão arterial sistêmica (HAS), doença renal crônica, condições endócrinas, infecção por HIV, doenças neurológicas, obesidade, condições pulmonares, pacientes diabéticos, entre outras comorbidades (13). A gravidade baseada em sinais e sintomas em adolescentes e adultos é demonstrado no quadro 1.

Sintomas leves a graves podem surgir de 2 a 14 dias após a exposição, com período médio de incubação do vírus de 5 dias. Podendo ter pessoas assintomáticas, sendo 30% dos pacientes. Pacientes com a doença leve, não apresentando pneumonia viral e hipóxia, podem não precisar de hospitalização. Já as manifestações mais graves, requerem a hospitalização do paciente e cuidados que incluem pneumonia, hipoxemia, **Síndrome de Desconforto Respiratório Agudo** (SDRA), sepse, choque séptico, cardiomiopatia, arritmia e lesão renal aguda. **Não há tratamento antiviral específico** para COVID-19. Cuidados de suporte podem ajudar a aliviar os sintomas e devem incluir suporte de funções de órgãos vitais em casos graves (14).

Para casos leves, o recomendado é acompanhar o paciente por telefone, a cada 24 horas, até que se complete 14 dias do início dos sintomas, sendo por atenção primária ou por serviços de atenção domiciliar, não necessitando de internação hospitalar, apenas se necessário. Em Segundo a Portaria nº 454, de 20 de março de 2020, é definida as condições de afastamento e tratamento domiciliar, sendo importante tornar claro que o documento indica o afastamento ou o tratamento de indivíduos com qualquer sintoma respiratório o mais prévio possível, buscando a redução e controle da transmissibilidade da COVID-19 (3, 12, 14).

Adaptado de Santos-Neto et al., 2021 (14).

Já os casos moderados se referem aos pacientes que requerem de internação hospitalar para observação e acompanhamento clínico, porém sem apresentar gravidade para internação em UTI, pois não é mostrada instabilidade hemodinâmica. Contudo, não há necessidade de ventilação mecânica ou realizar outros procedimentos invasivos. São pacientes com alguma condição antecedente que os coloca no grupo de risco, sendo recomendado a estabilização clínica (sendo ausência de febre e dispneia por pelo menos 48 horas) e melhora de exames laboratoriais (12).

2.2. COMPLICAÇÕES DE COVID-19 QUE LEVAM À UTI

Normalmente, pelo que é observado, casos graves de COVID-19 podem evoluir, necessitando de leitos em UTI, como também, casos moderados ou leves podem se agravar. Porém, existem condições e fatores de risco que devem ser observados para prováveis complicações dos sintomas gripais que podem evoluir para casos graves da doença, como idade avançada e comorbidades, tais como: idosos ≥ 60 anos, pessoas que possuem doenças cardiovasculares, diabetes mellitus, hipertensão, doença pulmonar crônica, neoplasias hematológicas, câncer de pulmão ou doença metastática, doença renal crônica, obesidade e tabagismo, são os principais fatores que podem levar o indivíduo a ter complicações graves da doença, e consequentemente o uso de leito de UTI. Porém, vale ressaltar que indivíduos saudáveis de qualquer idade também podem evoluir com gravidade (15).

Figura 2 – Evolução imunopatológica da COVID-19 nos estágios inicial e avançado.

Figura adaptada de Wang et al., 2021 (16). AT1: célula alveolar pulmonar tipo 1. AT2: célula alveolar pulmonar tipo 2.

No sistema respiratório, se caracteriza como uma **Síndrome Respiratória Aguda Grave** (SRAG), um agravamento do quadro clínico, podendo ter um aumento da frequência respiratória, desconforto respiratório, diminuição de saturação de oxigênio em ar ambiente e insuficiência respiratória (15). Este fato se dá por inúmeras alterações celulares e teciduais, conforme demonstrado na figura 2.

No estágio inicial da infecção, o SARS-CoV-2 internaliza em células alvo, tal como células brônquicas e células AT2, podendo induzir uma série de respostas imune. Na sequência, moléculas de sinalização inflamatória são liberadas pelas células infectadas, adicionalmente os macrófagos alveolar acabam por recrutar os monócitos, neutrófilos e linfócitos T. No estágio avançado o SARS-CoV-2 infecta as células endoteliais dos capilares alveolares, induzindo uma migração de monócitos e neutrófilos, matando os linfócitos T e acentuando a resposta inflamatória. Como consequência há edema intersticial, formação de membrana hialina, edema pulmonar e ativação da coagulação, contribuindo para formação de microtrombos que podem evoluir para embolia pulmonar. O desenvolvimento de uma sepse viral, conhecida como disfunção orgânica com risco à vida, pode ainda levar à falência múltipla dos órgãos (16).

Já no sistema cardiovascular estudos relatam lesão cardíaca aguda, que inclui desequilíbrio entre demanda e suprimento de O2. Esses pacientes tendem a ser mais idosos, e com mais comorbidades. **As principais manifestações são** arritmias, isquemia miocárdica e miocardite. Também é possível perceber o aparecimento de insuficiência renal. Cerca de 23% dos pacientes internados em UTI apresentam Lesão Renal Aguda (LRA) (17).

2.3. INTERRELAÇÃO ENTRE COVID E DIABETES

A evolução ruim dos infectados pela COVID-19 tem produzido inúmeros óbitos, seja pela contaminação rápida e pela, proliferação rápida a qual pode ser observada em todo o globo (18). O avanço da COVID-19 não é diferente no Brasil, onde já se propagou e produziu mais de meio milhão de óbitos (19), neste contexto, parece haver uma maior chance de infecção nos portadores de HAS e DM. Assim, para o Brasil esta interrelação é importante do ponto de vista epidemiológico uma vez que, HAS e DM são as doenças crônicas não transmissíveis de maior prevalência no país. Constituem as principais causas de mortes por doenças crônicas no país (19).

