SENECAVIRUS A NO PARANÁ: DISTRIBUIÇÃO ESPACIAL, FATORES DE RISCO E IMPACTOS NA SUINOCULTURA

ALVES, Laura Beatriz¹ MODESTO JÚNIOR, João ² MADUREIRA, Eduardo Miguel Prata³

RESUMO: O Senecavirus A (SVA) representa um dos principais desafios sanitários emergentes da suinocultura moderna, devido ao seu potencial de causar doenças vesiculares clinicamente indistinguíveis da febre aftosa, com relevantes implicações econômicas e comerciais. Este estudo, com base em registros oficiais da Agência de Defesa Agropecuária do Paraná (ADAPAR), analisou o período de 2021 a julho de 2025, avaliando a influência de variáveis climáticas, geográficas e produtivas sobre a ocorrência de casos de SVA na suinocultura paranaense, segundo principal polo produtor e exportador de carne suína do Brasil. Os resultados evidenciaram maior concentração de casos na região Oeste do estado, embora registros esporádicos também tenham sido observados em outras regiões. Verificou-se correlação positiva e significativa entre temperatura média e número de casos, indicando que condições térmicas mais elevadas favorecem a ocorrência do vírus. Observou-se ainda predomínio de casos nos meses mais quentes e úmidos, reforçando a influência das condições ambientais sobre a dinâmica de ocorrência do SVA. As evidências destacam a necessidade de fortalecer a vigilância epidemiológica e as práticas de biosseguridade, especialmente aos períodos de maior risco, além de incentivar estudos adicionais que subsidiem estratégias eficazes de mitigação e controle da enfermidade.

PALAVRAS-CHAVE: senecavirus vales. doenças vesiculares. sazonalidade. epidemiologia. biosseguridade.

1. INTRODUÇÃO

A suinocultura é uma das atividades mais relevantes do agronegócio brasileiro, desempenhando papel estratégico na geração de renda, emprego e divisas. No estado do Paraná, essa cadeia produtiva assume destaque expressivo, consolidando-se como um dos principais polos produtores do país e contribuindo de forma decisiva para o abastecimento interno e para as exportações nacionais de proteína animal (ABPA, 2025; IDR-PR, 2025).

Entre janeiro e junho de 2025, o Paraná registrou o melhor semestre de exportações de carne suína de sua história, com 110,7 mil toneladas (t) embarcadas, conforme dados da plataforma Comex Stat/MDIC (2025), série histórica desde 1997. Esse volume representa um aumento de 39,4% (31,3 mil t) em relação ao mesmo período de 2024 e supera em 6,1% (6,4 mil t) o recorde do segundo semestre de 2024, consolidando o estado como ator chave no comércio agropecuário brasileiro (DERAL, 2025).

Essa performance reflete o crescimento contínuo do setor suinícola paranaense, após retração entre 2018 e 2019. O abate de suínos evoluiu de 9,3 milhões de cabeças em 2018 para 12,4 milhões em 2024, um incremento de 34% (GOVERNO DO ESTADO DO PARANÁ, 2025). Em 2025, a

¹ Aluna do curso de Medicina Veterinária do Centro Universitário FAG. E-mail: lbalves4@minha.fag.edu.br

² Fiscal de Defesa Agropecuária. Agência de Defesa Agropecuária do Paraná. E-mail: joaomodesto@adapar.pr.gov.br

³ Mestre em Desenvolvimento Regional de Agronegócio. Professor do Centro Universitário FAG. E-mail: eduardo@fag.edu.br

tendência se intensificou: no primeiro trimestre, houve acréscimo de 32,5 mil animais abatidos versus 2024, correspondendo a 21,9% da produção nacional de suínos. No segundo trimestre, o estado atingiu 3,25 milhões de suínos abatidos, o maior volume trimestral registrado (IBGE, 2025).

Paralelamente ao crescimento produtivo, surgem desafios sanitários que podem comprometer a eficiência das granjas e gerar impactos econômicos significativos. Entre eles, destaca-se o Senecavirus A (SVA), vírus emergente que causa doença vesicular em suínos, cujos sinais clínicos são indistinguíveis de outras doenças vesiculares de notificação obrigatória, como a febre aftosa (WU et al., 2022). Dessa forma, o monitoramento sistemático torna-se imprescindível, uma vez que a simples detecção do agente pode implicar restrições comerciais, interdições sanitárias e, consequentemente, elevação dos riscos econômicos para o setor produtivo (ROVID; MENDES, 2019).

