CENTRO UNIVERSITÁRIO ASSIS GURGACZ

AVALIAÇÃO DO USO DO CARDIOVERSOR DESFIBRILADOR IMPLANTÁVEL EM CRIANÇAS E ADOLESCENTES COM CARDIOPATIA CONGÊNITA: UMA REVISÃO SISTEMÁTICA

EDUARDA MARAN

AVALIAÇÃO DO USO DO CARDIOVERSOR DESFIBRILADOR IMPLANTÁVEL EM CRIANÇAS E ADOLESCENTES COM CARDIOPATIA CONGÊNITA: UMA REVISÃO SISTEMÁTICA

Projeto de Pesquisa apresentado à disciplina de TCAM-1 do Curso de Medicina do Centro Universitário FAG, como requisito parcial para aprovação da Disciplina.

Prof (a). Orientador (a): Dr. Rui M. S. Almeida

CASCAVEL

RESUMO

A Morte Súbita Cardíaca pode ser uma das primeiras manifestações das cardiopatias congênitas em crianças e adolescentes, assim, o diagnóstico e a intervenção adequada precoce é de suma importância. Diante disso, esta revisão sistemática tem o objetivo principal de avaliar os resultados do uso do CDI em crianças e adolescentes com cardiopatias congênitas no período de janeiro de 2018 a junho de 2023, esclarecendo suas complicações e elucidando os resultados obtidos nos últimos estudos a fim de contribuir para o conhecimento médico. Esta pesquisa foi feita através da base de dados PubMed, Lilacs, Scielo, sendo selecionados artigos os quais avaliassem o uso do CDI em crianças e adolescente portadores de cardiopatias congênitas. A partir de 14 estudos selecionados, 650 pacientes foram analisados, sendo 376 do sexo masculino e 274 do sexo feminino. As doenças cardíacas apresentadas foram divididas em 3 grupos: Doença Elétrica Primária, Cardiopatia Congênita e Cardiomiopatias. Complicações ocorreram em 134 pacientes, choques apropriados em 155 pacientes e choques inapropriados em 122 pacientes. A idade média dos pacientes avaliados foi de 14,03 anos e o tempo médio de follow-up foi de 66,4 meses.

PALAVRAS-CHAVE: Cardioversor Desfibrilador Implantável, População Pediátrica, Revisão Sistemática, Cardiopatia Congênita, Crianças, Adolescentes

ABSTRACT

.

KEY WORDS: Implantable Cardioverter Defibrillator, Pediatric Population, Congenital Heart Disease, Children, Adollescent

INTRODUÇÃO

As cardiopatias congênitas ocorrem em aproximadamente 1% dos nascidos vivos (1), sendo que algumas doenças cardíacas têm como manifestação clínica inicial a morte súbita cardíaca (MSC), mesmo em crianças e adolescentes (2). A MSC em 84% dos casos é causada por taquicardia ventricular (TV) rápida sustentada ou TV que degenera em fibrilação ventricular (FV)(3–5) Dessa forma, o cardioversor desfibrilador implantável (CDI) é uma forma de prevenir a MSC em pacientes específicos (6).

Atualmente, o CDI tem suas indicações, uso e resultados bem consolidados na população adulta, como forma de prevenção primária e secundária à MSC. Entretanto, na população pediátrica há necessidade de análises e indicações para o seu uso, sendo que publicações de pequenas séries tem direcionado as indicações atuais, seguindo as diretrizes dos adultos e contando com a experiência da avaliação médica na indicação do CDI a esses pacientes. (6–8)

Esta revisão sistemática tem o objetivo principal de avaliar o uso do CDI em crianças e adolescentes com cardiopatias congênitas no período de janeiro de 2018 a junho de 2023, esclarecendo suas complicações e elucidando os resultados obtidos nos últimos estudos a fim de contribuir para o conhecimento médico.

