FUNDAMENTOS ARQUITETÔNICOS: CONSTRUÇÃO MODULAR NA UTILIZAÇÃO DE CONTAINERS COMO SOLUÇÃO ARQUITETÔNICA PARA RESIDÊNCIA UNIFAMILIAR.

DIAS, Léo Henrique Baretta¹ SOUZA, Cássia Rafaela Brum²

RESUMO

O presente trabalho de conclusão de curso visa realizar de uma fundamentação teórica e a elaboração de uma proposta projetual de uma residência unifamiliar construída com containers na cidade de Cascavel PR, localizada no Paraná. Essa pesquisa tem como assunto um projeto na área de Arquitetura e Urbanismo com princípios sustentáveis diretrizes de arquitetura eficiente para o tema uma residência de. A justificativa desse trabalho se faz devido ao grande avanço das tecnologias sustentáveis, e do grande apelo na construção civil para a diminuição de tempo de construção e resíduos produzidos, construindo com containers torna-se mais rápida a construção e a finalização da edificação. Diante dessas características, e o polo regional onde a cidade se localiza, a elaboração desse projeto tende contribuir de forma positiva no setor de construção civil, amplificando novas técnicas e proporcionando mudanças de pensamento e cultura relacionadas a construção de âmbito sustentável. A pesquisa apresentará contextos históricos, características projetuais, e propor materiais e técnicas construtivas sustentáveis para o fundamento teórico da proposta projetual.

Palavras-chave: Residência. Container. Sustentabilidade. Projeto. Meio Ambiente.

1. INTRODUÇÃO

O desperdício de materiais no âmbito da construção civil tem se tornado assunto cada vez mais frequente no campo da arquitetura. A forma tradicional de construção em alvenaria ainda é muito presente e a mais popular na construção civil no Brasil. Porém esse método construtivo popularizado no nosso país tem se apresentado de forma cara, demorada e gerando muito resíduos.

O container tem se apresentado como um material otimizado para construção civil, no seu descarte, quando não se tem mais utilidade, acaba sendo um material como opção para residências, além de ser reutilizado e colaborando com o meio ambiente, a obra fica muito mais rápida na execução, eficaz e barata.

Analisando todos os benefícios que o container agrega para arquitetura, ele ainda é um sistema pouco utilizado, mas está cada vez mais perceptível sua utilização e seu conhecimento é desdobrado entre os profissionais da área, e vem aos poucos conquistando seu espaço no mercado da construção civil.

O presente trabalho tem como intuito apresentar uma fundamentação teórica e a elaboração de uma proposta projetual de uma residência unifamiliar construída com containers

na cidade de Cascavel, também os objetivos e outros tópicos que visam demonstrar a importância do tema e sua viabilidade.

Abordará embasamentos teóricos em relação a Arquitetura residencial em containers com aspectos de sustentabilidade e rapidez na execução, trazendo como um modo de reaproveitamento do material que estaria fardado ao descarte, atendendo assim a construção civil de forma positiva, otimizando o tempo de construção, sendo eficaz, além de reduzir os resíduos. Além de tornar para determinados grupos de pessoas uma morada prática, em que se possa levar consigo a própria residência, transportando sob veículos motorizados.

Apresentará ainda correlatos de construções em containers, seus aspectos formais e técnicos como inspiração para elaboração de uma proposta projetual unifamiliar em container. Localizando a implantação e o terreno escolhido dentro da cidade de Cascavel- PR, juntamente com o programa de necessidade definido para desenvolvimento do projeto, apresentando a setorização, fluxograma e a intenção formal volumétrica do projeto da residência unifamiliar em container.

O objetivo geral é projetar uma proposta de residência unifamiliar em containers, afim de apresentar seus benefícios, e mudar o pensamento e cultura da tradicional forma de construir hoje em dia, alvenaria, seria a melhor opção, também com viabilidade que o material que seria descartado possa ser reaproveitado. E tem como objetivos específicos:

- a) Estabelecer a utilização de containers;
- b) Apresentar os benefícios da utilização de containers;
- c) Comparar o método de construir alvenaria e em containers;
- d) 4. Pesquisar e analisar obras projetuais de containers já existentes;
- e) 5. Apresentar uma proposta de projeto residencial unifamiliar de container;

2. METODOLOGIA

O projeto será realizado por meio de pesquisa científica, em livros, artigos da internet, dando enfoque a conceitos, discussões, resultados e conclusões que sejam relevantes para o tema.

De acordo com Lakatos e Marconi (2003, p.18), requer extensa leitura para que absorva o maior conhecimento possível. Ler significa aprender, interpretar, decifrar, distinguir, ainda de escolher os mais representativos e sugestivas, utilizando-os como fonte de novas ideias e conhecimentos através de um processo de busca, assimilação e validação de conhecimento.

"Os livros ou textos selecionados servem para leituras ou consultas; podem ajudar nos estudos em face dos conhecimentos técnicos e atualizados que contêm, ou oferecer subsídios para a elaboração de trabalhos científicos, incluindo seminários, trabalhos escolares e monografias. Por esse motivo, todo estudante, na medida do possível, deve preocupar-se com a formação de uma biblioteca de obras selecionadas, já que serão seu instrumento de trabalho.

Inicia-se, geralmente, por obras clássicas, que permitem obter urna fundamentação em qualquer campo da ciência a que se pretende dedicar, passando depois para outras mais especializadas e atuais, relacionadas com sua área de interesse profissional" (LAKATOS; MARCONI, 2003, p. 19).

Desse modo o processo metodológico será através da revisão bibliográfica, que aborda o tema, dando sequência na pesquisa de projeto residencial em containers, com ajuda de correlatos e posteriormente a elaboração do projeto residencial em containers.

3. REFERENCIAL TEÓRICO

Os tópicos a seguir conceituam a teoria de estudos e pesquisas relacionadas ao contexto histórico da arquitetura e urbanismo, desdobrando-se nos estudos da arquitetura sustentável junto a edificações, viabilizando o crescimento dos valores de sustentabilidade e conservação além de ampliar a abrangência de materiais sustentáveis agregados a construções residenciais. A proposta projetual busca mudar a cultura e pensamento da sociedade, atender as necessidades do segmento, além de promover o conforto físico, térmico e acústico, se valendo de técnicas construtivas que propiciem essas sensações. Perante isto, para além das preocupações ambientais, pensa-se promover a ideia de princípios sustentáveis e a sua aplicação no projeto de arquitetura, bem como as principais técnicas construtivas e elementos que podem ser utilizados na execução de projetos.