Conforme pode ser visto na figura 3, a infecção pelo coronavírus 2 da síndrome respiratória aguda grave (SARS-CoV-2) pode levar a níveis aumentados de mediadores inflamatórios no sangue, incluindo lipopolissacarídeo, citocinas inflamatórias e metabólitos tóxicos (20). A modulação da atividade das células natural killer (aumentada ou diminuída) e da produção de IFNy pode aumentar a permeabilidade intersticial e/ou vascular para produtos pró-inflamatórios. Além disso, a infecção com SARS-CoV-2 leva ao aumento da **produção de espécies reativas de oxigênio** (21). Esses efeitos levam à fibrose pulmonar, lesão **pulmonar aguda e síndrome do desconforto respiratório** agudo. A produção de EROS e a ativação viral do sistema renina-angiotensina-aldosterona (via aumento da expressão de angiotensina II) causam resistência à insulina, hiperglicemia e dano endotelial vascular, todos contribuindo para eventos cardiovasculares, tromboembolismo **e coagulação intravascular disseminada** (22). A infecção também causa aumento nos componentes da coagulação como o fibrinogênio e dímero-D, levando a aumentos na viscosidade sanguínea e dano ao endotélio vascular, além de eventos cardiovasculares associados, tromboembolismo **e coagulação intravascular disseminada** (20, 23, 24, 25).

Figura 3 – Potenciais mecanismos patogênicos em pacientes com DM2 e COVID-19.

Figura adaptada de Lim et al., 2021 (20). Os raios indicam mecanismos que são acentuados **em pacientes com diabetes mellitus tipo 2 (DM2).** IFNγ: interferon gama; EROS: espécies reativas de oxigênio; IL6: interleucina 6; SRAA: **sistema renina angiotensina aldosterona**; SDRA: síndrome do desconforto respiratório agudo; CID: coagulação intravascular

disseminada.

Em alguns estudos que avaliaram os principais fatores de risco (FR) relacionados à mortes por COVID-19 se destacam a HAS seguida do DM, acredita-se que estas duas doenças crônicas a HAS e DM produzem um processo hiper inflamatório o que torna o paciente mais susceptível às manifestações graves do COVID-19 (19, 21).

2.4 DIABETES MELLITUS

Em torno de 1500 AC, no Egito, papiros já faziam referência a uma doença que se caracterizava por emissão frequente e abundante de urina. Já no século II DC, na Grécia antiga, a enfermidade ganhou o nome de diabetes e foi-se observada a associação entre poliúria, polidipsia, polifagia e astenia. Mais adiante, médicos indianos teriam sido os primeiros a detectar a provável doçura da urina, o que só foi confirmado no século XVII, através dos estudos de Willis, o primeiro a provar que a urina de um paciente com diabetes que era "doce como mel" (26).

Atualmente, sabe-se que que diabetes mellitus (DM) engloba um conjunto de distúrbios metabólicos, o qual caracteriza-se por hiperglicemia causada por defeito na ação e/ou secreção da insulina, o que leva a alterações no metabolismo de carboidratos, lipídios e proteínas, determinando, ao longo do tempo, o comprometimento da função e estrutura vascular de diferentes órgãos. Visto isso, é dito que a insulina atua na manutenção da glicemia em uma estreita faixa de variação nos estados alimentado e em jejum (27).

A doença representa **um importante problema de saúde** para todos os países, independentemente de seu grau de desenvolvimento. Inclusive, **a Federação Internacional de Diabetes (International Diabetes Federation, IDF) estimou** que 8,8% **da população mundial com 20 a 79 anos de idade (415 milhões de pessoas)** vive com diabetes. Já em 2040, caso as tendências **atuais persistirem, o número de pessoas com diabetes** será superior a 642 milhões (28).

A doença possui duas principais classificações, diabetes tipo 1 e 2 e diferenciá-las é essencial para definir o plano terapêutico. A tipo 1 geralmente é abrupta, tendo tendência **a hiperglicemia grave e cetoacidose**, atingindo **principalmente em crianças e adolescentes**. Já o diabetes tipo 2 em geral ocorre em adultos, com excesso de peso e história familiar da doença, apresenta-se de forma insidiosa, podendo ser, inclusive, diagnosticada após as complicações tardias da doença (29).

A doença é classificada como crônica, porém, no decorrer do tratamento, o paciente poderá apresentar episódios de descompensação, levando às complicações agudas da doença. Essas são a hipoglicemia e as crises hiperglicêmicas, nas quais incluem-se **a cetoacidose diabética e o estado** hiperosmolar não cetótica. Dentre essas os episódios de hipoglicemia são frequentes, porém as crises hiperglicêmicas possuem uma mortalidade muito maior. A cetoacidose diabética (CAD) possui taxa de mortalidade de cerca 5% em centros especializados, enquanto **a síndrome hiperosmolar não cetótica** apresenta taxa em torno de 15% (30).

A hipoglicemia caracteriza-se pela presença de glicose plamática inferior a 50 mg/dl. Os sintomas presentes incluem sintomas neurogênicos autonômicos e neuroglicopênicos. No primeiro grupo enquadram-se sudorese, taquicardia e tremores. Já no segundo há a presença de fome, fraqueza, tonturas, cefaleia e alterações do estado de consciência. Na maioria dos casos o paciente consegue reconhecer e até tratar a hipoglicemia, sendo que a regressão dos sintomas ocorre após normalização da mesma (31).