MATERIAL E MÉTODO

Esta revisão sistemática buscou artigos em língua inglesa, espanhola e portuguesa de estudos observacionais, retrospectivos, multicêntricos e unicêntricos. A busca de artigos foi realizada no período de janeiro de 2018 a junho de 2023, sendo selecionados por uma pesquisa sistemática em 3 bases de dados: PubMed, Scielo, Lilacs. Os filtros e palavras chaves usados em todas as bases de dados foram os seguintes: população pediátrica, cardioversor desfibrilador implantável, CDI, doença cardíaca congênita, crianças e adolescentes.

Na base de dados PubMed, filtros específicos em relação a idade foram utilizados, sendo aplicados os que correspondiam a faixa etária de 0 a 21 anos. *Detalhamento dos filtros: Recém-nascido: do nascimento a 1 mês; Bebê: do nascimento a 23 meses; Criança: do nascimento aos 18 anos, Criança em idade pré-escolar: 2-5 anos, Criança: 6-12 anos, Adolescente: 13-18 anos, Adulto Jovem 19-24 anos.* Na base de dados da Scielo e Lilacs, a partir das palavras-chave Cardioversor Desfibrilador Implantável e aplicando os filtros de idade (0 a 24 anos) e ano de publicação (2018 a 2023) nenhum artigo foi encontrado. As bases de dados Scielo e Lilacs não possuíam estudos compatíveis com a população definida.

Dos 379 artigos encontrados no PubMed uma pré-seleção foi realizada através da leitura do título e posteriormente através do resumo. Dessa forma, 54 artigos foram selecionados e, com a leitura total, 14 foram utilizados para esta pesquisa (Figura A).

Os critérios de exclusão foram os estudos que não possuíam dados necessários para a análise por esta revisão e os que não estavam de acordo com as palavras chaves procuradas. Os critérios de inclusão são crianças e adolescentes (até os 21 anos) portadores de Cardiopatias Congênitas e que utilizaram o CDI como método de prevenção à MSC.

Para uma melhor compreensão, as cardiopatias encontradas nos estudos foram divididas em 3 grandes grupos de acordo com sua fisiopatologia básica: Doença Elétrica Primária, Doença Cardíaca Congênita e Cardiomiopatia.

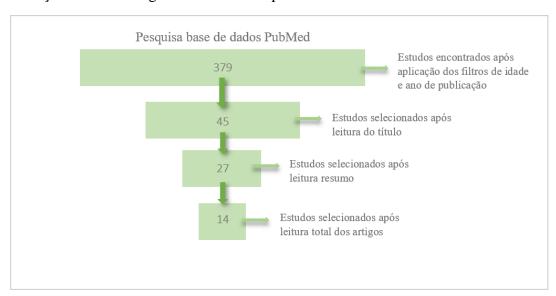


Figura A

RESULTADOS

A partir de 14 artigos coletados, 651 pacientes foram analisados, sendo 376 do sexo masculino e 275 do sexo feminino, faixa etária definida de 0 a 21 anos e idade média de 14,03 anos, considerando 13 de 14 estudos selecionados com tais dados disponíveis.

Entre os diagnósticos, o mais frequente foi o grupo envolvendo Cardiomiopatia, com 361 pacientes, 55,45% da amostra total. Pacientes portadores de Doença Elétrica Primária contabilizam 225 (34,56%) e de Doença Cardíaca Congênita, 60 (9,21%). Outras cardiopatias totalizam 5 pacientes (0,76%) (Figura B).

O tempo médio de follow-up foi de 66,40 meses, considerando 13 dos 14 estudos os quais possuíam tal dado disponível.

Choques apropriados ocorreram em 155 pacientes e os choques inapropriados em 122. Os resultados encontram-se detalhados no Anexo 1 e 2.