4. ARQUITETURA SUSTENTÁVEL

Com seu início em 1970 por meio de movimentos sociais e mobilizações urbanas organizadas por grupos que pediam pela construção de um desenvolvimento sustentável, a arquitetura sustentável se dá pela responsabilidade social de arquitetos, urbanistas e outros profissionais que no desenvolvimento de projetos, respeitem o meio ambiente e possuam competência energética, buscando reduzir o impacto da construção civil na natureza (SOUZA; AVANCINI, 2012).

Isso tudo ocorre hoje em dia nos edifícios, são eles os principais causadores de resíduo no meio ambiente e também consumindo mais de 50% da energia nos países, assim sendo responsáveis por mais de 50% da mudança climática na Terra (NERO, 2014).

Outros benefícios incluem redução de custos, redução de riscos, melhoria da saúde do usuário, valorização do produto, etc. (NERO, 2014). Atualmente, a arquitetura sustentável está aliada à arquitetura contemporânea, apresenta um número expressivo de tecnologias nunca vistas, sendo 13 um fator de estímulo ao progresso arquitetônico e tecnológico, sempre procurando cumprir a responsabilidade social e a transformação intimamente relacionada aos fatores populacionais (DALL' AGNOL; GATTERMANN; CASA, 2013).

Portanto, a construção sustentável e ecológica traz grandes benefícios para a população e para o meio ambiente como um todo, pois garante o bem-estar dos indivíduos que utilizam a edificação projetada, pois busca elementos como a ventilação natural e iluminação, proporcionando maior conforto (DALL' AGNOL; GATTERMANN; CASA, 2013).

5. O CONTAINER COMO MÉTODO SUSTENTÁVEL

A utilização de containers na construção civil começa devido com a preocupação global em inserir elementos sustentáveis nas edificações, essa preocupação teve início na década de 1970, com a Conferência de Estocolmo em 1972. Os containers começam a ser popularizar em edificação de residências, escritórios, museus, lojas, bancas de revistas e muitos outros usos, e ganham cada vez mais espaço por serem um material reutilizado, ganhando diferencial na redução de impactos ambientais na construção e com valor significativo na economia comparando-se com as edificações em alvenaria (OCCHI; ALMEIDA, 2016).

Além de ser um material reciclável, o contêiner é uma estratégia sustentável, por exemplo, mantém até 90% de permeabilidade do solo, protege os contornos geográficos do terreno inserido, reduz o uso de materiais como cimento, tijolos, pedras, área plantada, etc., reduzindo assim o uso dos recursos naturais e as possibilidades que eles oferecem, como a facilidade de implantação de telhados verdes para os mesmos (INOVA, 2016).

6. ARQUITETURA RESIDENCIAL

A arquitetura residencial é uma arquitetura projetada para habitação. Seja uma casa ou um apartamento imaginado para espaços de convivência familiar. Este pode ser um projeto de edificação unifamiliar para uma única família, ou para várias famílias, como no caso de edifícios residenciais verticais ou horizontais (ARQUIDICAS, 2016).

Esta arquitetura tem o dever de solucionar problemas e superar as expectativas do cliente pelo conforto e funcionalidade, considerando que seja um espaço de descanso e lazer familiar, tal qual um espaço onde são realizadas atividades do cotidiano (GALERIA DA ARQUITETURA, 2012).

Arquitetos frequentemente enfrentam atualmente grandes desafios de conciliar pedidos dos clientes juntos com exigências técnicas a serem seguidas para construir, além de ora orçamentos reduzidos ou medidas limitadas (PEREIRA, 2019).

7. PROJETO DE CASA UNIFAMILIAR

A partir do ano de 1948 a ONU, estabeleceu que é de direito de todo ser humano, ter uma moradia, sendo um espaço construído de suma importância. (DECLARAÇÃO UNIVERSAL DOS DIREITOS HUMANOS, 1948).

O ser humano desenvolve estruturas de abrigo desde os primórdios, as cavernas foram as primeiras representações de residências. Na Antiga Mesopotâmia surgem os primeiros núcleos de residências, precursores das cidades, organizações de casas que formavam espaços de convivência mutua e desenvolvimento social. A residência desempenha um papel fundamental na história, definindo a individualidade do ser humano e separando a vida privada da vida social (CASTELLS, 2000).

O homem vem desenvolvendo estruturas de abrigo desde o início, as cavernas foram as primeiras a servirem como residência. Na antiga Mesopotâmia, surgiram os primeiros núcleos residenciais, precursores das cidades, associações habitacionais que criaram espaços de convivência e desenvolvimento social. A residência desempenha um papel importante na história, define a personalidade de uma pessoa e separa a vida privada da vida pública, podendo ser organizada da forma que cada um melhor definir (CASTELLS, 2000).

A casa vai além das paredes que a constroem, seu conceito de habitação mostra uma ampla tarefa de atender às necessidades básicas de uma pessoa, sendo um local de abrigo e tornando as atividades sociais e culturais inseridas em sua realidade. No período anterior à Revolução Industrial, a casa foi reduzida a um local permanente e as áreas habitacionais eram precárias, porém, no período pós-industrial a produção de bens de consumo aumentou, aumentando o número de construções e residências para atender às necessidades, tornando-os mais baratos e eficientes, sendo mais fácil construir sua própria casa ou alocar a que atenda às suas necessidades habitacionais (CASTELLS, 2000).

As áreas habitacionais são ampliadas, resultando na necessidade de projetos arquitetônicos que valorizassem as fachadas e espaços permanentes, os profissionais passam também a se dedicar às áreas residenciais, além das áreas públicas (SHWEIZER; PIZZA JUNIOR, 1997).

