

LEVANTAMENTO DAS MANIFESTAÇÕES PATOLÓGICAS PRESENTES EM EDIFICAÇÕES LOCALIZADAS EM CASCAVEL-PR E REGIÃO

CANTELLI, Gustavo Henrique¹ RACHID, Ligia Eleodora Francovig²

RESUMO: Este estudo tem como foco a análise das manifestações patológicas encontradas em edificações unifamiliares localizadas em Cascavel - PR e região. A pesquisa foi realizada por levantamento das patologias meio de inspeções visuais *in loco* e registros fotográficos de 5 (cinco) residências. Para identificar as manifestações patológicas baseou-se nas revisões bibliográficas. As manifestações encontradas foram fissuras, trincas e rachaduras, desplacamento de revestimentos cerâmicos, manchas e eflorescência, apresentando as prováveis causas e possíveis soluções. No estudo foi possível visualizar que o maior risco está presente nas rachaduras encontradas. Para determinar o grau de risco das patologias aplicou-se o método GUT (gravidade, urgência e tendência). Por fim tem a determinação que através do estudo pode-se notar que manutenções preventivas podem ser uma maneira de minimizar as manifestações patológicas.

Palavras-chave: Residências Unifamiliares; fissura; soluções para reparo.

1. INTRODUÇÃO

A construção civil é um setor essencial para o desenvolvimento econômico e social, caracterizado por sua complexidade e pela necessidade de coordenação precisa entre as diversas etapas envolvidas na execução de um projeto. Cada fase de uma obra requer execução cuidadosa para garantir a segurança, a durabilidade e o desempenho da edificação.

No entanto, é comum que, devido à pressão por prazos reduzidos e à busca de redução de custos, surjam falhas na construção que podem resultar em manifestações patológicas, comprometendo a integridade estrutural, a funcionalidade e o conforto das edificações. Essas falhas não apenas afetam a vida útil dos imóveis, mas também aumentam os custos de manutenção e podem comprometer a segurança dos ocupantes. Portanto, é fundamental adotar práticas construtivas de qualidade e realizar uma fiscalização rigorosa durante todas as etapas da obra, de modo a minimizar os riscos de patologia e garantir a longevidade do empreendimento.

Na atualidade, observa-se uma ampla variedade de produtos e tecnologias disponíveis no mercado de construção civil, fornecendo diferentes opções de materiais com qualidade e preços variáveis. Contudo, essa variedade de opções pode levar a decisões equivocadas, como o uso de materiais de qualidade inferior para economia, o que aumenta a probabilidade de surgimento de patologias nas edificações. Além disso, a crescente demanda por projetos entregues em prazos cada vez menores intensifica os desafios de garantir a qualidade, contribuindo para o surgimento de problemas durante ou após a execução da obra.

¹ Discente, Curso de Engenharia Civil, Centro Universitário Assis Gurgacz, Cascavel - PR. E-mail: ghcantelli0@gmail.com.

Docente, Curso de Engenharia Civil, Centro Universitário Assis Gurgacz, Cascavel - PR. E-mail: ligia@fag.edu.br.

A realização deste estudo é relevante em vários âmbitos: social, institucional e pessoal. No contexto social, o conhecimento sobre manifestações patológicas nas construções é fundamental para garantir que as edificações sejam mais seguras e rigorosas. Quando se compreendem essas manifestações patológicas, é possível otimizar o uso dos recursos, o que resulta em uma redução significativa de desperdícios, tanto de materiais quanto de tempo e dinheiro. Essa abordagem não só contribui para a sustentabilidade do setor, mas também melhorar a segurança e o conforto para os usuários das edificações.

Do ponto de vista institucional, a pesquisa oferece importantes benefícios para empresas e profissionais da construção civil. Ao identificar e prevenir manifestações patológicas, é possível aumentar a qualidade dos serviços prestados, evitando problemas futuros que comprometam a integridade das obras. Isso não apenas eleva o nível de satisfação dos clientes, mas também fortalece a confiança das empresas no mercado. Além disso, ao adotar práticas preventivas baseadas em diagnósticos precisos, as empresas podem reduzir significativamente os custos com manutenções e reparos.

Por fim, no âmbito pessoal, este estudo contribui significativamente para o desenvolvimento acadêmico e profissional do autor. Ao aprofundar o conhecimento sobre as causas e soluções para as manifestações patológicas, o autor ganha uma compreensão sólida e prática que será essencial em sua carreira futura. Essa expertise não só melhora a capacidade de identificar problemas construtivos com antecedência, como também capacita o profissional a propor soluções eficazes, garantindo que as edificações atendam a padrões elevados de qualidade e durabilidade. Dessa forma, o estudo não apenas enriquece o conhecimento técnico, mas também amplia as oportunidades de crescimento no mercado de construção.

Dias *et al.* (2020), destacam que as manifestações patológicas nas edificações podem causar desconforto e preocupações aos usuários, além de serem esteticamente mal feito e, em alguns casos, representarem riscos à segurança. Portanto, é fundamental compreender as causas dessas manifestações patológicas para que se possa realizar intervenções corretivas e restaurar a integridade do que foi mal executado.

O problema central que este trabalho pretende resolver é: como as fissuras podem ser minimizadas por meio de práticas construtivas adequadas e o uso de materiais de qualidade?

Este estudo se concentra em manifestações patológicas de edificações unifamiliares localizadas em Cascavel e região Oeste do Paraná, contemplando cinco amostras.

O objetivo geral foi levantar as manifestações patológicas encontradas nas edificações residenciais em Cascavel e no seu entorno.

Destaca-se que para atingir o objetivo geral, consideram-se os seguintes objetivos específicos:

- a) Identificar as manifestações patológicas por meio de inspeções visuais;
- b) Verificar as prováveis causas das manifestações patológicas, embasando-se na revisão bibliográfica;
- c) Propor possíveis soluções para reparo das manifestações patológicas com base em revisão bibliográfica.

2. REVISÃO BIBLIOGRÁFICA

2.1 PATOLOGIAS NA CONSTRUÇÃO CIVIL

Patologias segundo a NBR 15575-1 (ABNT, 2013), é uma irregularidade que manifesta por alguns fatores como: falhas no projeto, fabricação, instalação, execução, montagem, uso ou manutenção, como entre outros problemas que não são decorrentes de envelhecimento natural.