Analisando os três grupos de doença, alguns resultados foram encontrados:

Entre os 327 pacientes portadores de cardiomiopatia, os quais possuíam idade média de 11,7 anos, o mais prevalente diagnóstico trata-se de Cardiomiopatia Hipertrófica, com 251 pacientes. Dentre os demais diagnósticos, haviam 23 pacientes portadores de cardiomiopatia dilatada, 17 portadores de cardiomiopatia arritmogênica do ventrículo direito, 2 miocardites, 2 cardiomiopatias restritivas, 1 cardiomiopatia urêmica, 1 cardiomiopatia isquêmica, 2 cardiomiopatias não compactada do ventrículo esquerdo, 1 taquicardia ventricular, 1 fibrilação ventricular e 1 síndrome de Danon. No tempo médio de follow-up decorrido de 47,9 meses, 43 complicações ocorreram e 6 mortes.

Já os portadores de doença elétrica primária totalizaram 223 pacientes, os quais possuíam idade média de 12,6 anos. O mais prevalente diagnóstico trata-se de Síndrome do QT Longo, em 74 pacientes (34,4%), haviam também 61 pacientes portadores de fibrilação ventricular idiopática, 43 síndromes de Brugada, 22 taquicardias ventricular polimórfica catecolaminérgica, 6 fibrilações ventriculares primária, 3 síndromes da repolarização precoce, 2 fibrilações ventriculares idiopáticas, 1 mutação do gene RYR2 e ANK2, 1 síndrome de Andersen Tawil e 1 síndrome do QT curto. No tempo médio de follow-up decorrido de 41,5 meses, 19 complicações ocorreram e 8 mortes.

Entre os 61 portadores de Doenças Cardíacas Congênitas, a idade média encontrada foi de 14,9 anos, sendo o mais prevalente diagnóstico de fisiologia do ventrículo único, acometendo 11 pacientes (18,03%). Entre os demais diagnósticos, haviam 6 portadores de Tetralogia de Fallot, 5 septos ventricular com defeito, 1 valva aórtica bicúspide, 1 Síndrome Shone, 1 transposição de grandes artérias, 1 anomalia de Taussing Bing, 1 esteno-insuficiência-aórtica congênita, 1 atresia tricúspide, 1 Artéria coronária esquerda anômala da artéria pulmonar, 1 síndrome de Eptein, 2 doenças cardíacas congênitas não especificadas. No tempo médio de follow-up decorrido de 14,5 meses, 3 complicações ocorreram e nenhuma morte foi relatada.

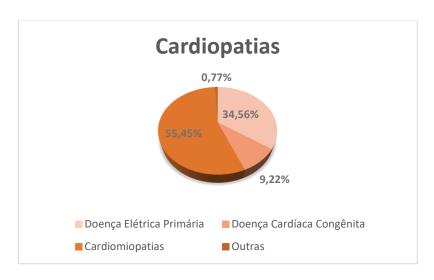


Figura B

Complicações

As complicações ocorreram em 134 pacientes e foram divididas em três grupos conforme sua etiologia: Complicações Mecânicas, Complicações Estruturais e Outras Complicações. Dentre as complicações mecânicas, 111 foram relatadas. Já as complicações estruturais ocorreram 40 vezes e outras complicações ocorreram 3 vezes. (Figura C). As complicações estão detalhadamente descritas na Tabela 1.

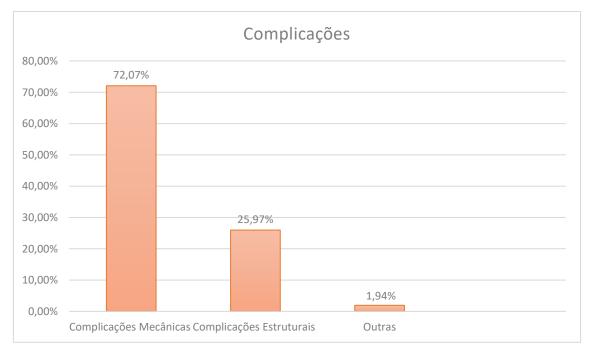


Figura C – Complicações Mecânicas (n=111), Complicações Estruturais (n=40), Outras Complicações (n=3)