No contexto atual, o projeto arquitetônico de uma residência tem mais valor do que o ato de morar, passa a ser uma unidade física onde as pessoas, ou uma família, passam a maior parte do tempo em diferentes atividades, como comer, se divertir, relaxar, e em muitos casos a produção. A divisão residencial precisa ser pensada e analisada pelo arquiteto como uma planta para todas as das pessoas que vão morar nesta residência, pois cada um tem sua própria individualidade, razão pela qual a casa se torna o sonho e desejo de seus idealizadores, sendo de grande importância a parte externa da casa (RAMOS, 1979).

7.1 CARACTERÍSTICAS DA FORMA DE PROJETAR

O conceito de "projeto" vem da arquitetura moderna, e se baseia em como a forma da imagem se torna uma forma plástica (ou construção), ou seja, a construção parte do desenho, que parte da ideia. Portanto, o projeto nasce da imaginação, e durante esse processo o arquiteto busca imagens mentais, inspirações que vão definir o processo de projeto, e o desenho por si será o

ponto de partida da construção, sendo idealizada a forma e concretizada na construção (RAMOS, 2009).

Romero, (2001) aponta que no estudo do espaço é possível encontrar características arquitetônicas relacionadas ao espaço privado e aos espaços públicos ao ar livre, o espaço deve favorecer a permanência física, o hábito de indeterminada atividade, ou apenas elevar a valorização do ambiente, deve ser agradável e proporcionar conforto ao usufrutuário (RAMOS, 2009).

A arquitetura é composta de elementos básicos que formam uma organização e se desenvolvem, são chamados de sistemas arquitetônicos. A arquitetura é baseada em: espaço, estrutura e delimitação, acontece através do movimento no espaço-tempo, realizada por meio da tecnologia, está incluída no programa de necessidades e é compatível com o contexto do terreno e do ambiente. Possui instruções físicas para forma e espaço, ordens sensoriais e ordens conceituais para compreensão dos elementos que compõem o sistema construído (CHING, 1999).

7.2 CONTAINERS EM RESIDÊNCIAS

Os containers são usados frequentemente utilizados pelos arquitetos, pois possuem características muito chamativa para área projetual: podem ser modulados, pois são préfabricados e padronizados em tamanho e material, seu custo é muito baixo, podem ser facilmente transportados e reutilizados. Podendo usufrui-los na construção civil como uma unidade, ou uma composição de unidades, combinada com outra estrutura, ampliação de uma estrutura existente, disposta dentro de uma estrutura ou mesmo estruturas flutuantes de contêineres; além de flexíveis e portáteis, os contêineres são grandes o suficiente para criar quartos, sanitários ou escritórios, que são usados principalmente como pequenas casas ou em modulação de residências (KOTNIK, 2008).

Em 1990, Wesley Jones arquiteto norte-americano, desenvolveu estudos e projetos utilizando containers marítimos. Logo em 1995, projetou então a respectiva High Sierra Guest Cabin, High Sierra Meadow Cabin e High Sierra Rock Cabin, um complexo de hospedagem para professores e estudantes da Universidade de Stanford, na cordilheira da Sierra Nevada (JUNIOR, 2017).

As edificações em containers apontam uma redução de 35% em relação ao custo final da obra, e consumindo cerca de 20% do tempo comparado ao sistema convencional, passam a ganhar cada vez mais destaque no mercado imobiliário (JUNIOR 2017).

A casa em container construído em Cotia – SP (figura 1), levou apenas 5 meses para ser finalizada, e possuem além do material reaproveitado, um telhado verde, captação de água de chuva e outros benefícios que colaboram com a sustentabilidade (DANTAS, 2013).

Figura 1: Casa container localizada em Cotia - SP

Fonte: DANTAS, 2013.

Na Argentina, outro modelo de casa com container (figura 2) é apresentado de forma mista, com parte da construção em alvenaria incorporando-se ao uso de containers. A opção de combinar as duas técnicas, torna a construção mais barata, rápida e com menos desperdícios, além de possibilitar outras formas de modular o projeto devido ao tamanho do contêiner (DELAQUA, 2015).

Figura 2: Casa híbrida de container e alvenaria

Fonte: DELAQUA, 2015.

O uso dos containers na construção civil exige alguns cuidados, como a substituição do piso original de madeira, que durante o uso recebe constantes aplicações de pesticidas e sofre danos permanentes, também é necessário repintar a estrutura com tinta não toxica, devido a permanência, e evitar o uso de qualquer material sintético ou toxico. Antes de serem descartados, os containers são utilizados durante aproximadamente 10 anos, por isso, necessitam de preparo e manutenção antes de seu uso permanente na edificação (LEONE, 2014).

O tamanho da estrutura deve ser considerado, pois possuem arestas que funcionam como estrutura de sustentação, sendo necessário fazer sapatas nessas partes garantindo sustentação e afim de evitar complicações futuras (METALICA, 2014).

7.3 TECNOLOGIA DA CONSTRUÇÃO

Tecnologia de construções são as técnicas utilizadas, determina as etapas do projeto, a estrutura adequada, os materiais e as melhores técnicas para execução. (FERREIRA, 2014).

Essas tecnologias estão sempre em evolução, apresentando novas maneiras para edificação de uma obra, abordando sobre a sustentabilidade, e em exemplo o container sendo muito visto hoje em dia, normalmente sendo revestido com a madeira, que é um excelente material que proporciona conforto térmico e ambiental do interior da edificação. (NOVENTA, 2017).

7.4 CONTAINERS

Surgiram por volta de 1937, os containers foram criados como alternativa a fim de melhorar o sistema de transporte de algodão no porto de Nova York, consistem em grandes caixas de aço destinadas a carregar com mais eficiência sua carga, posteriormente são utilizados para melhorar o carregamento de cargas nos setores fluvial e ferroviário. Mas só em 1968, foram criadas regulamentação para o processo de fabricação (EDWARDS, 2005).

Facilitando o transporte da carga, é necessário apenas um guindaste para colação nos navios. Atualmente 90% das mercadorias que cruzam o oceano em todo mundo são por containers, devido a praticidade e padronização mundial (EDWARDS, 2005).

Cada container tem um histórico de vida, possuem um número de fabricação, com o qual é possível saber sua origem, por onde passou, qual a mercadoria que transportava e se foi adquirido dentro da lei (JUNIOR, 2017).