Já as crises hiperglicêmicas, que ocorrem quando há baixa adesão ao tratamento, a exemplo há o sedentarismo e o consumo excessivo de alimentos ou na presença de infecções ou outras doenças, como AVC, IAM e trauma (32).

A cetoacidose diabética ocorre devido a uma complexa alteração do metabolismo da glicose e dos ácidos graxos, levando a uma deficiência absoluta ou relativa de insulina, junto a isso há o aumento de glucagon, catecolaminas, cortisol e hormônio do crescimento, hormônios contra-reguladores. Porém, esses hormônios, devido a hiperglicemia, a desidratação e aos distúrbios eletrolíticos, mantêm-se elevados, agravando mais ainda o quadro glicêmico (32). A manutenção desse mecanismo leva a hipovolemia, pois a água do meio intracelular é desviada para o meio extracelular. Por fim, a não utilização de acetoácidos causam perda de bicarbonato, o que por sua vez leva à acidose metabólica. Geralmente, os pacientes que apresentarão tal descompensação são crianças e adultos jovens (33).

O diagnóstico do DM2 é uma controvérsia entre os profissionais, os exames mais utilizados atualmente são o de glicemia em jejum que se baseia na coleta do sangue periférico após o paciente estar no mínimo 8 horas em jejum calórico os valores padrões determinados pela (OMS) são: inferior ou igual a 100 miligramas por decilitro de sangue (mg/dL) conhecido como normoglicemia, entre 101 e 126 mg/dL são parâmetros para pré-diabéticos e acima de 126 mg/dL já possui diabetes estabelecida (34).

O TOTG é o conhecido teste de tolerância à glicose se baseia em uma coleta de sangue em jejum e a outra 2 horas após a ingestão 75 gramas (g) de glicose dissolvida em água e administrada oralmente permitindo a avaliação após a sobrecarga de glicose, este teste é de suma importância, pois evidencia uma das primeiras alterações na DM que é a perda de secreção da insulina. Os valores padrões determinados pela (OMS) são: inferior a 140 mg/dL parâmetros normoglicemia, entre 140 mg/dL e 200 mg/dL são considerados parâmetros para pré diabéticos ou com risco aumentado e acima de 200 mg/dL diabetes estabelecida (35).

Hb A1c ou hemoglobina glicada não é um teste recomendado para diagnóstico de DM por ser uma medida indireta dos níveis de glicose no sangue, pode sofrer várias alterações e interferências na glicação da hemoglobina o que torna preferível o teste de tolerância à glicose, porém esse exame é bom para um acompanhamento refletindo os valores glicêmicos dos últimos 4 meses (36). Na ausência de sintomas tende a necessidade de repetição dos exames alterados para confirmação do diagnóstico.

A glicemia ao acaso é um exame onde o sangue é coletado sem o paciente estar em jejum e a qualquer horário o valor de referência e acima de 200 mg/dL, caso o paciente apresente sintomas como polidipsia ou poliúria não há necessidade da confirmação por segunda dosagem (34, 35).

Indivíduos com hereditariedade para DM2 tem maior probabilidade de desenvolver disfunção microvascular no tecido cutâneo, estudos apontam que a relação entre DM2 e doenças cardiovasculares começa cedo desde a fase de intolerância a glicose e logo após a DM2, nos pacientes com pressão arterial e glicemia dentro dos padrões normais (impostos pelas agências responsáveis) parentes de primeiro grau de pacientes que possuíam a DM2 foram apresentados resultados de disfunção endotelial e resistência à insulina o que torna tais pacientes mais suscetíveis a o desenvolvimento de aterosclerose (37).

De um ponto de vista mais clínico as principais patologias referentes à DM2 e o sistema microvascular são a neuropatia (perca de sensibilidade em nervos inferiores) retinopatia (distúrbios ou perca da visão) e nefropatia (doença renal), o tratamento tem sido baseado justamente no controle glicêmico o que se demonstrou eficaz e retardou significativamente a progressão das patologias microvasculares citadas acima, porém de acordo com um estudo realizado pelo **United Kingdom Prospective Diabetes Study (UKPDS)** o controle deve ser altamente estrito e com o acompanhamento profissional adequado levando em consideração o uso de medicamentos via oral ou até mesmo da insulina humana para melhor controle (38).

As doenças macrovasculares estão relacionadas ao comprometimento aterosclerótico das artérias coronarianas e são as principais causas de morte entre esses pacientes cerca de 50% dos casos, os indivíduos morrem por doenças cardíacas principalmente infarto agudo do miocárdio, como nas doenças microvasculares os pacientes podem apresentar complicações logo ao início da doença se apresentando mais grave em pacientes do DM2, há grande variação das complicações crônicas em

relação com as populações estudadas, porém em grande parte dos grupos os pacientes apresentam risco de duas a quatro vezes mais de desenvolver doenças vasculares periféricas, cardíacas e sofrer um acidente vascular cerebral, em relação a pacientes não diabéticos (39).

3. METODOLOGIA

Este estudo teve como base metodológica a revisão de literatura, fundamentada através de uma pesquisa em bibliografias que abordam os contextos da COVID-19 e do diabetes. Além disso, caracteriza-se como um estudo explorativo longitudinal, uma vez que foram analisados dados epidemiológicos públicos de maneira interpretativa, obtendo resultados acerca da situação pandêmica no estado do Paraná.