Quando se pensa em patologias, deve-se pensar em alguns outros fatores que devem ser analisados juntamente com os estudos das manifestações patológicas, tais fatores andam *pari passu* às patologias, sendo eles:

- Vida útil: Trata-se do tempo que se espera o devido desempenho da edificação ou estrutura, no qual ainda pode ser considerado seguro e adequado ao uso das pessoas. Os fatores que influenciam a vida útil podem ser mão de obra, materiais, condições ambientes, climáticas, manutenções, entre outros fatores.
- Desempenho: Considera-se como a capacidade da estrutura de atender alguns critérios como: funcionalidade, segurança, durabilidade, conforto e sustentabilidade. A NBR 15575-1 (ABNT, 2013), prescreve que desempenho são funções requeridas à edificação. Pode mencionar também alguns casos onde se aplica o desempenho, sendo eles: estruturais, térmicos, acústico, hidrossanitário, elétrico e segurança contra incêndio, etc.
- Durabilidade: Na NBR 15575-1 (ABNT, 2013), está a definição de durabilidade como a capacidade de uma estrutura ou edificação exercer funções ao longo da vida útil, sob condições de uso e manutenções. Oliveira (2013), comenta que durabilidade em uma estrutura de concreto armado trata da capacidade de se manter funcional pela vida útil esperada, também menciona que deve ser de conhecimento do projetista calcular a durabilidade de uma edificação considerando materiais e componentes.

A patologia na construção civil se concentra na análise de problemas que afetam as edificações, bem como nas alterações estruturais e funcionais que podem ocorrer. Esses problemas surgem durante uma fase de execução, muitas vezes como resultado do uso inadequado de materiais

ou técnicas construtivas, ou até mesmo na etapa de elaboração do projeto e pode-se desenvolver-se ao longo da vida útil da edificação.

Segundo Alves (2009), espera-se que as edificações garantam condições adequadas para o desenvolvimento das atividades humanas, especialmente durante os primeiros anos de uso, o qual é o período de cinco previsto pelo Código Civil Brasileiro como garantia mínima para construções. Para atender a essa expectativa, as edificações devem ser desenvolvidas para serem atraentes, estanques, funcionais e convenientes, ao mesmo tempo que busca o menor custo possível, dada a limitação de recursos financeiros.

Entretanto, Possan e Demoliner (2012) ressaltam que a degradação precoce das edificações é um problema recorrente em diversos países, levando a um desempenho abaixo do esperado. Esse desgaste geralmente ocorre devido ao uso de materiais de baixa qualidade, falhas na fase de projeto e execução, além da carência de manutenção preventiva. Por isso, é crucial entender as principais manifestações patológicas que impactam essas construções, bem como desenvolver estratégias de prevenção e aplicar técnicas de recuperação preventiva, a fim de solucionar esses problemas de forma eficiente, tanto do ponto de vista técnico quanto econômico.

Assim, surge a necessidade de se conhecer as principais manifestações patológicas, que causam transtornos aos proprietários e usuários das edificações, buscando entender como surgem as manifestações patológicas nas edificações, quais as possíveis causas e soluções.

2.1.1. Fissuras

Pinheiro *et al.* (2021), mencionam que fissuras são os tipos mais comuns encontrados em obras, tem por consequência também implicar na durabilidade, desempenho e vida útil.

As edificações podem apresentar fissuras de dois tipos da mesma, sendo denominadas de ativas e as passivas, onde a ativa apresenta variações ao longo do tempo e a passiva não ocorrerá essa variação. Fissuras muitas vezes servem como aviso, por representar certo perigo na edificação; durante a execução de uma obra deve-se atentar se há ou não presença desta manifestação patológica, uma vez que pode prejudicar o desempenho da mesma; a fissura pode ser vertical, horizontal, diagonal e as duas juntas (DIAS *et al.*, 2020).

Para determinar se o problema em questão é uma fissura, trinca ou rachadura, é fundamental atentar-se para a largura da abertura, conforme ilustrado na Figura 01, com o uso de um fissurômetro para verificar as medidas, sendo um instrumento utilizado por especialistas na área das patologias.

Figura 01 - Classificação das aberturas.

Tipologia	Abertura (mm)			
Fissura	até 0,5			
Trinca	0,5 até 1,5			
Rachadura	1,5 a 5,0			
Fenda	5,0 a 10,0			
Brecha	acima de 10,0			

Fonte: Autor (2024, adaptado de Oliveira (2012).

Thomaz (1986), comenta em seus estudos a respeito dos tipos de fissuras, mecanismos de formação e configurações. Para o autor existem fissuras por movimentações térmicas, variações de umidade, sobrecargas ou concentração de tensões, deformabilidade excessiva da estrutura, recalques diferenciais de fundação. As causadas por movimentações térmicas está relacionada com as propriedades físicas do material e com a intensidade de variação de temperatura, podem ocorrer entre os elementos do sistema, entre os componentes e entre regiões distintas de um mesmo material; essas fissuras induzidas por movimentação térmica em argamassas são aberturas mais reduzidas, provocadas por secagem, podem ocorrer maiores entre paredes e junções.

Movimentações higroscópicas causada pelo aumento do teor de umidade gerando expansão do material enquanto a diminuição do teor causa a contração, a umidade pode ser através da fabricação dos componentes, durante a execução da obra, fenômenos meteorológicos e proveniente do solo; a configuração é semelhante àquelas de movimentação térmica e esse tipo de patologia geralmente pode vir acompanhado de eflorescência no local da manifestação. Sobrecargas produz fissuração em componentes como pilares, vigas e paredes; ocorrem em flexão de vigas, torção de vigas, flexão de lajes, torção de laje (Thomaz, 1986).

Para Thomaz (1986), deformabilidade excessiva pode ser verificado com a deformação dos componentes estruturais, como frequentes problemas de compressão de caixilhos, empoçamento de água em vigas-calha ou lajes de cobertura, destacamento de pisos e ocorrência de trincas em paredes; os componentes de um edifício mais suscetível a flexão de vigas e lajes são as alvenarias; entre as configurações têm-se deformações do suporte (viga) inferior, superior e idênticas da viga superior, entre outros casos. Para recalques de fundação ocorrem diretamente com o fator do solo; de modo geral fissuras provocadas por recalque são inclinadas, podendo confundir com fissuras por deflexão de componentes estruturais, apresentam geralmente maiores aberturas, inclinando-se em direção ao ponto de ocorrência de maior recalque.