Existem diversos modelos, variando com seu tamanho, capacidade e tipos. O modelo mais utilizado na arquitetura e construção civil são os "Dry Standard 20, High Cub 40 e o Reefer 20", de 20 a 40 pés. São considerados como ideal para abrigar uma edificação, pois stransportam cargas pesadas e resistir a tempereis extremos, por conta da maresia (SANTOS, 2017).

O modelo Dry Standard 20 (figura 4), contém medidas externas de 6,06 metros de comprimento, 2,44 metros de largura, a altura de 2,59 metros, e suporta até 21,92 toneladas (SANTOS, 2017).

Figura 4: Container de modelo Dry Standard 20

Fonte: SANTOS, 2017.

Já o modelo High Cub 40 (figura 5), possui uma medida externa de 12,19 metros de comprimento, por 2,89 de largura, com altura de 2,89, suportando até 28,60 toneladas (SANTOS, 2017).

Figura 5: Container de modelo Dry Standard 20

Fonte: SANTOS, 2017.

Outro modelo também usado, mas com pouca frequência é "Reefer 20 (figura 6), que diferentemente do container DryE High, já possui revestimento interno e devido a isso possui controle de temperatura e ruído. Tal modelo possibilita ainda que se mantenha o aspecto original do container nas paredes da edificação, visto que já possui isolamento, com dimensões externas de 6,06 metros de comprimento, 2,44metros de largura, com 2,44 metros de altura, suporta até 26,56 toneladas (SANTOS, 2017).

Figura 6: Container de modelo Dry Standard 20

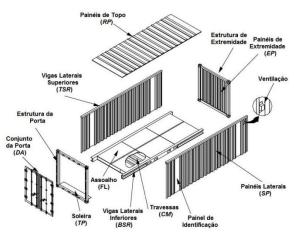
Fonte: SANTOS, 2017.

A NR-18, exige na utilização de container em residência, que algumas medidas sejam tomadas, tais como: (SANTOS, 2017).

- Receba pelo menos 15% de ventilação natural e duas aberturas.
- Deve-se ser aterrado a estrutura para prevenir choque elétrico.
- -Devem apresentar atestado de salubridade com relação a riscos radioativos, químicos, e biológicos, seguidos dos dados da empresa responsável.

7.5 FUNDAÇÕES

Antes de iniciar a instalação do container, devemos fazer um estudo topográfico, considerando dados geológicos, das edificações vizinhas são fundamentais para um bom desenvolvimento do projeto. Tais informações podem solucionar se será de rasa ou profundas fundações (JUNIOR, 2017).


No entanto, costuma-se utilizar fundações rasas como radiers, sapatas isoladas, sapatas corridas ou vigas baldrames. Recomenda-se que dispositivos de fixação entre as interfaces de concreto armado e estrutura do container (JUNIOR, 2017).

Deve ainda ser previstos sistema elétrico, tubulações hidráulicas e sistema hidrossanitários do projeto, a fim de posicionar o container e sua elevação de forma segura, sem a necessidade de move-se novamente (JUNIOR, 2017).

7.6 ESTRUTURA

Os containers são no formato prismático, com suas 6 faces estruturadas em quadros enrijecidos por perfis metálicos e chapas de seção trapezoidal (figura 7), são compostos por diversos materiais, tudo depende da função, a estrutura que geralmente é de aço nas laterais, reforçado nas vigas e colunas, e ainda aço galvanizado nas portas e ferrolhos, alumínio e compensado ou fibras de vidro (JUNIOR 2017).

Figura 7: Estrutural principal do container

Fonte: JUNIOR, 2017

É recomendado que não se altere a estrutura do container, pois coloca em risco a estabilidade do mesmo, podendo ainda prejudicar que posso ser reutilizado no futuro (JUNIOR 2017).

7.7 PATOLOGIAS

Após perder a função para os quais foram criados, os containers são levados a pátios de armazenamento, onde ficam "abandonados", sem utilidade alguma, alguns em bom estado podendo ser reutilizados e comprados, e outros em péssimos estado. Pelo aço ser o principal material que o compõem, a patologia mais frequente é a corrosão no container. Quando em aço corten, são resistente a corrosão, e de fácil reparação, ocorrendo a presença de ferrugem, ela se limita a camada superficial do metal e não afeta a estrutura dos pilares e vigas (SANTOS, 2017).

Nem toda corrosão é grave ou impossibilita de utilizar o container novamente, já que geralmente não afetam a estrutura. Existem avaliações que são feitas para essas patologias, que apontam se o container poderá ser reparado ou não (SANTOS, 2017).

7.8 LIMPEZA E DESCONTAMINAÇÃO

Para se prolongar a vida útil do container, limpeza e descontaminação são de extrema importância, quando bem limpos duram entre 40 a 70 anos, se forem feitas o tratamento de limpeza, pintura, revestimento de maneira correta e a manutenção regular (SANTOS, 2017).

Para limpeza das superfícies de chapas e perfis, dependendo do estado de conservação do container, recomenda-se a limpeza manual, mecânica, e hidrojateamento, em que consiste no direcionamento de um jato de água de alta pressão incidindo no local a ser tratado. Posteriormente é necessária a aplicação de duas demãos de pintura de fundo, se faz necessária, garantindo a corrosão de novos pontos (JUNIOR, 2017).

7.9 INSTALAÇÕES ELÉTRICAS, HIDRAÚLICAS E ISOLAMENTO TÉRMICO

As instalações elétricas tem grande destaque nesse sistema de edificações, podendo ter uma economia de matéria, mas principalmente de tempo, cerca de 3 meses de diferença do sistema tradicional de alvenaria. Os conduites são alinhados aos perfis de alumínio, com cabos de alimentação, que interligam as tomadas e o quadros de distribuição. Caso haja obstrução, o gesso acartonado e revestimentos nas paredes podem ser reparados facilmente, o que acaba sendo mais um ponto positivo na residência em container, que divergente da construção convencional geraria resíduos e maior demanda de tempo na reparação (GOMES, 2022).

O sistema PEX (Polietileno Reticulado) é a mais recente tecnologia, descartando tubos, cola e lixa, pois um tubo flexível de 100 metros, não necessita de emendas ou conexões, e ainda diminui os ruídos. Os tubos são manuseados por alicate facilmente, otimizando o tempo para instalação (JÚNIOR, 2013).

