Reflexos do uso de enraizador no tratamento de sementes de soja

Jhonathan Vieira de Paula^{1*}; Norma Schlickma¹

¹Curso de Agronomia, Centro Universitário Assis Gurgacz (FAG), Cascavel, Paraná. ¹jhone.c.v.p @hotmail.com

Resumo: A soja é uma das culturas de maior importância produtiva no Brasil, entre os primeiros cuidados necessários à cultura da soja está o manejo adequado quando o enraizamento inicial, pois nesta etapa, que começa logo após a germinação, as raízes precisam se lançar com profundidade. Neste contexto, o objetivo deste estudo foi verificar influência do Ácido Indol Butílico (AIB) em diferentes dosagens sobre o desenvolvimento inicial da soja. O experimento foi realizado no mês de junho de 2022, no laboratório de análise de sementes do Centro Universitário Assis Gurgacz (FAG), Cascavel, Paraná. O experimento foi realizado com delineamento inteiramente casualizado (DIC), sendo constituído por 4 tratamento e 5 repetições por sendo constituído por T1-testemunha, T2 - 50 %, T3 - 100 % e T4 - 150 % da dosagem de AIB indicada pelo fabricante, contendo 5 repetições, totalizando 20 unidades experimentais, cada unidade experimental era constituída por um pote, com as seguintes variáveis a serem avaliadas: germinação, tamanho da raiz, amanho aéreo e massa seca das plântulas. Dentre as variáveis analisadas, houve diferença significativa apenas na parte aérea da soja. O AIB influencia positivamente no desenvolvimento inicial da soja, translocando a massa seca dos cotilédones para o eixo embrionário. Com tudo resultados com valores diferentes podem ser obtidos em outros experimentos com dosagens maiores ou menores na utilização da mesma cultivar.

Palavras-chave: Ácido Indol Butílico; Vermiculita; massa seca; germinação.

Reflections of the use of rooter in the treatment of soybean seeds

Abstract: Soybean is one of the most productively important crops in Brazil, among the first precautions necessary for the soybean crop is the proper management when the initial rooting takes place, because at this stage, which begins soon after germination, the roots need to be launched deeply. In this context, the objective of this study was to verify the influence of Indole Butyl Acid (IBA) at different dosages on the initial development of soybean. The experiment was carried out in June 2022, in the seed analysis laboratory of Centro Universitário Assis Gurgacz (FAG), Cascavel, Paraná. The experiment was carried out with a completely randomized design (DIC), consisting of 4 treatments and 5 replications, consisting of T1 - control, T2 - 50%, T3 - 100% and T4 - 150% of the AIB dosage indicated by the manufacturer, containing 5 replications, totaling 20 experimental units, each experimental unit consisted of a bowl, with the following variables to be evaluated: germination, root size, aerial size and dry mass of the seedlings. Among the variables analyzed, there was a significant difference in the aerial part of the soybean. However, results with different values can be obtained in other experiments with higher or lower dosages using the same cultivar.

Keywords: Indole Butyl Acid; Vermiculite; dry mass; germination.

Introdução

A adição da soja à agricultura brasileira provocou uma verdadeira revolução no setor. Da cultura inicial, tornou-se num curto espaço de tempo um dos principais produtos do desenvolvimento agrícola e da economia nacional.

A sugestão mais antiga remonta a 2207.a.C, sugerindo que a soja pode ser uma das variedades mais antigas cultivadas por humanos. (MORSE, 1950).

D'utra (1899) relatou os resultados dos primeiros ensaios com algumas variedades no estado da Bahia, vários estudos foram feitos e diferentes partes do País. Essas tentativas são cruciais para a construção de uma cultura em nosso país.

A soja é uma das melhores fontes de proteína à base de plantas, compreendendo 36% a 56% de seu peso seco de proteína. Com o plantio de 40,7 milhões de hectares concluídos, um aumento de 3,8% em relação safra de soja 2021/22, a produção é de 3.016 kg ha-1, resultando em uma produção final de soja de 122,8 milhões de toneladas (CONAB, 2022). A vitalidade das sementes é uma das características físicas mais importantes a serem consideradas na instalação de uma lavoura citando TEKRONY e EGLI (1991). Sementes de baixa energia podem levar a reduções na taxa de emergência, uniformidade, emergência total, tamanho inicial e estabelecimento de povoamentos adequados (HOFS, 2003; MACHADO, 2002; VANZOLINI e CARVALHO, 2002).

A principal função dos intensificadores de fertilizantes é estimular e aumentar a formação de raízes em diversas culturas, principalmente na cultura da soja, sua atuação permite que as plantas explorem maior área do solo, absorvendo de forma mais eficiente todos os nutrientes. (VIEIRA E CASTRO, 2004).