Para a execução deste trabalho, foram realizados levantamentos em livros, publicações periódicas, no Plano Estadual de Saúde do Paraná, bem como em boletins epidemiológicos **da secretaria de estado da saúde** do estado do Paraná (SESA). Fez-se o uso das bases de dados SCIELO, MEDLINE e PUBMED, utilizando os idiomas português e inglês. Os termos usados para a pesquisa foram: COVID-19; co-morbidades; diabetes. Os descritores foram pesquisados de modo associado. A seleção foi executada a partir da leitura criteriosa dos materiais, incluindo no estudo apenas a literatura que atendeu à temática. **Os dados obtidos foram analisados e discutidos de** forma descritiva e comparativa.

Foram coletados os boletins epidemiológicos de doze meses para a análise dos dados, de Julho de 2020 até Junho de 2021. Tendo como base o ínicio da vacinação em 18 de janeiro de 2021 no qual a partir de maio outros grupos prioritários começaram a ser vacinados (40, 41).

Os dados obtidos foram tabulados no software Microsoft Excel® e foram realizadas comparações estatísticas em matriz quadrada por meio do teste X2 e dois grupos distintos foram comparados utilizando se o teste T de Student. Para ambos a diferença significativa foi dada quando p<0,05.

4. RESULTADOS E DISCUSSÃO

No final do mês de junho de 2021 o Paraná contabilizava mais de 30 mil óbitos pela doença, e o Brasil passava do meio milhão de óbitos. Os detalhes desta comparação são mostrados na tabela 1. Comparativamente o número de casos e óbitos no Brasil aumentaram 725% e 572%, respectivamente. No Paraná, também houve este aumento, no entanto 2,3 e 2,8 vezes maior. Em comparação este fato pode, pelo menos em parte, ser explicado pela maior cobertura de notificações que o Paraná apresenta frente ao restante do país, logo, com maior notificação, haverá consequentemente um maior número de registros (FONTE). Tabela 1 – Comparação absoluta de casos e óbitos por COVID-19 no Paraná e no Brasil no período estudado.

Fonte: o autor. * Comparação em percentual dos óbitos mediante aos números de casos confirmados. ** Comparação percentual de aumento entre os dados brutos nos dois meses relatados. *** Comparação em número de vezes que o aumento no Paraná foi maior que o aumento brasileiro.

Embora tenha havido uma leve diminuição na taxa de letalidade o teste do X2 não demonstrou uma diferença estatística nesta evolução (p=0,62). Já com relação à taxa de aumento de número de casos e óbitos o teste do X2 revelou uma diferença significativa, no qual, no Paraná este aumento foi superior ao do país (p=0,001).

Assim como em outros estudos (FONTE), neste, vimos que houve um número ligeiramente maior de óbitos no sexo masculino (57,5%).

Na tabela 3 podemos observar o número de casos de óbitos nas diferentes faixas etárias. Assim como em outros estudos (FONTE) o maior número de óbitos está nas idades mais avançadas.

Considerando que houve uma mudança no perfil etário com relação aos óbitos ao longo dos meses, na tabela 4, é mostrada uma comparação entre as diferentes faixas de idade durante tempo incluso no estudo.

Nesta tabela 4 é importante notar que embora tenha havido aumento no número de casos de óbitos em todas as faixas etárias destacamos que o perfil nos óbitos se alterou de modo importante. Dando ênfase para os menores de 20 anos o qual houve um aumento em 9 vezes no número de casos, em seguida, um aumento de quase 8 vezes no espaço etário entre 20 e 49 anos.

Com relação ao fator de risco, do total de óbitos, 78,8 % dos pacientes apresentavam pelo menos um fator de risco, enquanto que, 21,2% dos óbitos não relataram a presença de nenhum tipo de fator. A tabela 5 traz uma variação temporal do percentual de óbitos na presença ou ausência de fatores de risco.

Neste contexto, cabe uma colocação a respeito da diminuição da taxa de óbitos com a presença de fator de risco. Enquanto que o número de óbitos sem fator de risco passou a um aumento progressivo a partir de fevereiro de 2021. Esse resultado seria esperado considerando que os grupos de risco passaram a receber a vacinação no mês de janeiro. Na figura 1 é possível analisar este perfil. De Julho de 2020 a Fevereiro de 2021 o teste T mostra uma diferença com relação à presença do fator de risco (p=0,001), porém não há uma diferença dentro do próprio grupo com ou sem fator de risco ao longo deste período (p=0,6; p=0,2, respectivamente). No entanto a partir de Fevereiro de 2021 até o mês de Junho 2021 o teste T mostra uma tendência de queda no número de óbitos com fator de risco T0 um aumento nos casos na ausência deste fator (p=0,05 e p=0,049, respectivamente).

Cabe ressaltar que o número de óbitos com fatores de risco é superior ao valor total de mortes uma vez que, um mesmo paciente pode apresentar mais do que um fator de risco associado. Em valores absolutos, ser idoso, a presença de uma condição cardiovascular e o diabetes foram os principais fatores associados.

A tabela 7 mostra a evolução do número de óbitos em pacientes com fator de risco diabetes ao longo do período estudado e faz uma comparação com o número total de óbitos no período. Na sequência um percentual deste valor. Em média, no intervalo entre Julho e Janeiro, o DM enquanto FR representou 30,9% dos óbitos, já no comparativo Fevereiro a Junho este percentual baixou para 23,8%. Nestes dois períodos de tempo tem-se os momentos pré e pós vacinação de parte da população.