Independente do tipo de gás que será utilizado, a instalação se assemelha ao sistema light steel framing, em que os tubos em polietileno de alta densidade são soldados por eletro fusão, dando maior rapidez, praticidade e segurança para residência (JUNIOR, 2017).

Eliminando o uso da caixa de água na edificação, esse sistema PEX, ainda evita a formação de incrustações e calor, além de poder ser utilizado na temperatura de água fria ou quente (JÚNIOR, 2013).

Os containers com tudo, são perfeitos condutores de calor, o que faz imprescindível o uso de um método de isolamento térmico efetivo. Temos diversos tipos de mantar que podem ser utilizadas, podendo ser lã de PET, lã de vidro ou lã de rocha. No entanto a lã de vidro se destaca para esse sistema de obra, estudos apontam que sua eficiência é maior para isolamento em containers (GOMES, 2022).

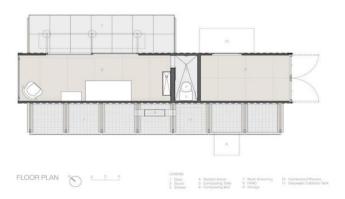
A cobertura do container é de extrema importância para um bom desempenho térmico da residência, relevando ainda o combate de infiltração. O mais indicado é o telhado verde, se torna eficiente quando se recebe um preparo adequado na estrutura, melhora diminuição da temperatura interna e purifica o ar aos redores, além de contribuir com a sustentabilidade. No entanto o tipo de cobertura que será executado, deverá ser estudado pelo engenheiro com atenção, as camadas de impermeabilização, drenagem, escoamento da água, devem receber uma atenção redobrada, para que não ocorra adversidade posteriores (GOMES, 2022).

Por fim os acabamentos, como pintura, porcelanato, e divisões internas dos ambientes, segue de métodos tradicionais, sendo de escolha de cada proprietário, podendo encarecer a proposta e aumentar o tempo de aplicação, ou não. Sendo assim, o sistema de edificação em container se prova vantajoso e viável novamente, o curto tempo de execução da obra, gera o mínimo de resíduo, dando ainda uma nova função para o material que estava fardado ao descarte (GOMES, 2022).

8. CORRELATOS

Este capítulo apresenta exemplos de residências no Brasil, em que foram utilizadas o container como material principal, bem como suas respectivas concepções formais, funcionais e técnicas. Os correlatos foram escolhidos em virtude do entendimento que estes podem proporcionar em relação ao uso de container em residências em razão da ilustração e uso de diversos materiais usados que compõem a obra, além de estarem relacionados com a sustentabilidade, apontando assim ideias que podem auxiliar na concepção arquitetônico da proposto projetual a ser elaborada.

8.1 CONTAINER GUEST HOUSE


Localizada no sul da cidade de San Antônio, no estado do Texas do Estados Unidos, a residência Container Guest House, ficou pronta em 2010, contando com apenas 30,00m² de área construída, foi projetada pelo escritório Poteet Architects (BORTOLUZZI, 2012).

8.2 ASPECTOS FUNCIONAIS

Surgindo através do desejo do cliente para que fosse destinada as visitas do mesmo, a casa container, fica localizada em uma antiga área industrial, encontra-se em um ambiente calmo e vazio, onde foi cercada por um paisagismo, tornando-a casa ainda mais acolhedor e integrado com a natureza (BORTOLUZZI, 2012).

A casa possui apenas um pavimento (figura 8) e é composta por uma área de dormitório, sanitário, varanda e jardim, que se integra com a casa através do uso de vidros (BORTOLUZZI, 2012).

Figura 8: Planta baixa Container Guest House

Fonte: MORAIS, 2012.

8.3 ASPECTOS FORMAIS

Construída em uma área de 320,00m², ocupando apenas 30,00m², a obra possui um volume pequeno (figura 9), e sua estrutura principal apenas um container reciclado na forma geratriz retangular (ALVES, 2017).

Figura 9: Volume Container Guest House

Fonte: BORTOLUZZI, 2012.

No entanto, apenas da forma simples, destaca-se na obra os recortes do container, dando aberturas com grandes vidros, passando assim sensação de integração com a natureza existente na implantação do projeto (BORTOLUZZI, 2012).

8.4 ASPECTOS TÉCNICOS

Destacando elementos sustentáveis a espuma utilizada como isolante térmico, para garantir maior conforto interno da obra, o telhado verde colabora com a redução da temperatura em dias muito quentes (figura 10), e a técnica captação de água em áreas molhadas para irrigar as plantas da cobertura (BORTOLUZZI, 2012).

Figura 10: Plantas na cobertura Container Guest House

Fonte: BORTOLUZZI, 2012.

O revestimento principal da obra se dá pelo compensado de bambu que é utilizado no teto e piso e garantem também o regulamento do conforto térmico interno da Container Guest House (BORTOLUZZI, 2012).

Sendo o principal revestimento o bambu, é utilizado no teto, e piso, colaborando com o conforto térmico. Outros materiais e tecnologias utilizados se dão pela fundação a partir de postes de telefone reciclados, deck feito em equipamentos de sistemas de aquecimento e arcondicionado, luminárias externas feitas por lâminas de discos de trator, painéis feitos de malhas de fios, entre outros elementos (BORTOLUZZI, 2012).

8.5 POCKET HOUSE

Construída em 2013, a Pocket House foi projetada pela arquiteta Cristina Menezes para ser uma casa de bolso devido ao seu tamanho, conta com 47,00m² edificados, estando localizada na cidade de Belo Horizonte, capital do estado de Minas Gerais, no Brasil (CABRAL, 2013).

8.6 ASPECTOS FUNCIONAIS

A obra denominada Pocket House contempla em apenas 29,89m² todo o seu programa de necessidades (figura 11), que se dá por cozinha, sala de estar e jantar, banheiro e quarto. Possui como acréscimo um deck em sua fachada frontal, totalizando assim os 47,00m² (CABRAL, 2013).

Figura 11: Planta baixa Pocket House

Fonte: RETHINKING, 2014, editado pela autora.