O único objetivo das raízes é ajudar na absorção de água e nutrientes da planta e na estabilização da planta no solo. Eles também são responsáveis pela produção de hormônios vegetais como a citosina, que desempenha um papel na divisão celulares o desenvolvimento de tecidos (RUSSELL e ELLIS, 1968). Diferentes aspectos da morfologia radicular, mudanças na química rizosférica, mudanças na cinética da física de absorção, mudanças nos processos bioquímicos e genéticos, e interações com microrganismos no solo (LYNCH, 2007).

Os bioativadores são amplamente utilizados na agricultura para promover o desenvolvimento radicular e o desenvolvimento das plantas. Eles são normalmente associados a outras substâncias, como reguladores de crescimento de plantas, herbicidas e maturadores,

entre outros, mas são necessárias mais pesquisas sobre sua eficácia e dosagem nas culturas. (SANTOS, 2018).

O ácido indolbutírico (AIB) é provavelmente a principal auxina sintética de uso geral, porque não é tóxica para a maioria das plantas, mesmo em altas concentrações, é bastante efetiva para um grande número de espécies e relativamente estável, sendo pouco suscetível à degradação de auxinas. Sendo uma auxina sintética, é mais estável e menos solúvel que a auxina endógena, o ácido indolilacético (AIA), considerado um dos melhores estimuladores do enraizamento. O AIB é uma auxina pouco translocável na planta com efeito localizado na região aplicada (BARBOSA, 2009, p. 27).

Nesse contexto, o objetivo deste estudo foi verificar influência do Ácido Indol Butílico (AIB) em diferentes dosagens sobre o desenvolvimento inicial da soja.

Material e Métodos

O trabalho foi realizado no laboratório de análise de semente no Centro Universitário Assis Gurgacz FAG, localizado no município de Cascavel-PR, no mês de Junho de 2022. Foram utilizadas sementes de soja da safra 2021/2022, da cultivar 98R90Y.

O delineamento experimental utilizado foi o inteiramente casualizado - DIC, com 5 tratamentos e 4 repetições, totalizando 20 unidades experimentais. Os tratamentos foram compostos por diferentes doses de enraizador no tratamento de sementes, sendo: T1 - testemunha, T2 - 50 % da dose do enraizador recomendada pelo fabricante, T3 - 100 % da dosagem indicada pelo fabricante e T4 - 150 % dosagem indicada pelo fabricante.

O pó Enraizador Ácido Indol Butílico (AIB) tem uma dosagem recomendada pelo fabricante de 6000 mg L, é vendido em pacotes de 1 kg para indução de enraizamento, para ser utilizado antes do plantio. O fito hormônio estimula o enraizamento das mesmas, facilitando o pegamento e o plantio das espécies, pois é composto de Nitrogênio (1 %), Fósforo (4,2 %), Cálcio (17 %), AIB (6000 mg L).

Para determinar a quantidade de água usada para umedecer a vermiculita na qual foi adicionado o AIB, a mesma foi pesada e multiplicada por 2,5, para poder umedecer, após isso foi adicionada em potes de 1L, onde foram semeadas 5 sementes de soja por recipiente, conforme os tratamentos e cobertas com 2 cm de vermiculita. Para manter a umidade os potes foram protegidos por um papel filme no qual foi feito alguns orifícios para a circulação de oxigênio, os mesmos foram levados para BOD durante 5 dias na temperatura de 25 °C e luz constante.

Os parâmetros analisados foram de germinação das plantulas, comprimento da raiz, comprimento da parte aérea e massa seca das plântulas.

Na avaliação foi avaliado a quantidade de plântulas normais emergidas em cada potes e os resultados expressos e número de plântulas.

Para determinar o comprimento da parte aérea, com o auxílio de uma régua do nível da vermiculita ou Cauleto, até o ponto mais alto das plântulas determinado assim a parte aérea em centímetros.

Para determinação do comprimento das raízes as mesmas foram retiradas da vermiculita e passada por uma breve lavagem para retirar os excessos, logo após foi feita uma medição com uma régua milimétrica onde os resultados foram expressos em centímetros.

Para a determinação da massa seca das plântulas, foi retirada os cotilédones das mesmas e colocado o eixo embrionário, ou seja, raiz, hipocótilo e plúmula para secagem em estufa a 70 °C por 48 horas, após isso foram pesadas em uma balança de precisão com 4 casa decimais e o resultado expresso por gramas por plântulas.