2.1.2 Manchas devido à umidade

Segundo Dias *et al.* (2020), umidade, trata-se de algo que está com a presença de líquido ou vapor de água, podendo ser ordinário de:

- Intempéries: com presença de chuva, ocorrendo através de fachadas e coberturas com descuido na impermeabilidade dos locais;
- Condensação: trata-se do vapor de água presente no espaço;
- Capilaridade: é aquele que vem através do solo e sobe nas paredes;
- Infiltração: entrada direta da água na edificação.

A umidade é algo que acarreta inúmeros problemas se não tratado, o mesmo pode ser encontrado por vários casos diferentes numa edificação, sendo assim, trata-se de um fator que merece certa observação com mais atenção, sendo extremamente importante o conhecimento sobre a mesma (SANTANA, 2022).

2.1.3 Desplacamento do revestimento cerâmico

Granato (2013), menciona que o conjunto de revestimento cerâmico, compõem argamassa de assentamento, rejuntamento e as placas cerâmicas. O autor também comenta que a argamassa seria a principal responsável pela aderência da cerâmica ao substrato.

Segundo Pezzato (2010), a origem das patologias envolvendo o sistema de revestimento cerâmico podem ser congênitas que ocorrem ainda na fase de projeto; construtivas que acontecem na fase de execução do serviço devido à falta na qualidade da mão de obra ou material utilizado; adquiridas que ocorrem durante a vida útil do revestimento pela exposição ao meio ambiente e ação humana; acidentais originam devido a acontecimentos anormais, como incêndios.

2.1.4 Eflorescência

Segundo Uemoto (1988), o termo eflorescência possui o significado relacionado a formação de depósitos salinos na superfície das alvenarias, resultante da exposição a intempéries. O autor também afirma que considerando a parte química da eflorescência, a mesma é constituída por sais de metais alcalinos (sódio e potássio) e alcalino-terrosos (cálcio e magnésio), os quais são solúveis ou parcialmente solúveis em água.

As eflorescências são classificadas em tipo 1, 2 e 3. Tipo 1 são as mais comuns, classificada como depósitos de sais brancos, pulverulento e bastante solúvel em água e podem ocorrer em locais como revestimentos argamassados, juntas de assentamento, locais próximos a esquadrias mal vedadas, ladrilhos, cerâmicas e azulejos. Tipo 2 caracterizam-se por depósitos com cor branca escorrido, bastante aderente e pouco solúvel em água e formam-se próximas aos elementos de

concreto ou sobre superfícies de alvenaria. Aquelas do tipo 3 se manifestam como depósitos de sais brancos, geralmente encontradas entre juntas de alvenaria aparente, que possuem fissuras decorrentes de expansão através da hidratação do sulfato de cálcio existente no material ou na relação entre o tijolo e o cimento (UEMOTO, 1988).

3. METODOLOGIA

3.1 TIPO DE ESTUDO E LIMITAÇÃO DA PESQUISA

Este estudo de caso teve como objetivo o levantamento de manifestações patológicas em residências unifamiliares, por inspeção visual de cinco edificações localizadas na região oeste do Paraná.

Durante a realização do estágio obrigatório realizado no período de 2021 a 2024, surgiu a ideia de realizar o trabalho de conclusão de curso com as informações dos trabalhos realizados pelo supervisor do estágio, por haver acompanhamento do autor nos levantamentos dos problemas encontrados e nos relatórios entregues aos proprietários dos imóveis. Os trabalhos realizados possibilitaram usar as informações e os registros fotográficos para realização do trabalho de conclusão de curso. O uso destes dados foi autorizado pelo profissional e também pelos proprietários das edificações.

3.2 CARACTERIZAÇÃO DAS AMOSTRAS

A amostra é composta por 5 (cinco) residências estão localizadas em Cascavel, Toledo e Realeza no Paraná, a escolha destas localidades teve como enfoque a semelhança das condições climáticas e geológicas, garantindo que as informações não fossem influenciadas pelas variações geográficas. As construções são unifamiliares, um e dois pavimentos e estão apresentadas na Figura 2. As residências foram numeradas de 1 a 5, para manter o sigilo dos proprietários.

Figura 02 - Seleção das amostras.

Residência	Localização	Data coleta	Manutenção	Idade (anos)	Área (m²)	Insolação
1	Cascavel-PR	13/01/2023	Não houve	5	112,58	Sudeste/Sudoeste
2	Cascavel-PR	04/01/2021	Não houve	6	47,39	Nordeste/Noroeste
3	Cascavel-PR	06/06/2022	Não houve	4	178,87	Nordeste/Noroeste
4	Toledo-PR	22/03/2023	Não houve	5	54,84	Leste/Oeste
5	Realeza-PR	16/01/2023	Não houve	7	363,38	Sudeste/Sudoeste

Fonte: Autor (2024).

Na Figura 2 constam as residências, suas respectivas localizações, data da coleta da amostra, se houve manutenções, idade das edificações, área do local e a incidência solar. As manifestações patológicas identificadas nas cinco amostras são apresentadas na Figura 4 encontradas nas visitas e inspeções visuais.

3.3 INSTRUMENTOS E PROCEDIMENTO DE COLETA DE DADOS

Para apresentar os resultados será apresentado tabelas com informações que constam registros fotográficos e descrição dos problemas para posteriormente determinar as possíveis causas e soluções sugeridas.

Para auxílio no levantamento de dados utilizou-se a matriz GUT (gravidade, urgência e tendência), a Figura 3 exemplifica este método.

GRAVIDADE
Quais os efeitos?

URGÊNCIA
Pode esperar?

Qual a possibilidade de piora

Figura 03 - Matriz GUT.

Fonte: Google Imagens (2024).

A matriz GUT permite verificar a gravidade - G, ou seja, quais são os efeitos do problema encontrado, com graus de 1 a 5, quanto maior o valor maior a gravidade. A urgência – U, significa quanto tempo o problema pode esperar para ser solucionado e T – Tendência existe a possibilidade de parar o problema, com graus de 1 a 5, isto o maior valor são os casos extremos, os mais preocupantes.