A casa foi projetada em um único container e possui um tamanho considerado reduzido, entretanto a sensação que passa é exatamente o oposto, sendo a de amplitude (figura 12). Tudo isso ocorre devido as grandes portas de correr em vidro que conta em sua fachada, aos ambientes

integrados e também devido ao uso de madeira como revestimento tanto nas paredes, quanto no piso e teto.

Figura 12: Fachada Pocket House

Fonte: CABRAL, 2013.

Outros aspectos relacionados à funcionalidade da residência em container, se dá por sua mobilidade e flexibilidade, possuindo uma base de sustentação que torna possível transportar o container para qualquer local e em qualquer momento, somente retirando os móveis e os vidros que já foram projetados soltos e transportar sem transtornos, e também por seus mobiliários, que por sua vez são leves e fáceis para movimentação interna ou externa da obra (CABRAL, 2013).

8.7 ASPECTOS FORMAIS

Sua forma é simples, devido ao uso de apenas um container naval de 40 pés, a obra se destaca pelo grande uso de vidros (figura 13), devido aos grandes recortes que foram feitos na adaptação do container (MENEZES, [2015]).

Figura 13: Forma Pocket House

Fonte: CABRAL, 2013.

8.8 ASPECTOS TÉCNICOS

Destaca-se, além da sua funcionalidade, por sua sustentabilidade, inicialmente devido ao uso do container naval e também pelos diferenciais que possui, como por exemplo o uso da lã de vidro, garantindo um maior conforto térmico e acústico na região interna da obra (CABRAL, 2013).

A obra é toda revestida em madeira, é o principal isolante térmico, evidenciado em todo o interior da obra Pocket House (figura 14), garantindo assim uma mesma linguagem arquitetônica e a sensação de amplitude que se pretende passar, visto que se perde a referência do que é teto, piso ou parede ao usar o mesmo material nestes (CABRAL, 2013).

Figura 14: Revestimentos em madeira Pocket House

Fonte: CABRAL, 2013.

Além da madeira, o projeto conta com o aproveitamento do aço retirado do container para dar lugar às aberturas das grandes portas de correr e com o uso de vidro para as divisórias do banheiro (figura 15), (MENEZES, [2015]).

Figura 15: Vidro como divisória Pocket House

Fonte: CABRAL, 2013.

Nota-se, através do vidro utilizado como divisórias, o estabelecimento de uma maior leveza para todo o interior e uma integração de todos seus ambientes, buscando assim não perder espaço e estabelecer um maior aproveitamento de todos os ambientes, bem como manter uma mesma identidade visual, priorizando por sua estética (MENEZES, [2015]).

8. 9 CASA CONTAINER DE LORENA

Embora esse tipo de arquitetura não seja frequente no brasil. A obra foi uma das primeiras casas containers fica localizada no interior da cidade de São Paulo, numa chácara no Vale do Paraíba, a Casa Container de Lorena, foi projetada pelo arquiteto Delton Leandro e construída para si mesmo em 2017 (ROSA, 2018).

8.10 ASPECTOS FUNCIONAIS

A edificação com apenas 30m² trouxe a proposta arquitetônica de conceito de vida simples no campo, flexibilidade, mobilidade e sustentabilidade. Concentrando os ambientes em um único container, otimiza os espaços e dá múltiplo uso aos cômodos e mobiliários, segundo o arquiteto a obra oferece múltiplas funções, tanto para viver, trabalhar ou se divertir (figura 16), (ROSA, 2018).

Figura 16: Casa Container de Lorena

Fonte: ROSA, 2018.

A intensão principal do projeto era para usufruir do terreno, para plantação de alimentos, ou promover eventos, deixando maior espaço no quintal da residência. (ROSA, 2018).

8.11 ASPECTOS FORMAIS

A obra se destaque por ser compacta e podendo usufruir de múltiplas funções em um único container. Apesar de predominar o alumínio e o vidro como bom material condutor de calor,

casa conta com temperatura agradável no seu interior devido o preparo adequado que recebeu, com fibras de lã no interior a residência, com as aberturas padrões de porta e janela, a ainda usufrui de ventilação natural trazendo conforto e contato com o cheiro de campo que o arquiteto tanto busca na obra (ROSA, 2018).

8.12 ASPECTOS TÉCNICOS

Na obra foram utilizados poucos materiais, basicamente estrutura metálica no telhado, varanda e pergolado, outro material foi a madeira no piso e cobertura do pergolado (XAVIER, 2018).

A residência teve o preparado adequado pensando no conforto térmico, a cobertura da casa foi utilizado telhas do tipo sanduíche de 40mm com a captação das águas pluviais, predominando o conceito sustentável e colaborando com o meio ambiente, e sendo ainda efetiva na redução de calor dentro da residência (XAVIER, 2018).

O isolamento térmico das paredes foi de lã de vidro, posteriormente revestidas com gesso acartonado, e finalizando com pintura em látex, trazendo harmonia a obra e predominando conceito de casa de campo (figura 17), (XAVIER, 2018).

Figura 17: Casa Container de Lorena

Fonte: XAVIER, 2018.

A edificação além de trazer uma solução econômica e eficiente com qualidade e conforto, ainda tem a flexibilidade de transportar a residência de um local para outro sob um veículo motorizado, proporcionando mais versatilidade ao estilo de vida e mobilidade à construção (ROSA, 2018).

9. DIRETRIZES PROJETUAIS

O presente capítulo visa a apresentação de uma proposto unifamiliar em container, com base nas pesquisas e estudo em correlatos, que auxiliarão na proposta de casa construída em containers no modelo Reefer, implantada na cidade de Cascavel, situada no Paraná. Também neste capitulo com intuito de estabelecer os ambientes, setores e fluxos a serem destinados ao projeto, visto que a residência unifamiliar possuíra em torno de 30m² em único container do modelo escolhido, otimizando os espaços e com múltiplas funções ao mobiliário.

9.1 LOCAL DA IMPLANTAÇÃO

Localizada no oeste do Paraná, (figura 18), Cascavel é um grande polo econômico no setor da agricultura e referência em saúde humana, concentrando centros de tratamentos e hospitais, ela que estabelece limites com as cidades de Toledo, Tupãssi, Cafelândia, Corbélia, Braganey, Campo Bonito, Ibema, Catanduvas, Três Barras do Paraná, Boa Vista da Aparecida, Santa Lúcia, Lindoeste e Santa Tereza do Oeste (IPARDES, 2022).