Após a obtenção dos resultados os dados foram submetidos à análise de variância (ANOVA), comparados pelo Teste de Tukey a 5% de significância, e quando significativo a análise de regressão com auxílio do programa estatístico SISVAR 5.8 (FERREIRA, 2019).

Resultados e Discussão

Analisando os resultados obtidos na Tabela 1, para a variável germinação não houve diferença significativa quando da aplicação de diferentes dosagens de AIB, apenas diferença numérica. Dados similares foram obtidos por Genero e Lazaretti (2022), usado o bioestimulante AIA, sendo que é considerado uns dos melhores estimuladores do enraizamento. Alves (2018) também não mostrou diferença no desenvolvimento das plântulas 30 dias após a semeadura utilizando diferentes doses de bioestimulantes.

No comprimento da parte aérea houve diferença significativa, onde o melhor resultado obtido foi no tratamento 4 com aplicação de 150% da dose de AIB aplicado, com 8,7 cm, sendo igual estatisticamente aos tratamentos 2 e 3, apresentando respectivamente 7,1 e 6,8 cm de tamanho. Dados similares foram obtidos por Moterle *et al.* (2011), onde obtiveram um aumento linear significativo no comprimento das plântulas em respostas á aplicação de doses crescentes de biorreguladores através tratamento de sementes.

Comparações baseadas no coeficiente de variação (CV) e diferença menos significativa (DMS) para Lucio e Storck (1998) CV é uma estatística Muitas vezes usado por

pesquisadores como um indicador de qualidade experimental e A conclusão do DMS é estatística suficiente para o controle de qualidade do experimento. Segundo Pimentel Gomes (2000), são considerados de excelente precisão se o CV for inferior a 10%, entre 10 e 20% são considerados de precisão moderada e boa, acima de 30% são considerados de baixa precisão.

Tabela 1 – Resultado de Germinação (nº), Comprimento Aéreo(cm), Comprimento da Raiz (cm) e Massa Secas (g) submetidas a diferentes dosagens de AIB na condução do teste de germinação da soja. Cascavel / PR, 2022.

Tratamentos	Germinação (nº)	Comprimento Aéreo (cm)	Comprimento da Raiz (cm)	Massa Seca por plântulas (g)
T1 - Testemunha	4,4	4,9b	6,6	0,0399
T2 – 50 %	4,6	7,1ab	7,4	0,0450
T3 – 100 %	5,0	6,8ab	7,3	0,0457
T4 – 150 %	4,8	8,7a	7,5	0,0516
Média Geral	4,7	6,9	7,2	0,0455
P-Valor	0.4075	0,0195	0,7481	0,2383
C.V. (%)	12,13	24,36	21,06	18,83
DMS	1,03	3,03	2,74	0,0155

Médias seguidas de mesma letra, dentro de cada parâmetro, não diferem entre si, pelo teste de Tukey a 5% de probabilidade. CV = Coeficiente de variação; DMS = Diferença Mínima Significativa.

De acordo com Santos (2018), com a utilização do produto FT SD LEG na soja obteve um melhor desenvolvimento da parte aérea em comparação com a testemunha que apresentou uma parte aérea e um menor desenvolvimento radicular em comparação com a testemunha.

Para á variável comprimento de raiz, não apresentaram diferenças significativas durante 15 dias experimentos comparados ao T1- testemunha. O trabalho de Klahold (2005) também não observou diferença no tamanho das raízes até 15 dias pós-emergência devido ao uso de diferentes doses de bioestimulantes através das sementes. Com tudo após 15 dias após a emergência, aprestaram resultados positivos, porém as mesmas não foram detectadas diferenças estatísticas, somente numérica. Já Genero e Lazaretti (2022), usando diferentes doses de AIA, apresentaram resultados significativos no T4 - 200% recomentada pelo enraizador, obtendo 32,73 cm no tamanho média das raízes.

Com relação a massa seca das plântulas, não houve diferença estatística em relação as doses testadas, apenas numérica, ou seja, à medida que se aumentou a dosagem de enraizador, houve um aumento da massa seca das plântulas, sendo o tratamento com o 150% da dosagem recomendada (T4), a maior média de massa seca das plântulas de soja, evidenciando que o AIB favorece o translocamento da massa seca dos cotilédones para o eixo embrionário.

Genero e Lazaretti (2022), obteve resultados de acordo que aumentava as dosagens do enraizador testado, teve um aumento da massa seca das plântulas, ressalta que o tratamento com o dobro da dose recomendada (T4), obteve a maior média de massa seca das plântulas da soja. Da mesma forque que Santini *et al* (2015), no seu experimento utilizaram três diferentes tipos de biorreguladores e não constataram diferenças significativas da massa seca das plântulas na soja em seu desenvolvimento inicial.