Sotille (2014), menciona que a matriz GUT foi proposta inicialmente por Charles H. Kepner e por Benjamin B. Tregoe, no ano de 1981 que serve como ferramenta em casos de soluções dos problemas. O mesmo comenta também uma análise do que seria gravidade, urgência e tendência, como menciona a seguir:

- Gravidade: intensidade do problema e a profundidade de danos se não for tomada medidas corretivas, classificada de 1 a 5, onde um seria danos mínimos e cinco casos de danos gravíssimos;
- Urgência: definido pelo tempo que ocorrerá a eclosão dos problemas no local se não obtiverem soluções, classificado de 1 a 5, onde um significa que não há pressa e cinco que a ação deve ser imediata;
- Tendência: desenvolvimento dos problemas uma vez que não ocorrer as soluções, classificado de 1 a 5, sendo um como não irá piorar até cinco onde significa que vai piorar rapidamente.

3.4 ANÁLISE DOS DADOS

Após a coleta de dados, foi realizada a análise embasada na revisão bibliográfica, organizadas em forma de tabelas do *Excel* e em gráficos apresentando a identificação da patologia incidente, com as prováveis causas e soluções, destacando qual problema representava a gravidade, urgência e tendência mais relevantes.

4. RESULTADOS e DISCUSSÕES

Neste item os resultados foram apresentados de acordo com manifestação patológica identificada, registros fotográficos, sua classificação de risco segundo a matriz GUT, as prováveis causas e a possível forma de reparo.

4.1 AMOSTRAS

Na Figura 4 estão mostradas as manifestações patológicas das 5 (cinco) residências selecionadas.

Figura 04 - Identificação das patologias.

1 gara o i Taominioaquo aus parorogras.								
	Manifestações Patologicas (quantidade de casos)							
Residências	Eflorescência	Fissura	Trinca	Rachadura	Desplacamento de revestimento	Manchas		
Residência 1	1	0	3	4	0	2		
Residência 2	0	2	2	0	1	0		
Residência 3	1	4	0	0	0	4		
Residência 4	0	3	4	4	0	0		
Residência 5	0	3	1	4	0	0		

Fonte: Autor (2024).

As manifestações patológicas identificadas foram: eflorescência, fissura, trinca, rachadura desplacamento de revestimento cerâmico e manchas. As fissuras, trincas e rachaduras ocorreram em 79% das incidências nas residências, exceto na residência 3.

4.2 EFLORESCÊNCIA

As eflorescências, ilustradas na Figura 5 aconteceram nas residências 1 e 3.

Figura 05 - Eflorescência.

Descrição do problema por meio da inspeção visual: A amostra A consta manchas brancas em uma parede de alvenaria localizada na parte dos fundos da residência, sendo uma área exposta a intempéries, pois não possui cobertura, tampouco construções vizinhas. No topo da parede tem-se presença de rufo para proteção da parte superior da alvenaria.

Amostra B possui manchas brancas na alvenaria externa da residência, localizada próxima ao nível da segunda laje, área exposta a intempéries, possui cobertura na parte interna e na parte superior da alvenaria há rufos para proteção.

Possíveis causas: como se trata de paredes externas expostas às intempéries a eflorescência pode ter sido causada pela presença de água; nas argamassas de revestimento provavelmente o teor de sais solúveis presentes nos materiais ou nos componentes da argamassa; presença de água e pressão hidrostática causam a eflorescência.

Soluções sugeridas: escovamento da superfície, eliminação da infiltração de umidade, secagem do revestimento e reparo do revestimento se estiver pulverulento.

Fonte: Autor (2024).

A eflorescência apresenta na Figura 5, pode ser considerada como de tipo 1, conforme relatado na revisão bibliográfica.

Segundo Granato (2013), o aparecimento eflorescência em um local é devido aos depósitos de sais dos materiais transportados pela água durante a construção ou proveniente de infiltrações depois da execução do revestimento argamassado.

Granato (2013), sugere para solução que para sanar este problema deve-se primeiro descobrir a causa e origens, depois realizar correção através da raspagem do substrato e aplicar uma repintura.

4.3 FISSURAS, TRINCAS E RACHADURAS

Fissuras, trincas e rachaduras estão entre as principais patologias encontradas nas edificações estudadas comportando cerca de 79% dos problemas encontrados nos locais, sendo que todas as residências apresentaram esta manifestação patológica.

4.3.1 Fissuras

As fissuras estavam presentes nas residências 2, 3, 4 e 5. A espessura de fissuras segundo a bibliografia é de até 0,5 mm, na Figura 6 estão ilustradas paredes que apresentaram fissuras.

Descrição do problema por meio da inspeção visual: amostra A consta fissuras no revestimento argamassado próximos à janela da entrada da residência, localizadas em área exposta a intempéries possuindo apenas um beiral como cobertura do local, as fissuras não expandem por toda a parede da fachada, porém constam rachaduras próximas do local.

Amostra B está presente na sacada de um dos quartos no segundo pavimento apresenta uma fissura no revestimento argamassado localizada em uma região exposta a intempéries, com beiral como cobertura, manchas causadas por umidade são visíveis no local.

Amostra C na parede externa faz parte do corredor do local de acesso aos fundos do local, este tipo de fissuras no revestimento argamassado são denominadas de mapeamento, tem uma configuração semelhante a um mapa, fissuras que se conectam e se distribuem de forma irregular. Neste local não há cobertura.

Amostra D na parte interna da residência, canto superior da porta de acesso a um dos quartos, observa-se haver fissura diagonal no revestimento argamassado neste local as paredes se interligam, provavelmente não possui verga pelo sentido da fissura, além disso, trincas e rachaduras são encontradas em outros cômodos ao lado.

Causas prováveis: No caso das amostras A e B a causa pode ser movimentação térmica por expansão e contração do revestimento argamassado; variações térmicas devido a exposição do revestimento argamassado a intempéries, facilitando a causa de expansão e contração do revestimento; falhas na aplicação do revestimento aplicado ou argamassas inapropriadas para as condições do ambiente pode ocorrer a manifestação da fissura; ineficiência ou falta de impermeabilização no local possibilitando a infiltração de água;

Amostra C pode ocorrer por retrações no revestimento argamassado decorrente do maior consumo de cimento na argamassa, potencializando a formação da fissura.