Tabela 1

Complicações Mecânicas	Fratura de Eletrodo 52	Lead repositionning 4		
	Luxação de eletrodo 1	Taut lead 2		
	Migração do gerador de pulso 3	Lead encapsulation 1		
	Trocas do gerador 2	Recall 1		
	Fim da bateria 10	Falha nas derivações de		
	Falha na conversão 8	estimulação/detecção 2		
	Detecção excessiva 13	Falha nos cabos de alta tensão 5		
	Lead dislodgment 7			
Complicações Estruturais	Infecção de pele 10 Endocardite 1			
	Infecção da bolsa/sistema 11			
	Erosão de pele 9			
	Oclusão venosa 3			
	Efusão Pleural 1			
	Hemotórax 1			
	Perfuração do ventrículo direito 3			
	Desconforto 1			
Outras Complicações	Problemas psicológicos 2			

DISCUSSÃO

As complicações ocorreram em 134 pacientes e foram divididas em três grupos conforme sua etiologia: Complicações Mecânicas, Complicações Estruturais e Outras Complicações. Dentre as complicações mecânicas, 111 foram relatadas. Já as complicações estruturais ocorreram 40 vezes e outras complicações ocorreram 3 vezes. (Figura C). As complicações serão detalhadamente descritas na Tabela 1.

A partir dos estudos analisados desta revisão sistemática, 20,58% dos pacientes tiveram complicações. Este valor é ligeiramente maior comparado à meta-análise de NORDKAMP, L. R. A. O. et al (2015), a qual relatou 22% de complicações relacionadas ao implante do CDI em adultos-jovens com arritmias cardíacas hereditárias (9) e menor que a meta-análise realizada por T. VEHMEIJER, et. al (2016) em adultos com cardiopatias congênitas, o qual teve uma taxa de complicações de 25,6% (10).

Pode notar-se que 77,07% das complicações estão relacionadas aos danos estruturais do aparelho, sendo um terço (33,76%) de todas as complicações devido a fratura de eletrodo.

Os choques inapropriados ocorreram em 120 pacientes, 18,54% da amostra total. Comparando estudos em adultos,

Além disso, a

Choques Inapropriados

```
T oversensing 3 + 5 + 2 + 10 + 2 + 11 + 1 + 4
```

Fibrilação atrial 6 + 1 + 7 + 1 + 1

Sinus tachycardia 16 + 2 + 1 + 4

Supraventricular taquicardia 9 + 1 + 3 + 2 + 2

Sinus E supra taquicardia 6

Lead failure 2 + 11 + 2

VT não sustentado 1

Noise oversensing 1 + 1 + 1

Migração do cabo 1

Lead fracture 3 + 1

Myopotentials 1

155 pacientes obtiveram choques apropriados (23,81%).

Anexo 1 – Type of Study and Baseline Characteristics of Patients

Number of Study	Study ID	Study Desing	Number of Patientes	Implant Age Range [age mean ± SD]	N° of subject (male) [%]
1	Sarubbi B, Colonna D, Correra A et al. (2021)	Observational and retrospective	21	8-18 [13,9 ± n.r]	14 [66,6]
2	Song M, Uhm J, Baek J et al. (2021)	Multicentric and retrospective	99	n.r [13,9 ± 4,1]	68 [68,6]
3	Pitak M, Jastrzębski M, Rudek-Budzyńska A et al. (2021)	Observational and Single Center	8	9-17 [12.5 ± n.r]	4 [50]
4	Norrish G, Chubb H, Field E et al. (2020)	Retrospective, longitudinal multi- center cohort	90	n.r-16 [13 ± 3.5]	57 [63,3]
5	Silvetti M, Pazzano V, Verticelli L et al. (2018)	Observational, non-randomized and standard-of- care study	11	10-20 [14,2 ± n.r]	2 [20]
6	Lewandowski M, Syska P, Kowalik I et al. (2018)	Original Article	73	6-21 [14.5 ± n.r]	36 [49,3]
7	Cecilia Gonzalez Corcia M, Sieira J,	Retrospective Analysis and	35	≤20 [13.9 ± 6.2]	25 [71]