Na tabela 8 é possível observar uma comparação percentual **na presença dos fatores de risco** entre os óbitos por COVID-19 em dois momentos, pré e pós vacina. Neste contexto o teste t de Student mostra que não houve uma diferença para a presença do DM que variou de 30,9 a 23,8%; o fato dos óbitos ocorrerem em pessoas idosas (65,2 e 54,6%) ou a presença de um problema cardiovascular (48,8 e 35,2%), no entanto houve um aumento significativo na presença da obesidade enquanto FR para os óbitos em um momento pós início da vacinação (de 4 para 12,4%). Conforme demonstrado anteriormente o número de óbitos na população acima de 60 anos diminuiu significativamente após a vacinação (este enquanto grupo prioritário). Este resultado demonstrado na tabela 8 sugere que a obesidade encontra-se então espalhada em todas as faixas etárias na população do Paraná.

A figura 2 mostra a evolução da presença dos principais fatores de risco ao longo do tempo estudado. Na evolução das linhas é possível observar uma similaridade de perfil dos fatores idade, problema cardiovascular e DM, o que pode sugerir tratar-se de pacientes únicos com múltiplas comorbidades. No entanto, quando se trata da obesidade, condição que, sozinha também é um fator de risco para o desenvolvimento do DM a tendência dele, enquanto FR é estar mais presente entre os óbitos, mesmo após a vacinação.

Alguns mecanismos são sugeridos para explicar a propensão do desenvolvimento da COVID-19 em portadores destas comorbidades. Em um primeiro momento, a inflamação, a desregulação da hemostasia, a desregulação do sistema nervoso simpático e a ativação do sistema renina angiotensina aldosterona (SRAA), considerando que a invasão das células se dá pela

utilização da ECA pelo vírus (22).

No DM, existe uma maior produção de angiotensina 2 (AT2), uma vez que o próprio DM altera o SRAA. A instalação de um processo inflamatório, diminuição da secreção à insulina, aumento da produção de radicais livres e diminuição da sensibilidade tecidual à insulina são resultados do aumento da disponibilidade de AT2 (20, 23).

Neste contexto temos um ciclo vicioso no qual, o DM leva ao aumento da produção de AT2. A grande disponibilidade de AT2 gera um processo imune no qual há aumento da produção de moléculas de adesão e ativação dos mecanismos de inflamação dos tecidos. Fatores que predispõe o organismo à infecções. Este processo, justificaria, pelo menos em parte o fato o maior comprometimento de pacientes com DM às complicações causadas pela COVID-19 (22). Por sua vez, as células acometidas pelo vírus induzem morte celular programada e acentuam os processos inflamatórios, gerando um meio mais susceptível à infecção (22, 24).

Na tabela 9 abaixo, é demonstrada a taxa de letalidade estimada do DM entre os meses de Agosto de 2020 e Junho de 2021. Nesta, houve a separação em dois momentos, pré vacina, compreendendo os meses até Janeiro, e o momento pós-vacina (Fevereiro a Junho). A taxa de letalidade se deu pelo valor percentual de óbitos dentro dos casos confirmados e hospitalizados por COVID portadores de DM. Embora não seja a maneira ideal para se dar a dimensão total da doença, trata-se da única maneira que este dado foi trazido pela secretaria de saúde do Paraná. Quando calculada a média destes dois períodos, o teste T de Student revela que houve uma diferença entre o número de casos e de óbitos porém a letalidade permanece constante, ou seja, aproximadamente 41%, tanto pré quanto pós vacinação.

Links por Ocorrência

Fragmento: um importante problema de saúde

29/07/2021

http://www.sgc.goias.gov.br/upload/arquivos/2014-05/diretrizes-sbd-2014.pdf

http://saudedafamiliaufc.com.br/wp-content/uploads/2018/05/ANAIS-CONGRESSO-SAUDE-E-SOCIEDADE.pdf

https://www.saudedireta.com.br/docsupload/13403686111118_1324_manual_enfermagem.pdf

https://bvsms.saude.gov.br/bvs/publicacoes/doencas_relacionadas_trabalho2.pdf

http://189.28.128.100/dab/docs/publicacoes/cadernos_ab/abcad29.pdf

Fragmento: da população mundial com 20 a 79 anos de idade (415 milhões de pessoas) **URLs:**

https://www.diabetes.org.br/profissionais/images/2017/diretrizes/diretrizes-sbd-2017-2018.pdf http://www.paulomeira.com.br/2018/09/15/epidemiologia-e-impacto-global-do-diabetes-mellitus/

Fragmento: atuais persistirem, o número de pessoas com diabetes

URLs:

http://www.paulomeira.com.br/2018/09/15/epidemiologia-e-impacto-global-do-diabetes-mellitus/

Fragmento: a síndrome hiperosmolar não cetótica

http://www.colombo.pr.gov.br/downloads/saude/062012/8-protocolo-atencao-dm-versao-2012.pdf https://bvsms.saude.gov.br/bvs/publicacoes/estrategias cuidado pessoa diabetes mellitus cab36.pdf http://bvsms.saude.gov.br/bvs/publicacoes/estrategias_cuidado_pessoa_diabetes_mellitus_cab36.pdf

Fragmento: entre si. As infecções humanas por coronavírus são conhecidas

http://www.rbac.org.br/artigos/covid-19-e-diabetes-relacao-entre-duas-pandemias-distintas/