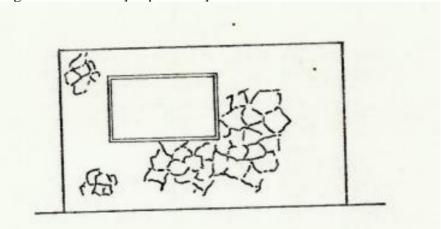
Amostra D pode ocorrer devido às sobrecargas estruturais, ausência de verga sobre a porta, gerando tensões resultantes na fissura.

Soluções sugeridas: para reparo das fissuras das amostras A e B pode-se remover o revestimento argamassado e verificar se não está acontecendo na alvenaria, se estiver até na alvenaria, o local da fissura deve ser grampeado, usar uma argamassa substituindo o chapisco para garantindo que a movimentação não cause danos futuros; impermeabilização nas paredes externas para evitar a infiltração da água.

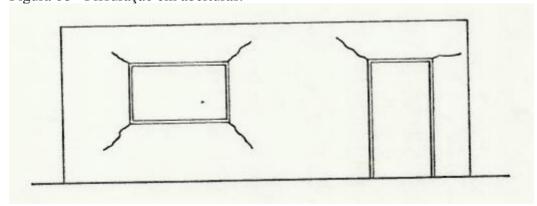
Amostra C deve-se fazer a remoção de todo revestimento argamassado, aplicar novamente e fazer a cura úmida da argamassa para não ocorrer novamente.

Amostra D pode-se fazer recuperações superficiais utilizando bandagens no revestimento ou tela de *nylon* na pintura; introdução de armaduras no trecho fissurado ou por meio de telas metálicas no revestimento.

Fonte: Autor (2024).


A Figura 06, para as amostras A e B, Thomaz (1986), menciona que fissuras por movimentações térmicas geralmente são regularmente distribuídas e com aberturas reduzidas, são aberturas no revestimento argamassado que dependem do módulo de deformação da argamassa, sendo desejável a superação em folga a capacidade de deformação. O autor também menciona que no Brasil nos meses de janeiro e julho apresentam grandes variações térmicas segundo o Serviço Nacional de Meteorologia.

Thomaz (1986), aborda para casos das amostras A, B e C que para solução a substituição da argamassa de revestimento aplicação de telas de *nylon* no local é mais interessante do que a utilização de pinturas, mesmo sendo uma forma de recuperação para casos de fissura em revestimentos argamassados. No caso da amostra C, o aumento do consumo de cimento, com a porcentagem de finos existentes na mistura e o teor de água implica diretamente na retração de revestimento argamassado. O autor comenta que na retração ocorre presença de linhas mapeadas que se cruzam. A Figura 7 ilustra a fissura por retração.


Figura 07 - Fissuração por retração.

Fonte: Thomaz (1986).

Para a amostra D, as fissuras podem acontecer por sobrecargas devido à falha na execução ou no projeto estrutural quando não se prevê uma sobrecarga. As manifestações por sobrecarga podem também acontecer pela dimensão da abertura, dimensão do painel de alvenaria, posição que a abertura ocupa no painel, dimensões e rigidez de vergas e contravergas, entre outros motivos. Fissuras desta configuração podem ser apresentadas na Figura 8.

Figura 08 - Fissuração em aberturas.

Fonte: Thomaz (1986).

Em casos iguais da Figura 8, Thomaz (1986), sugere como solução da amostra D, recuperação superficial utilizando bandagem no revestimento como tela de *nylon*, introdução de armaduras no trecho fissurado ou aplicação de telas metálicas no revestimento.

4.3.2 Trincas

Na Figura 9, nota-se serem trincas presentes nas residências 1, 2, 4 e 5, pois espessura está entre 0,5 e 1,5 mm.

Figura 09 - Trincas.

Descrição por inspeção visual: Amostra A observa-se trincas no revestimento argamassado da alvenaria na cozinha da residência, notou-se que a umidade é visível próxima à trinca, na parte externa da parede não se observou trincas.

Amostra B tem trincas localizadas no canto superior direito da janela da sala, parte interna da residência, trincas que sobem em direção à laje em diagonal, possivelmente no local tem ausência de verga.

Amostra C observam-se trincas internas próximas à janela do quarto da residência, se iniciam próximos ao meio da janela e se estendem na horizontal em direção a outra parede de alvenaria, não possui construções próximas ao local da manifestação patológica.

Amostra D, as trincas estão na parte superior de uma porta, localizada na região externa da residência, observam-se inúmeras trincas em 45 graus a partir do canto da porta, local é exposto às intempéries e não possui cobertura no local.

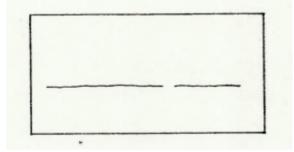
Causas prováveis: Amostra A pode ocorrer através da compressão dos componentes da alvenaria ou da argamassa de assentamento, através da solicitação de sobrecarga uniforme.

Amostra B pode ocorrer por sobrecargas verticais, formam quando aparecem trincas nas aberturas. Amostra C, devido às sobrecargas estruturais, pode gerar tensões resultantes na trinca.

Amostra D pode ocorrer por sobrecargas localizadas por fissuração inclinada a partir de um ponto de aplicação, em função da resistência a compressão dos componentes.

Soluções sugeridas: Amostra A pode ter como reparo aplicação de bandagens de *nylon* ou polipropileno juntamente com aplicação de tinta elástica; aberturas na cavidade e aplicação de selantes flexíveis.

Amostra B pode ter como reparo utilização de telas metálicas no revestimento argamassado ou introdução de armaduras no trecho com trinca.


Amostra C pode-se fazer recuperações superficiais utilizando bandagens no revestimento ou tela de *nylon* na pintura; introdução de armaduras no trecho fissurado ou por meio de telas metálicas no revestimento.

Amostra D pode ter como solução aplicação de selantes flexíveis mediante a aberturas nas trincas; introdução de armaduras no trecho fissurado ou por meio de telas metálicas no revestimento.