	Pappaert G et al. (2018)	Single-Center Cohort			
8	Implantable Cardioverter Defibrillators in Infants and Toddlers: Indications, Placement, Programming, and Outcomes	Retrospective Analysis and Single-Center review	15	0-3 [n.r]	36 [20]
9	von Alvensleben J, Dechert B, Bradley D et al. (2020)	Multicenter, retrospective and standard-of-care study	115	14-19 [16,7 ± n.r]	34 [29]
10	Winkler F, Dave H, Weber R et al. (2017)	Retrospective single-center analysis	31	2-20 [11,4 ± n.r]	23 [74,1]
11	Kwiatkowska J, Budrejko S, Wasicionek M et al. (2019)	Retrospective review (long-term single-center)	20	3-17 [15,6 ± n.r]	12 [60
12	Wieniawski P, Buczyński M, Grabowski M et al. (2022)	Retrospective Analysis Single Center Experience	11	12–17 [15,9 ± n.r]	8 [72,7]
13	Rowin EJ, Sridharan A, Madias C et al. (2020)	Retrospective single-center analysis	60	n.r [13 ± 6]	39 [65]

14	Mori H, Sumitomo N, Tsutsui K et al (2023)	Multicenter, observational and retrospective study	62	$3-18 [14 \pm n.r]$	45 [72.6]
----	---	--	----	---------------------	-----------

n.r: not repported; SD: standart deviation

Anexo 2 – Diagnosis of patients and details regarding ICD implantation

Number of the Study	Device	Diagnosis	Complications (n of patients)	Appropriate Shocks (n of patients)	Inappropriate Shocks	Follow-Up Range [mean time ± SD] (months)
1	S-ICD	Primary electrical disease (n=11) Congenital heart disease (n=5) Cardiomyopathy (n=5)	1	2	4	4-78 [41,9 ± 21.9]
2	S-ICD TV-ICD EC-ICD	Primary electrical disease (n=55) Congenital heart disease (n=12) Cardiomyopathy (n=29) Others (n=3)	17	44 (44%)	33 (33%)	n. r [58,7 ± 44,4]
3	S-ICD	Primary electrical disease (n=2) Congenital heart disease (n=0) Cardiomyopathy (n=5) Other (n=1)	0	0	0	3-40 [14 ± n.r]
4	S-ICD TV-ICD EC-ICD	Cardiomyopathy (n=90)	28	25	7	n.r [54 ± n.r]
5	S-ICD	Primary electrical disease (n=1)	4	1	0	1-33 [n.r]

		Congenital heart disease (n=2) Cardiomyopathy (n=8)				
6	EC-ICD	Primary electrical disease (n= 19) Congenital heart disease (n=2) Cardiomyopathy (n=52)	29 (40%)	20 (27,4%)	24 (32,8%)	n.r [107 ± n.r]
7	TV-ICD	Primary Electrical	5 (14%); 3 deaths	8 (23%)	7 (20%)	n.r [88 ± n.r]
	EC-ICD	Disease (Brugada Syndrome) (n=35)				
8		Primary electrical disease (n=13) Cardiomyopathy (n=2)	3	3 (20%)	0	n.r [51 ± n.r]
9	S-ICD	Primary electrical disease (n=33) Congenital heart disease (n=37) Cardiomyopathy (n=45)	21	13	18 (15,6%)	n.r [32 ± n.r]
10	EC-ICD	Primary electrical disease (n=10) Cardiomyopathy (n=21)	3	6	4	n.r [57,3 ± n.r]