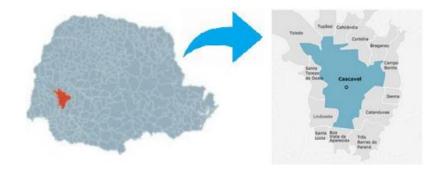


Figura 18: Localização de Cascavel - PR

Fonte: IPARDES, 2018.

O município com uma estimativa de 319.608 habitantes e possui uma área territorial de 2.091,401km² e possui uma distância equivalente da 491,00km da capital do estado, a cidade de Curitiba (IPARDES, 2018). No ano de 2017, o município foi considerado o que mais gerou empregos no estado do Paraná, sendo cerca de 1.201 vagas (CASCAVEL, 2017).

Além de ser uma cidade que oferta muita mão de obra, a cidade também é um grande centro de educação, não apenas para cidades vizinhas, mas para o país todo, com diversas faculdades ofertando múltiplos cursos profissionalizantes, Cascavel, abraça um número

expressivo de pessoas que residem na cidade para se especializar ou profissionalizar em algum curso superior (CASCAVEL, 2017).

9.2 TERRENO

O terreno definido (figura 19) para a implantação da proposta projetual do presente trabalho, se dá pelo lote número 0002, quadra 0009, situado na Rua Aníbal Curi, esquina com a Ernesto Barnabé, no número 531. Tal terreno se situa no bairro Fag, no município de Cascavel, e conta com uma área de 612,50m².

Estrategicamente escolhido devido ao bairro conter duas grandes universidades, onde há grande procura para locação de residência para estudantes, a proposta visa ser um ambiente voltado para abrigar esse perfil de pessoas, ou seja, que reside sozinho ou mais alguém.

Figura 19: Terreno para implantação

Fonte: GEOCASCAVEL, 2022.

Possui as dimensões que correspondem a 17,50m de testada principal (figura 20) por 35,00m de testada secundária (figura 21). Segundo os parâmetros de uso e ocupação do solo do município, permite-se uma taxa de ocupação máxima de 60%, uma taxa de permeabilidade mínima de 30%, um coeficiente de aproveitamento máximo de 5, e permite ainda atividades de uso residencial, o que viabiliza a proposta de uma residência construída em container.

Figura 20: Terreno para implantação

Fonte: Tiradas pelo Autor

Analisando que a testada menor, norte, na rua Ernesto Barnabé, recebe menor quantidade de sol no período da tarde, e ainda a conta com a presença de vizinho na lateral esquerda do terreno.

Figura 21: Terreno para implantação

Fonte: Autor, 2022.

A testada oeste na rua Aníbal Curi, recebe incidência de sol diretamente na parte da tarde, ocasionando que em dias quentes sejam calorosos. Visto que não possuí ainda vizinhos a lateral direita.

9.3 PROGRAMA DE NECESSIDADES

O programa de necessidades da edificação a ser projetada, implantada na cidade de Cascavel - PR, é composta por um único ambiente, integrado, deixando de haver divisória entre os setores de uma casa comum, sendo assim o container trabalhado na forma de planta aberta. O projeto, contará com necessidades básicas para se habitar, banheiro, cozinha, sala, área de serviço e um dormitório.

REFERÊNCIAS

ARQUIDICAS. Arquitetura Residencial. ArquiDicas. 2016. Disponível em: https://www.arquidicas.com.br/tag/arquitetura-residencial/. Acesso em: 14 agosto 2022.

ALVES, N. 9 projetos incríveis de construção com container reciclado. Construct. 2017. Disponível em: < https://constructapp.io/pt/9-projetos-incriveis-de-construcao-com-container-reciclado/>. Acesso em: 29 agosto 2022.

BORTOLUZZI, C. Container Guest House. ARCHDAILY. 2012. Disponível em: < https://www.archdaily.com.br/br/01-49352/container-guest-house-poteet-architects>. Acesso em: 29 agosto 2022.

CASTELLS, M. A questão urbana. São Paulo: [s.n.], 2000.

CHING, F. D. K. Arquitetura, forma, espaço e ordem. São Paulo: Martins Fontes, 1998.

CABRAL, M. Pocket House. Galeria da Arquitetura. 2013. Disponível em: https://www.galeriadaarquitetura.com.br/projeto/cristina-menezes-arquitetura-decoracao-urbanismo/pocket-house/2400>. Acesso em: 29 agosto 2022.

CASCAVEL. Cascavel é a segunda cidade que mais gerou empregos no Paraná. Portal do Município de Cascavel. 2017. Disponível em: https://cascavel.atende.net/cidadao/noticia/cascavel-e-a-segunda-cidade-que-mais-gerou-empregos-no-parana/diariooficial/. Acesso em: 30agosto 2022.

DECLARAÇÃO UNIVERSAL DOS DIREITOS HUMANOS. Assembleia Geral das Nações Unidas em Paris. 10 dez. 1948. Disponível em . Acesso em: 19 agosto 2022.

DALL'AGNOL, L.; GATTERMANN, L. S. S.; CASA, M. G. S. Sustentabilidade na Arquitetura Brasileira. 2013. Trabalho apresentado ao 2º Seminário Nacional de Construções Sustentáveis. Passo Fundo, 2013. Disponível em: https://docplayer.com.br/7318676-Sustentabilidade-na-arquitetura-brasileira.html. Acesso em: 20 agosto 2022.

DANTAS, C. Contêneires se transformam em espaços comerciais, hotéis e casas. Disponível em: https://casa.abril.com.br/casas-apartamentos/conteneires-se-transformam-em-espacos-comerciais-hoteis-e-casas/. Acesso em: 30 agosto 2022.

DELAQUA, V. Casa Container / José Schreiber Arquitecto. Archdaily, 2015. Disponivel em: < https://www.archdaily.com.br/br/767378/casa-container-jose-schreiber-arquitecto>. Acesso em: 30 agosto 2022.

EDWARDS, B. O guia básico para a sustentabilidade. Londres: [s.n.], 2005.