Fonte: Autor (2024).

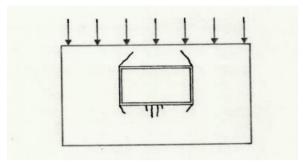
Para a amostra A, Thomaz (1986), aborda que trechos de alvenaria com solicitação de sobrecarga uniformemente distribuídas, pode surgir dois tipos de trincas, sendo a mais semelhante à amostra demonstrada na Figura 10.

Figura 10 - Fissuração por sobrecarga uniforme.

Fonte: Thomaz (1986).

A Figura 10 mostra trincas horizontais, provenientes da ruptura por compressão dos componentes da alvenaria ou da argamassa de assentamento.

Thomaz (1986), apresenta que solução dos elementos trincados deve ter em mente as causas e origens dos problemas, sendo que o reparo em si é o menos importante do conjunto. O autor menciona também que a resolução do problema na amostra A pode ser mediante aplicação de bandagens. Ao serem aplicadas ocorre a absorção da movimentação no local, em caso de movimentações intensas na



trinca recomenda a abertura da cavidade com aproximadamente 20 mm de largura e 10 mm de profundidade aplicando um selante flexível.

A amostra B, pode der interpretada como sobrecargas verticais, Thomaz (1986) aborda que as trincas neste caso se formam através dos vértices de aberturas e sob peitoril, em função de caminhamento das compressões. A Figura 11 demonstra um exemplo de compressão.

Figura 11 - Fissuração por compressão.

Fonte: Thomaz (1986).

Em casos como mostrados na Figura 11, Thomaz (1986), comenta a solução com a utilização de telas metálicas no revestimento argamassado ou introdução de armaduras no trecho da trinca em situações da amostra B podem ser recuperadas superficialmente. No caso da amostra C, a configuração da trinca pode variar em função da influência de uma gama enorme de fatores. Thomaz (1986), sugere para soluções, recuperações superficiais utilizando bandagens no revestimento ou tela de nylon na pintura; introdução de armaduras no trecho fissurado ou por meio de telas metálicas no revestimento.

Para a amostra D onde se encontram inúmeras trincas acima da porta, Thomaz (1986) dispõem que trincas de sobrecargas localizadas, podem provocar a ruptura dos componentes de alvenaria na região do aparecimento das trincas a partir do ponto de aplicação.

Na amostra D, Thomaz (1986) menciona para solução, aplicação de selantes flexíveis mediante a aberturas nas trincas, recomenda a abertura da cavidade com aproximadamente 20 mm de largura e 10 mm de profundidade aplicando um selante flexível. O autor menciona também introdução de armaduras no trecho fissurado ou por meio de telas metálicas no revestimento.

4.3.3 Rachaduras

As rachaduras estavam presentes nas residências 1, 2, 4 e 5, cuja espessura está entre 1,5 e 5 mm, conforme Figura 12.

Figura 12 - Rachadura.

Descrição por inspeção visual: Amostra A ocorre rachaduras na parte interna da residência e se estende da parte inferior da alvenaria até as proximidades da laje, no encontro de duas paredes de alvenarias.

Amostra B está na parte externa da residência rachaduras em 45 graus, que iniciam no canto inferior da janela e se estendem até o canto inferior da alvenaria, local isolado de construções próximas, não possui cobertura no local, apenas algumas vegetações.

Amostra C acontece no quarto de uma residência, as rachaduras são em 45 graus que se iniciam no canto superior da janela e estendem até o canto superior da alvenaria, não possui construções conflitantes no local da manifestação patológica.

Causas prováveis: A amostra A pode ser movimentação térmica por expansão e contração do revestimento argamassado.

As amostras B e C podem ocorrer por meio de recalques diferenciais na fundação resultantes de tensões concentradas.

Soluções sugeridas: Amostra A pode ter como solução inserção de materiais flexíveis no encontra de paredes, e aplicação de telas que proporcionem dessolidarização entre revestimento e parede na região da trinca.

As amostras B e C podem ter como soluções técnicas de consolidação do terreno ou reforço da fundação.

Fonte: Autor (2024).

Para a amostra A Thomaz (1986) menciona casos parecidos relacionados a movimentação térmica, onde trincas por origem térmicas surgem por movimentações diferenciais entre componentes de um elemento, entre os elementos do sistema e entre regiões distintas de um material.

Thomaz (1986) menciona que para solução dos elementos semelhantes à amostra A, os destacamentos entre alvenaria por inserção de materiais flexíveis no encontra de paredes e aplicação de telas que proporcionem dessolidarização entre revestimento e parede na região da trinca.

Em casos de recalques de fundação, como ilustrado nas amostras B e C, Thomaz (1986) discute que para a solução desses elementos deve ocorrer após ocorrer estabilidade da obra, empregando técnicas de consolidação do aterro ou reforços na fundação.

4.4 DESPLACAMENTO DE REVESTIMENTO

O desplacamento do revestimento cerâmico está mostrado na Figura 13, e se apresentou na residência 2.

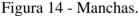
Figura 13 - Desplacamento de revestimento.

Descrição por inspeção visual: No local da imagem trata-se de uma cozinha onde ocorre desplacamento do revestimento cerâmico na proximidade da laje, a argamassa permaneceu aderida à base de alvenaria.

Causas prováveis: pode ocorrer mediante preparação inadequada da base; preparação inadequada do substrato, em traços, aditivos inadequados, falta de cura no substrato, contendo sujeiras ou vencidos; imperícia ou negligência da mão de obra na execução, ou no controle de serviços.

Soluções sugeridas: análise estrutural, reparação na estrutura, proteção contra umidade, uso correto da argamassa e utilização de técnicas apropriadas para aplicação do revestimento.

ENGENHARIA CIVIL


Fonte: Autor (2024).


Conforme as amostras A e B Granato (2013), menciona que o aparecimento de patologias em revestimentos ocorre devido a fatores como: utilização de componentes (argamassa, rejuntes, cimento, cal, etc.) estão em desacordo com as especificações da normalização brasileira; escolhas de materiais inadequados para local e ambiente, ocorrendo falta de coordenação em fase de projeto; durante a produção que envolve controle no recebimento dos materiais, falta de inspeção durante os processos; de acordo também com uso do usuário durante a vida útil do componente e cuidados de manutenção requeridos para o desempenho do conjunto.