Conclusão

O AIB influencia positivamente no desenvolvimento inicial da soja, translocando a massa seca dos cotilédones para o eixo embrionário. Com tudo resultados com valores diferentes podem ser obtidos em outros experimentos com dosagens maiores ou menores na utilização da mesma cultivar.

Referências

ALMEIDA DINIZ, K., TEOBALDO MARTINS ROSA GUIMARAES, S. e QUEIROZ LUZ, J. M, Húmus como substrato para a produção de mudas de tomate, pimentão e alface. **Bioscience Journal**, v. 22, n. 3, p. 63-70, 2006.

ALVES, M. S. Diferentes dosagens de bioestimulante no tratamento de sementes de soja. Patrocínio: Centro Universitário do Cerrado Patrocínio, 2018. 24p.

BARBOSA, M. C. Atuação de acido "beta"-naftoxiacético, ácido indolbutiríco e ácido giberélico na morfogênese de microplantas de abacaxizeiro "Gomo-demel". 2009. 7

D'UTRA, G. Nova cultura experimental de soja. **Boletim do Instituto Agronômico, Campinas**, 10(9/10):582-7, 1899.

FERREIRA, D. F. SISVAR: A computer analysis system to fixed effects split plot type designs. **Revista Brasileira de Biometria**, v. 37, n. 4, p. 529-535, 2019.

GENERO, G.; LAZARETTI, N. S. Dosagens de enraizador no desenvolvimento inicial da cultura da soja. **Revista Cultivando o Saber**, v. 15, p. 138-145, 2022.

HÖFS, A. **Vigor de sementes de arroz e desempenho da cultura**. Pelotas, 2003. 44p. Tese (Doutorado em Ciência e Tecnologia de Sementes) — Faculdade de Agronomia "Eliseu Maciel" — Universidade Federal de Pelotas

KLAHOLD, C. A. Resposta da soja (Glycine max (L.) Merril) a ação de bioestimulante. 2005. 57 f. Dissertação (Mestrado em Agronomia) — Universidade Estadual do Oeste do Paraná, Marechal Candido Rondon.

LUCIO, A. D. C; STORCK, L. Relação entre Diferença Mínima Significativa e Coeficiente de Variação nos Ensaios de Competição de cultivares. **Ciência Rural**, v. 28, n.2, p. 225-228, 1998.

LYNCH, J.P. Roots of second green revolution. **Australian Journal of Botany**, v. 55, p. 493-512, 2007.

MACHADO, R.F. Desempenho de aveia – branca (Avena sativa L.) em função do vigor de sementes e população de plantas. 46f. Tese (Doutorado em Ciência e Tecnologia de Sementes) – Curso de Pós-graduação em Ciência e Tecnologia de sementes, Universidade Federal de Pelotas, Pelotas, 2002

MORSE, W. J. History of soybean production. In: MARKLEY, K. S. Soybeansand soybeanproducts. New York, Interscience. 1950.

MOTERLE, L. M; SANTOS, R. F, dos; SCAPIM, C. A; BRACCINI. A. de, L. e; BONATO, C. M; CONRADO, T. Efeito de biorreguladores na germinação e no vigor de sementes de soja. **Revista Ceres**, Viçosa, v.58, n.5, p. 651-660, 2011.

PIMENTEL GOMES, F. Curso de Estatística Experimental. 14. ed. Piracicaba: Degaspari, 2000. 477p.

RUSSELL, R.S.; ELLIS, F.B. Estimation of the distribution of plant roots in soil. **Nature**, v.27, p.582-583, 1968.

SANTINI, J. M. K; PERIN, A; SANTOS, C. G, dos; FERREIRA, A. C; SALIB, G. C. Viabilidade técnico - econômica do uso de bioestimulantes em semente de soja. **Tecnologia e Ciência Agropecuária**, v.9, n.1, p.57 - 62, mar. 2015.

SANTOS, W. D. da S. **O** efeito de bioativadores no desenvolvimento inicial da soja. Trabalho de conclusão de curso apresentado ao Centro Universitário de Anápolis-Go UniEvangélica, Anápolis, 2018.

TEKRONY, D.M.; EGLI, D.B. Relationship of seed vigor to crop yield: A review. Crop Science, v.31, p.816-822, 1991.

VANZOLINI, S.; CARVALHO, N.M. Efeito do vigor de sementes de soja sobre o seu desempenho em campo. **Revista Brasileira de Sementes**, v.24, n.1, p.33-41, 2002

VIEIRA EL & CASTRO PRC (2004) Ação de bioestimulante na cultura da soja (Glycine max (L.) Merrill). Cosmópolis, **Stoller do Brasil**. 47p