FERREIRA, R. Programa de aulas - Tecnologia de Construção de Edificações I. Téchne. 2014. Disponível em: http://biblioblogfacig.blogspot.com/2014/08/revista-techne-agosto-de-2014.html>. Acesso em: 28 agosto 2022.

GOMES,F.K.Y. Arquitetura: Construção de Casa em Containers. Revista Faculdade Saber. 2022. Disponível em: <file:///C:/Users/leohe/Downloads/171-Texto%20do%20artigo-334-1-10-20220311.pdf>. Acesso em: 31 agosto 2022.

GEOCASCAVEL. Disponível em: <SIGWEB v2.0.1.1496 - Cascavel>. Acesso em: 31 agosto 2022.

INOVA. 5 vantagens de usar contêineres na construção civil. Catraca Livre. 2016. Disponível em: https://catracalivre.com.br/quem-inova/5-vantagens-de-usar-conteineres-na-construcao-civil/. Acesso em: 14 agosto 2022.

IPARDES. Caderno Estatístico do Município de Cascavel. Curitiba: Instituto Paranaense de Desenvolvimento Econômico e Social, 2018. Disponível em: <file:///C:/Users/BRUM/Downloads/doc.pdf>. Acesso em: 31 agosto 2022.

JÚNIOR, C. ROBERTO. Instalações Hidraulicas e o Projeto de Arquitetura. 7° Ed. São Paulo: Blucher, 2013.

JUNIOR, A. M. F. Analise Estrutural de Contêineres Marítimos Utilizados em Edificações. 2017. Disponível em: https://www.repositorio.ufop.br/bitstream/123456789/9986/1/DISSERTA%C3%87%C3%830
_An%C3%A1liseEstruturalCont%C3%AAineres.pdf>. Acesso em: 31 agosto 2022.

KOTNIK, J. Container architecture: Este libro contiene 6441 contenedores. Barcelona: Links Books, 2008.

LEONE, J. T. Diretrizes de projeto para arquitetura em containers. Curitiba: UFPR, 2014.

LAKATOS, E. M.; MARCONI, M. A. Fundamentos de metodologia científica. 5º Ed. São Paulo: Atlas, 2003.

MENEZES, C. Pocket House. Homify. [2015]. Disponível em: https://www.homify.com.br/livros_de_ideias/26738/chique-casa-conteiner-tem-apenas-30-m-mas-nao-falta-espaco. Acesso em: 29 agosto 2022.

METALICA. Container City: Um novo conceito em arquitetura sustentável. Disponivel em: < https://vivagreen.com.br/greenarq/container-city-um-novo-conceito-em-arquitetura-sustentavel/#:~:text=Com%20a%20atual%20discuss%C3%A3o%20sobre,uma%20arquitetura%20moderna%20e%20criativa!>. Acesso em: 31 agosto 2022.

MORAIS, A.C.C Container: A Concepção do Modelo como Alternativa para Habitação de Interesse Social em São Luís/MA. Disponível em: < http://www.arquitetura.uema.br/wp-content/uploads/2018/08/UEMA-AU-TCC-2016-MORAIS-Container-a-concep%C3%A7%C3%A3o-do-modelo-como-alternativa-para-habita%C3%A7%C3%A3o-de-interesse-social-em-S%C3%A3o-Lu%C3%ADsMA.pdf >. Acesso em: 22 agosto 2022.

NERO, M. D. Arquitetura sustentável. Arquitetura + sustentável. 2014. Disponível em: https://delnerodafonte.com.br/arquitetura-sustentavel/. Acesso em: 13 agosto 2022.

NOVENTA. 10 novas tecnologias na construção civil para 2017. Noventa TI. 2017. Disponível em: https://noventa.com.br/novas-tecnologias-na-construcao-civil-2017/. Acesso em: 16 agosto 2022.

OCCHI, T.; ALMEIDA, C. C. O. D. Uso de containers na construção civil: viabilidade construtiva e percepção dos moradores de Passo Fundo-RS. Revista de Arquitetura, jan/jul 2016. 16-27.

PEREIRA, M. Casas Brasileiras. Archdaily. 2019. Disponivel em: https://www.archdaily.com.br/br/912137/casas-brasileiras-14-residencias-com-menos-de-

200m2?ad_source=myarchdaily&ad_medium=bookmark-show&ad_content=other-user>. Acesso em: 03 agosto 2022.

RAMOS, A. G. O milagre e a sociedade. [S.l.]: Jornal do Brasil, 1979. RAMOS, F. G. V. Desenhar é projetar. São Paulo: Universidade Presbiteriana Mackenzie, 2009.

SANTOS, N.C. Construção Modular: Utilização de Containers como Ambientes Construído. Repositório ufmg. 2017. Disponível em: https://repositorio.ufmg.br/bitstream/1843/30917/1/Monografia%20Especializa%C3%A7%C3%A30%20Carolina%20Neiva%20Santos%20-%20FINAL.pdf>. Acesso em: 30 agosto 2022.

SOUZA, M. C.; AVANCINI, M. F. R. Arquitetura sustentável, a construção de um futuro consciente. 2012. Trabalho apresentado ao XVII Seminário Interinstitucional de Ensino, Pesquisa e Extensão. Cruz Alta, 2012. Disponível em: https://xdocs.com.br/doc/arquitetura-sustentavel-a-construcao-de-um-futuro-consciente-loxxlj2y1pox. Acesso em: 13 agosto 2022.

SCHWEIZER, P. J.; PIZZA JUNIOR, W. Casa, moradia, habitação. Rio de Janeiro: RAP, 1997.

ROSA, M. Arquiteto Constrói Mini casa Container no interior de São Paulo. Ciclo Vivo. 2018. Disponível em: https://ciclovivo.com.br/arq-urb/arquitetura/arquiteto-constroi-mini-casa-conteiner-no-interior-de-sao-paulo/. Acesso em: 22 agosto 2022.

XAVIER, M.M. A Casa Container da Daniela e do Dalton. Minha Casa Container. 2018. Disponível em: https://minhacasacontainer.com/2018/02/15/casa-container-da-daniella-e-do-delton/. Acesso em: 30 agosto 2022.