Para soluções de problemas relacionados ao desplacamento de revestimentos cerâmicos, a escolha do material deve ser realizada de forma que cumpra as demandas do local, argamassas colantes específicas dependendo o ambiente (interno e externo), limpeza das superfícies, uso de procedimentos adequados na aplicação, como camadas duplas para garantia de aderência (Quartzolit, 2021).

4.5 MANCHAS

As manchas, ilustradas na Figura 14 aconteceram nas residências 1 e 3.

Descrição por inspeção visual: A amostra A apresentou manchas na parede de alvenaria localizada na parte dos fundos da residência, sendo uma área exposta a intempéries, pois não possui cobertura, tampouco construções vizinhas. No topo da parede tem-se presença de rufo para proteção da parte superior da alvenaria, no local é possível visualizar também eflorescências.

Na amostra B aparece manchas no muro de alvenaria que faz divisa com outra residência, local de entrada da residência, não possui construções próximas do muro, ausência de rufo e sinais de escorrimento de água na pintura.

Causas prováveis: Amostra A pode ocorrer por presença de umidade proveniente de infiltração (água de chuva ou condensação) ou impermeabilização inadequada.

Amostra B pode ocorrer por infiltração de água possivelmente devido à ausência de rufo e a exposição direta a intempéries.

Soluções sugeridas: Amostra A pode ter como solução eliminação da infiltração de umidade, impermeabilização das superfícies e reparo da alvenaria caso a mesma esteja afetada.

Amostra B pode ter como solução instalação de rufo na parte superior da alvenaria para não acontecer infiltração da água de chuva, também realizar reparos na pintura utilizando tintas para ambientes expostos à umidade.

Fonte: Autor (2024).

Granato (2013), considera que a umidade em edificações pode ser proveniente da execução da construção até realização da pintura, podendo também ser trazidas por chuvas, oriundas de infiltrações, umidade ascensional, umidade por condensação, e umidade acidental, vazamentos da rede hidráulica. Paredes que tem contato com solo úmido e por condensação em ambientes pouco ventilados.

Para Souza (2024), edificações constantemente estão sujeitas a umidade, quando as alvenarias são realizadas com blocos cerâmicos, por ser um material com elevada absorção capilar.

Fernandes (2018), aborda para solução das manchas, identificação da umidade, correção do local que propaga o problema. Autor comenta em casos de paredes afetadas, remoção do reboco desprendido, execução de um novo utilizando aditivos impermeabilizantes e aplicação de pinturas repelentes a umidade.

4.6 MATRIZ GUT

Para utilização da matriz criou-se uma tabela com a somatória de cada amostra, utilizando como base de cálculo valores exibidos na Figura 15. Para determinar o tipo de risco estabeleceu-se valores para a gravidade, urgência e tendência da manifestação patológica, e fez-se a somatória dos valores e nas faixas de 1 a 7 considerou-se baixo risco, de 8 a 14 riscos moderados e 15 risco grave, ou seja, devem ser realizados reparos imediatos.

Figura 15 - Matriz GUT.

Problema		Gravidade	Urgência	Tendência	G+U+T
Eflorescência	Amostra A	2	1	2	5
Enorescencia	Amostra B	2	1	2	5
Fissura	Amostra A	2	2	3	7
	Amostra B	2	2	2	6
	Amostra C	2	2	2	6
	Amostra D	2	2	3	7
Trinca	Amostra A	2	2	3	7
	Amostra B	2	2	3	7
	Amostra C	2	2	3	7
	Amostra D	3	3	3	9
Rachadura	Amostra A	2	3	3	8
	Amostra B	3	3	3	9
	Amostra D	4	4	4	12
Manchas	Amostra A	2	1	2	5
	Asmotra B	2	1	2	5
Desplacamento de			·		
revestimento	Amostra A	2	1	2	5
cerâmico					

Fonte: Autor (2024).

De acordo com os dados obtidos na Figura 16, trincas e rachaduras são patologias consideradas riscos moderados, possuindo mais riscos do que outras manifestações mencionadas, problemas como fissura, eflorescência e desplacamento de revestimentos cerâmicos possuem graus de baixo risco, onde pode-se aguardar mais para a reparação dos problemas.

5. CONSIDERAÇÕES FINAIS

Neste artigo destacou-se a importância da compreensão e solução das manifestações patológicas em Cascavel, Toledo e Realeza. Utilizando por meio de inspeções visuais e registros fotográficos, além do auxílio de referências bibliográficas possibilitou a identificação de problemas recorrentes, como fissuras, trincas, rachaduras, desplacamento do revestimento cerâmico, eflorescência e manchas. O método GUT foi essencial para classificação quanto a gravidade, urgência e tendencia das manifestações patológicas, que permitem priorizar soluções com base no risco.

As análises indicaram que dentre as manifestações patológicas encontradas, fatores como movimentações térmicas, recalques de fundação, uso inadequado de materiais e execução, possuem grande parcela dentre as patologias encontradas. Conforme a análise realizada durante o levantamento geral das manifestações patológicas encontradas, foi possível identificar que fissuras e rachaduras apresentaram a maior incidência entre as residências, representando 28% dos casos cada uma. Em

seguida, destacam-se as trincas, com 23% de incidência, manchas, com 14%, eflorescência, com 5%, e, por fim, o desplacamento do revestimento cerâmico, com 2% dos casos.

A manutenção preventiva é a melhor maneira de minimizar os impactos das manifestações patológicas, destacando as práticas construtivas de qualidade, escolha de materiais adequados e manutenções, podem ser fundamentais para evitar a ocorrência dos problemas. Este estudo não possibilitou apenas as causas das principais patologias observadas, mas também contribuiu para com o desenvolvimento de soluções práticas e fundamentadas, com suporte teórico e técnico para profissionais da área da construção civil. Com isso se espera que as informações coletadas sejam um auxílio na aplicação das edificações, para que assim forneça segurança, economia e sustentabilidade.