Fragmento: a síndrome respiratória aguda grave (SARS) e a síndrome respiratória do Oriente Médio (MERS). A partir de dezembro de 2019, um novo coronavírus

http://www.rbac.org.br/artigos/covid-19-e-diabetes-relacao-entre-duas-pandemias-distintas/

https://www.msdmanuals.com/pt/profissional/doenças-infecciosas/vírus-respiratórios/coronavírus-e-síndromes-

respiratórias-agudas-covid-19,-mers-e-sars

https://www.ucs.br/site/midia/arquivos/ebook-covid19-editora.pdf

https://www.msdmanuals.com/pt/casa/infecções/vírus-respiratórios/coronavírus-e-síndromes-respiratórias-agudas-covid-

https://www.dw.com/pt-002/síndrome-respiratória-aguda-grave-sars/t-52925051

http://whqlibdoc.who.int/publications/2010/9788572888394_por.pdf

Fragmento: da COVID-19 tem se mostrado bastante variado e abrangente, desde uma infecção assintomática até manifestações severas que podem resultar em síndrome do desconforto respiratório agudo grave e morte **URLs:**

http://www.rbac.org.br/artigos/covid-19-e-diabetes-relacao-entre-duas-pandemias-distintas/

Fragmento: casos graves tenham relação com

URLs:

http://www.rbac.org.br/artigos/covid-19-e-diabetes-relacao-entre-duas-pandemias-distintas/

Fragmento: como, hipertensão, diabetes e doenças cardiovasculares, embora diversos aspectos sobre a fisiopatologia da doença, a evolução clínica e o padrão de resposta imunológica ainda não tenham sido totalmente elucidados

http://www.rbac.org.br/artigos/covid-19-e-diabetes-relacao-entre-duas-pandemias-distintas/

Fragmento: de ventilação mecânica invasiva ou

URLs:

https://portaldeboaspraticas.iff.fiocruz.br/wp-content/uploads/2020/06/Covid19-Orienta-esManejoPacientes.pdf

29/07/2021

Fragmento: Síndrome Respiratória Aguda Grave

URLs:

https://portaldeboaspraticas.iff.fiocruz.br/wp-content/uploads/2020/06/Covid19-Orienta-esManejoPacientes.pdf

https://www.msdmanuals.com/pt/profissional/doenças-infecciosas/vírus-respiratórios/coronavírus-e-síndromes-

respiratórias-agudas-covid-19,-mers-e-sars

https://www.ucs.br/site/midia/arguivos/ebook-covid19-editora.pdf

https://saude.rs.gov.br/upload/arquivos/202004/14140606-4-ms-protocolomanejo-aps-ver07abril.pdf

https://www.msdmanuals.com/pt/casa/infecções/vírus-respiratórios/coronavírus-e-síndromes-respiratórias-agudas-covid-

19-mers-e-sars

https://openwho.org/courses/infecoes-respiratorias-agudas-severas-PT

https://www.dw.com/pt-002/síndrome-respiratória-aguda-grave-sars/t-52925051

Fragmento: doença pulmonar obstrutiva crônica (DPOC)

URLs:

https://www.diabetes.org.br/profissionais/images/2017/diretrizes/diretrizes-sbd-2017-2018.pdf

http://www.sgc.goias.gov.br/upload/arquivos/2014-05/diretrizes-sbd-2014.pdf

http://www.saudedireta.com.br/docsupload/1334797709linhas cuidado hipertensao diabetes parte 002.pdf

https://bvsms.saude.gov.br/bvs/publicacoes/doencas_relacionadas_trabalho2.pdf

https://bvsms.saude.gov.br/bvs/publicacoes/estrategias_cuidado_pessoa_doenca_cronica_cab35.pdf

Fragmento: como a hipertensão arterial sistêmica

http://saudedafamiliaufc.com.br/wp-content/uploads/2018/05/ANAIS-CONGRESSO-SAUDE-E-SOCIEDADE.pdf

Fragmento: Síndrome de Desconforto Respiratório Agudo

https://www.saudedireta.com.br/docsupload/1331420457SDRA.pdf

Fragmento: Não há tratamento antiviral específico

URLs:

http://saudedafamiliaufc.com.br/wp-content/uploads/2018/05/ANAIS-CONGRESSO-SAUDE-E-SOCIEDADE.pdf

Fragmento: a Portaria nº 454, de 20 de março

URLs:

https://portal deboas praticas. iff. fiouruz. br/wp-content/uploads/2020/06/Covid 19-Orienta-es Manejo Pacientes. pdf and the properties of the properties

https://saude.rs.gov.br/upload/arquivos/202004/14140606-4-ms-protocolomanejo-aps-ver07abril.pdf

Fragmento: qualquer sintoma respiratório o

URLs:

https://portaldeboaspraticas.iff.fiocruz.br/wp-content/uploads/2020/06/Covid19-Orienta-esManejoPacientes.pdf

Fragmento: da transmissibilidade da COVID-19

URLs:

https://portaldeboaspraticas.iff.fiocruz.br/wp-content/uploads/2020/06/Covid19-Orienta-esManejoPacientes.pdf

Fragmento: de internação hospitalar para observação e acompanhamento clínico,

URLs:

https://portaldeboaspraticas.iff.fiocruz.br/wp-content/uploads/2020/06/Covid19-Orienta-esManejoPacientes.pdf

Fragmento: gravidade para internação em UTI,

https://portaldeboaspraticas.iff.fiocruz.br/wp-content/uploads/2020/06/Covid19-Orienta-esManejoPacientes.pdf

Fragmento: ausência de febre e dispneia por pelo menos

https://portaldeboaspraticas.iff.fiocruz.br/wp-content/uploads/2020/06/Covid19-Orienta-esManejoPacientes.pdf

Fragmento: hipertensão, doença pulmonar crônica,

https://www.ucs.br/site/midia/arquivos/ebook-covid19-editora.pdf

Fragmento: uma Síndrome Respiratória Aguda

URIs:

https://saude.rs.gov.br/upload/arquivos/202004/14140606-4-ms-protocolomanejo-aps-ver07abril.pdf