11	S-ICD TV-ICD EC-ICD	Primary electrical disease (n= 9) Congenital heart disease (n=2)	13 patients 3 deaths	8 (40%)	2 (10%)	4,7-150 [80,3 ± n.r]
	Le leb	Cardiomyopathy (n=9)				
12	S-ICD	Primary electrical disease (n=4) Cardiomyopathy (n=7)	0	n.r	0	n.r [48 ± n.r]
13	S-ICD TV-ICD	Cardiomyopathy (n=60)	10 patients	9 (15%)	8	n.r [204,1 ± n.r]
14	S-ICD	Primary electrical disease (n= 33) Cardiomiopathy (n=29)	0	16 (26.2%)	13 (21.3%)	13.3–35.8 [27 ± n.r]

S-ICD: Subcutaneous Implantable Cardioverter Defibrillator; TV-ICD: Transvenous Implantable Cardioverter Defibrillator; EC-ICD: Endocardical Implantable Cardioverter Defibrillator; p/c: number of patients who had complications/number of complications; n.r: not repported

AGRADECIMENTOS

REFERÊNCIAS

- 1. Ailes EC, Gilboa SM, Riehle-Colarusso T, Johnson CY, Hobbs CA, Correa A, et al. Prenatal diagnosis of nonsyndromic congenital heart defects. Prenat Diagn. 2014 Mar;34(3):214–22.
- 2. Rella V, Parati G, Crotti L. Sudden Cardiac Death in Children Affected by Cardiomyopathies: An Update on Risk Factors and Indications at Transvenous or Subcutaneous Implantable Defibrillators. Vol. 8, Frontiers in Pediatrics. Frontiers Media S.A.; 2020.
- 3. Miller JD, Yousuf O, Berger RD. The implantable cardioverter-defibrillator: An update. Vol. 25, Trends in Cardiovascular Medicine. Elsevier Inc.; 2015. p. 606–11.
- 4. Mori H, Sumitomo N, Tsutsui K, Fukunaga H, Hayashi H, Nakajima H, et al. Efficacy of SubcutAneous implantable cardioVErter-defibrillators in ≤18 yearold CHILDREN: SAVE-CHILDREN registry. Int J Cardiol. 2023 Jan 15;371:204–10.
- 5. Koury A, Jurubeba X, Saleh A, Amanda K;, Fraga S, Phillipe J, et al. CAPÍTULO 6 ETIOLOGIA, POSSÍVEIS FATORES DE RISCOS E ASPECTOS RELACIONADOS À IDENTIFICAÇÃO E PREVENÇÃO DA MORTE SÚBITA CARDÍACA.
- 6. Pitak MJ, Jastrzębski M, Rudek-Budzyńska A, Weryński P, Winter J, Góreczny S. Subcutaneous implantable cardioverter-defibrillator and the two-incision intermuscular technique in pediatric patients A single center experience. Kardiol Pol. 2021 Sep 30;79(9):1025–7.
- 7. Teixeira RA, Fagundes AA, Junior JMB, de Oliveira JC, de Tarso Jorge Medeiros P, Valdigem BP, et al. Brazilian Guidelines for Cardiac Implantable Electronic Devices 2023. Arq Bras Cardiol. 2023;120(1).
- 8. Song MK, Uhm JS, Baek JS, Yoon JK, Na JY, Yu HT, et al. Clinical outcomes of implantable cardioverter-defibrillator in pediatric patients A Korean multicenter study. Circulation Journal. 2021;85(8):1356–64.
- 9. Olde Nordkamp LRA, Postema PG, Knops RE, van Dijk N, Limpens J, Wilde AAM, et al. Implantable cardioverter-defibrillator harm in young patients with inherited arrhythmia syndromes: A systematic review and meta-analysis of inappropriate shocks and complications. Heart Rhythm. 2016 Feb;13(2):443–54.
- 10. Vehmeijer JT, Brouwer TF, Limpens J, Knops RE, Bouma BJ, Mulder BJM, et al. Implantable cardioverter-defibrillators in adults with congenital heart disease: A systematic review and meta-analysis. Eur Heart J. 2016 May 7;37(18):1439–48.