REFERÊNCIAS

ALVES, Jader Rodrigues. **Levantamento das manifestações patológicas em fundações e estruturas nas edificações, com até dez anos de idade, executadas no estado de goiás.** 2009. 133 f. Dissertação (Mestrado) - Curso de Engenharia Civil, Universidade Federal de Goiás, Goiânia, 2009.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. **NBR 9575: Impermeabilização – Seleção e projeto.** Rio de Janeiro: ABNT, 2010.

_____. **NBR 15575-1: Edificações habitacionais – Desempenho Parte 1: Requisitos gerais.** Rio de Janeiro: ABNT, 2013.

CASOTTI, Denis Eduardo. Causas e recuperação de fissuras em alvenaria. 2007. Itatiba – SP, 2007.

DIAS, Ana Paula Lourenço; AMARAL, Ingrid Aparecida Rocha do; AMARANTE, Mayara dos Santos. **Patologias das construções: trincas, fissuras e rachaduras.** 2020. Braz Cubas Centro Universitário, 2020.

DUARTE, Roberto Bastos. **Fissuras em alvenarias: causas principais, medidas preventivas e técnicas de recuperação**. Porto Alegre: CIENTEC, 1998.

FERNADES, Larissa Hellen Alves. **Fissuras, trincas e rachaduras em prédios da UFERSA CAMPUS ANGICOS – Estudo de caso**. 2022. Universidade Federal Rural Do Semi-Árido, 2022.

FERNANDES, Lucas Alberto. Patologias originadas pela umidade em edificações e seus tratamentos. TCC (Graduação)-Curso de Bacharelado em Engenharia Civil-UNICESUMAR-Centro Universitário De Maringá, Maringá, 2018.

FERREIRA, Angélica Rodrigues; OLIVEIRA, Ricardo Fonseca De. **Patologias na construção civil: Estudo de caso em duas residências na cidade de Iraí de Minas – MG**. 2021. GETEC, v.10, n.26, p.1-16/2021.

FREIRE, A. (2010). **Patologia nas edificações públicas do estado do Paraná: estudo de caso da unidade escolar padrão 023 da superintendência de desenvolvimento escolar SUDE**. Universidade Federal do Paraná. Curitiba.

GONZALES, Fabio Dias; OLIVEIRA, Daniel Lameiras de; AMARANTE, Mayara do Santos. **Patologias na construção civil.** 2020. Braz Cubas Centro Universitário, 2020.

GRANATO, A. P. M. B. Procedimentos para a antecipação dos problemas comuns, com soluções e dicas para a manutenção e recuperação dos edifícios. São Paulo, 2013.

HELENE, Paulo R.L; PEREIRA, F. Manual de reabilitação de Estruturas de Concreto—Reparo, Reforço e Proteção. São Paulo: Red Rehabilitar, editores, 2003.

LUDUVICO, Thesse Souza. **Desempenho a estanqueidade à água: interface janela e parede**. Dissertação de Mestrado, Universidade Federal de Santa Maria, Santa Maria, 2016. Disponível em: https://repositorio.ufsm.br/handle/1/7928. Acesso em: 30.04.2024.

MAGALHÃES, Ernani Freitas de. **Fissuras em alvenarias: configurações típicas e levantamento de incidências no estado do Rio Grande do Sul**. 2004. Porto Alegre - RS, 2004.

MIRA, Hueriton Assunção de; BOERI, Jenifer Ribeiro; FUENTES, Luan Vinícius Santos; BUENO, Maria Elaine; BOERI, Silas Daniel do Nascimento. **Manifestações patológicas causadas pela infiltração na construção civil, estudo de caso.** Centro Universitário UNA. (2022).

MELO, Felipe Pereira; MARQUES, Gustavo de Souza. **Patologia em estruturas de concreto armado: um estudo de caso para sanar um problema em uma indústria alimentícia.** Centro Universitário do Sul de Minas, (s.d.).

OLIVEIRA, Daniel Ferreira. **Levantamento de causas de patologias na construção civil.** 2013. Universidade Federal do Rio de Janeiro, 2013.

Oliveira, Alexandre Magno de; **Fissuras, trincas e rachaduras causadas por recalque diferencial de fundações.** Universidade Federal de Minas Gerais, Belo Horizonte, 2012.

PINHEIRO, Érika Cristina Nogueira Marques. **Manifestações patológicas: Fissuras em estrutura de concreto armado e alvenaria estrutural, estudo de caso em duas obras unifamiliares.** 2021. Curitiba – PR, 2021.

PAGANIN, Ricardo. Estudo de caso: levantamento das manifestações patológicas aparentes existentes em uma universidade de Cascavel - Pr. 2014. Trabalho de Conclusão de Curso (Curso de Engenharia Civil) - Faculdade Assis Gurgacz, Cascavel - PR, 2014.

PEZZATO, Leila Maria. **Patologias no sistema de revestimento cerâmico: um estudo de caso em fachadas**. 2010. Tese de Doutorado. Universidade de São Paulo.

POSSAN, E; DEMOLINER, C. A. **Desempenho, durabilidade e vida útil das edificações: abordagem geral.** 2012. Artigo científico. Universidade Federal da Integração Latino Americana. QUARTZOLIT. **Desplacamento de revestimento: o que causa e como evitar?.** Disponível em: https://www.quartzolit.weber. Acesso em: 05 nov. 2024.

SANTANA, Lucas dos Santos. **Patologias na construção civil devido a umidade - Revisão de literatura**. Disponível em: . Acesso em 30.04.2024.

SOTILLE, M. A. A ferramenta GUT – Gravidade, Urgência e Tendência. PM Tech Capacitação em projetos, 2014.

SOUZA, Alessandra Alcântara de. **Identificação das causas de patologia de eflorescências em edificações de São Vicente do Seridó-PB**. 2024. Trabalho de Conclusão de Curso.

THOMAZ, Ercio. **Trincas em Edifícios: causas, prevenção e recuperação**. São Paulo: Pini, EPUSP, IPT, 2020.

THOMAZ, Ercio. Trincas em Edifícios: causas, prevenção e recuperação. 1986. São Paulo – SP, 1986.

UEMOTO, K. L. Patologia: **Danos causados por eflorescência**. Tecnologia de Edificações, São Paulo. Pini, IPT – Instituto de Pesquisas Tecnológicas do Estado de São Paulo, Coletânea de trabalhos da Div. de Edificações do IPT. 1988. p.561-64.