Fragmento: As principais manifestações são

URLs:

https://bvsms.saude.gov.br/bvs/publicacoes/funasa/GBDIP001_total.pdf

Fragmento: Constituem as principais causas

http://www.paulomeira.com.br/2018/09/15/epidemiologia-e-impacto-global-do-diabetes-mellitus/

Fragmento: pulmonar aguda e síndrome do desconforto respiratório

https://www.saudedireta.com.br/docsupload/1331420457SDRA.pdf

Fragmento: e coagulação intravascular disseminada

URLs:

https://www.ucs.br/site/midia/arquivos/ebook-covid19-editora.pdf

https://bvsms.saude.gov.br/bvs/publicacoes/manual_vigilancia_epidemiologica_eventos_adversos_pos_vacinacao.pdf

Fragmento: em pacientes com diabetes mellitus tipo 2 (DM2).

https://www.diabetes.org.br/profissionais/images/2017/diretrizes/diretrizes-sbd-2017-2018.pdf

http://www.sgc.goias.gov.br/upload/arquivos/2014-05/diretrizes-sbd-2014.pdf

http://www.saudedireta.com.br/docsupload/1334797709linhas_cuidado_hipertensao_diabetes_parte_002.pdf

http://bvsms.saude.gov.br/bvs/publicacoes/diabetes_mellitus.PDF

http://189.28.128.100/dab/docs/publicacoes/cadernos_ab/abcad16.pdf

https://bvsms.saude.gov.br/bvs/publicacoes/diabetes_mellitus.PDF

http://189.28.128.100/dab/docs/publicacoes/geral/atualizacao diabetes2006.pdf

https://www.saudedireta.com.br/docsupload/13403686111118_1324_manual_enfermagem.pdf

http://www.scielo.br/pdf/jbpml/v42n3/a07v42n3.pdf

https://arquivo.fmu.br/prodisc/farmacia/jbsl.pdf

Fragmento: sistema renina angiotensina aldosterona;

URLs:

http://www.rbac.org.br/artigos/covid-19-e-diabetes-relacao-entre-duas-pandemias-distintas/

https://www.diabetes.org.br/profissionais/images/2017/diretrizes/diretrizes-sbd-2017-2018.pdf

http://www.sqc.goias.gov.br/upload/arquivos/2014-05/diretrizes-sbd-2014.pdf

http://189.28.128.100/dab/docs/publicacoes/geral/atualizacao_diabetes2006.pdf

https://bvsms.saude.gov.br/bvs/publicacoes/estrategias_cuidado_pessoa_diabetes_mellitus_cab36.pdf

http://bvsms.saude.gov.br/bvs/publicacoes/estrategias_cuidado_pessoa_diabetes_mellitus_cab36.pdf

Fragmento: referência a uma doença que se caracterizava por emissão frequente e abundante de URIs:

https://www.endocrino.org.br/historia-do-diabetes/

Fragmento: a associação entre poliúria, polidipsia, polifagia e astenia. Mais adiante, médicos indianos teriam sido os primeiros a detectar a provável doçura da urina,

https://www.endocrino.org.br/historia-do-diabetes/

Fragmento: manutenção da glicemia em uma estreita faixa de variação nos estados alimentado e em jejum

https://www.diabetes.org.br/profissionais/images/2017/diretrizes/diretrizes-sbd-2017-2018.pdf

Fragmento: problema de saúde para todos os países, independentemente

http://www.paulomeira.com.br/2018/09/15/epidemiologia-e-impacto-global-do-diabetes-mellitus/

Fragmento: a Federação Internacional de Diabetes (International Diabetes Federation, IDF) estimou URLs:

https://www.diabetes.org.br/profissionais/images/2017/diretrizes/diretrizes-sbd-2017-2018.pdf

http://www.paulomeira.com.br/2018/09/15/epidemiologia-e-impacto-global-do-diabetes-mellitus/

http://189.28.128.100/dab/docs/publicacoes/geral/conce_inter_pediabetico.pdf

Fragmento: a hiperglicemia grave e cetoacidose,

http://www.saudedireta.com.br/docsupload/1334797709linhas cuidado hipertensao diabetes parte 002.pdf

http://www.colombo.pr.gov.br/downloads/saude/062012/8-protocolo-atencao-dm-versao-2012.pdf

http://bvsms.saude.gov.br/bvs/publicacoes/diabetes mellitus.PDF

http://189.28.128.100/dab/docs/publicacoes/cadernos_ab/abcad16.pdf

https://bvsms.saude.gov.br/bvs/publicacoes/diabetes_mellitus.PDF

https://bvsms.saude.gov.br/bvs/publicacoes/estrategias_cuidado_pessoa_diabetes_mellitus_cab36.pdf

http://bvsms.saude.gov.br/bvs/publicacoes/estrategias_cuidado_pessoa_diabetes_mellitus_cab36.pdf

Fragmento: principalmente em crianças e adolescentes.

URLs:

https://www.diabetes.org.br/profissionais/images/2017/diretrizes/diretrizes-sbd-2017-2018.pdf

http://www.saudedireta.com.br/docsupload/1334797709linhas_cuidado_hipertensao_diabetes_parte_002.pdf

http://bvsms.saude.gov.br/bvs/publicacoes/diabetes_mellitus.PDF

http://189.28.128.100/dab/docs/publicacoes/cadernos_ab/abcad16.pdf

https://bvsms.saude.gov.br/bvs/publicacoes/diabetes mellitus.PDF

https://bvsms.saude.gov.br/bvs/publicacoes/estrategias_cuidado_pessoa_diabetes_mellitus_cab36.pdf

http://bvsms.saude.gov.br/bvs/publicacoes/estrategias_cuidado_pessoa_diabetes_mellitus_cab36.pdf

Fragmento: a cetoacidose diabética e o estado

https://www.msdmanuals.com/pt/casa/distúrbios-hormonais-e-metabólicos/diabetes-mellitus-dm-e-distúrbios-dometabolismo-da-glicose-no-sangue/diabetes-mellitus-dm

Fragmento: caracteriza-se pela presença de

URLs:

http://www.colombo.pr.gov.br/downloads/saude/062012/8-protocolo-atencao-dm-versao-2012.pdf

https://bvsms.saude.gov.br/bvs/publicacoes/doencas_relacionadas_trabalho2.pdf

https://bvsms.saude.gov.br/bvs/publicacoes/funasa/GBDIP001 total.pdf

https://bvsms.saude.gov.br/bvs/publicacoes/manual_vigilancia_epidemiologica_eventos_adversos_pos_vacinacao.pdf

Fragmento: absoluta ou relativa de insulina,

URLs:

https://bvsms.saude.gov.br/bvs/publicacoes/estrategias cuidado pessoa diabetes mellitus cab36.pdf http://bvsms.saude.gov.br/bvs/publicacoes/estrategias cuidado pessoa diabetes mellitus cab36.pdf

https://www.ufrgs.br/lacvet/site/wp-content/uploads/2013/10/DM.pdf

Fragmento: catecolaminas, cortisol e hormônio do crescimento,

URLs:

http://189.28.128.100/dab/docs/publicacoes/geral/atualizacao_diabetes2006.pdf

https://www.saudedireta.com.br/docsupload/13403686111118 1324 manual enfermagem.pdf

Fragmento: dos níveis de glicose no sangue,

URLs:

https://www.msdmanuals.com/pt/casa/distúrbios-hormonais-e-metabólicos/diabetes-mellitus-dm-e-distúrbios-dometabolismo-da-glicose-no-sangue/diabetes-mellitus-dm

Fragmento: o teste de tolerância à glicose,

URLs:

https://www.ufrgs.br/lacvet/site/wp-content/uploads/2013/10/DM.pdf

Fragmento: parentes de primeiro grau de pacientes

URLs:

http://189.28.128.100/dab/docs/publicacoes/geral/atualizacao_diabetes2006.pdf

Fragmento: United Kingdom Prospective Diabetes Study (UKPDS)

https://www.diabetes.org.br/profissionais/images/2017/diretrizes/diretrizes-sbd-2017-2018.pdf

http://www.sqc.goias.gov.br/upload/arquivos/2014-05/diretrizes-sbd-2014.pdf http://189.28.128.100/dab/docs/publicacoes/geral/atualizacao_diabetes2006.pdf http://189.28.128.100/dab/docs/publicacoes/geral/conce_inter_pediabetico.pdf

http://www.scielo.br/pdf/jbpml/v42n3/a07v42n3.pdf

http://189.28.128.100/dab/docs/publicacoes/cadernos_ab/abcad29.pdf

Fragmento: Os dados obtidos foram analisados e discutidos de

URLs:

http://saudedafamiliaufc.com.br/wp-content/uploads/2018/05/ANAIS-CONGRESSO-SAUDE-E-SOCIEDADE.pdf

Fragmento: na presença dos fatores de risco

https://www.diabetes.org.br/profissionais/images/2017/diretrizes/diretrizes-sbd-2017-2018.pdf

Fragmento: dos principais fatores de risco

http://saudedafamiliaufc.com.br/wp-content/uploads/2018/05/ANAIS-CONGRESSO-SAUDE-E-SOCIEDADE.pdf

http://whqlibdoc.who.int/publications/2010/9788572888394_por.pdf

Fragmento: é um fator de risco para o desenvolvimento

https://www.ufrgs.br/lacvet/site/wp-content/uploads/2013/10/DM.pdf

Relatório DOCxWEB: https://www.docxweb.com

Fag Journal of Health

http://fjh.fag.edu.br

Cascavel, 18 de Julho de 2021.

Carta de Aceite

O editor da FAG Journal of Health tem o prazer de comunicar que o artigo: "ANÁLISE EPIDEMIOLÓGICA DO DIABETES ENQUANTO FATOR DE RISCO PARA ÓBITO POR COVID-19 NO ESTADO DO PARANÁ" de autoria de João Victor Braga de Oliveira Britto, Marise Vilas Boas Pescador, Vagner Fagnani Linartevichi foi aceito para a publicação na sessão "artigos originais" sob o DOI 10.3598/fjh.v3i4.470

A citação do artigo poderá ser dada da seguinte maneira: Britto, J. V., Pescador, M., & Linartevichi, V. (2021). ANÁLISE EPIDEMIOLÓGICA DO DIABETES ENQUANTO FATOR DE RISCO PARA ÓBITO POR COVID-19 NO ESTADO DO PARANÁ. FAG JOURNAL OF HEALTH (FJH), 3(4). https://doi.org/10.35984/fjh.v3i4.470

O referido artigo encontra-se *in press* e estará disponível na edição de **Outubro/Dezembro** de 2021.

*O link doi passará a ser funcional 15 dias após a publicação online do artigo.

Atenciosamente

os Editores

Prof. Daniela Miotto Bernardi, PhD

Prof. Marcelo Taglietti, PhD

FAG Journal of Health

ISSN 2674-550X

Centro Universitário da Fundação Assis Gurgacz © 2021 Published by FAG Journal of Health