Os primeiros relatos da doença vesicular associada ao Senecavirus A (SVA) no Brasil ocorreram entre 2014 e 2015, afetando diversos estados: Minas Gerais, Goiás, São Paulo, Mato Grosso, Mato Grosso do Sul, Rio Grande do Sul e Santa Catarina (RIBEIRO, 2024). No segundo semestre de 2018, novos surtos foram registrados em rebanhos suínos das regiões Sul (Rio Grande do Sul, Santa Catarina e Paraná), Sudeste (São Paulo e Minas Gerais) e Centro-Oeste (Mato Grosso e Goiás), principalmente em animais na fase de terminação (ROCHA, 2022). Posteriormente, em maio de 2020, ocorreu uma terceira onda de casos, com registros da enfermidade em diferentes categorias de suínos nos estados do Paraná e Santa Catarina (VIEIRA *et al.*, 2022).

Diante desse cenário, este estudo busca responder à seguinte questão de pesquisa: qual é a distribuição do Senecavirus A no estado do Paraná e quais fatores de risco estão associados à sua disseminação na suinocultura?

Compreender a dinâmica temporal e espacial da doença, bem como os fatores que favorecem sua propagação, é essencial para subsidiar estratégias de biosseguridade adaptadas à realidade local, capazes de reduzir riscos sanitários e minimizar perdas econômicas.

O objetivo central deste estudo é analisar a distribuição espacial, os fatores de risco e os impactos do vírus na suinocultura paranaense, com base nas notificações registradas no sistema e-Sisbravet (Sistema Brasileiro de Vigilância e Emergências Veterinárias), disponibilizadas pela Agência de Defesa Agropecuária do Paraná (ADAPAR). A análise observacional, descritiva e analítica, com abordagem quantitativa permitirá compreender os padrões de circulação do agente, subsidiar protocolos de biosseguridade mais eficazes e fornecer suporte à tomada de decisões voltadas à sustentabilidade sanitária e econômica do setor.

2. FUNDAMENTAÇÃO TEÓRICA

2.1 PRODUÇÃO SUINÍCOLA BRASILEIRA

A suinocultura brasileira constitui uma atividade agropecuária estratégica, que contribui de forma significativa para o crescimento do Produto Interno Bruto (PIB) e se adapta continuamente às demandas dos mercados interno e externo. Esse processo de modernização envolve a aplicação de tecnologias avançadas em genética, nutrição e manejo animal, promovendo ganhos expressivos na produtividade e na qualidade da carne suína (VIANA *et al.*, 2025).

Segundo Santos (2025), o Brasil ocupa a quarta posição mundial na produção de carne suína, ficando atrás apenas da China, União Europeia e Estados Unidos. Em 2024, a produção nacional alcançou 5,3 milhões de toneladas, com um Valor Bruto de Produção (VBP) estimado em R\$ 56,2 bilhões. Desse total, 74,5% foram destinados ao mercado interno, com consumo médio de 18,6 kg per capita, enquanto 25,5% foram exportados para 94 países (ABPA, 2025).

O desempenho do setor suinícola brasileiro é resultado de investimentos contínuos na cadeia produtiva, da crescente profissionalização dos produtores, da competitividade nos custos e da adequação da oferta às exigências dos mercados interno e externo (SOUZA et al., 2022). O Brasil, como um dos principais exportadores de carne suína no cenário global, necessita manter elevados padrões de qualidade e investir em tecnologias avançadas para assegurar sua competitividade, especialmente diante dos desafios sanitários representados por enfermidades como o SVA. Esse patógeno impacta diretamente a suinocultura e, em casos de suspeita de síndrome vesicular, as granjas são submetidas a restrições na movimentação animal, o que acarreta elevação dos custos e desvalorização dos lotes afetados (SOUZA et al., 2022; GIRARDELLO, 2024).

2.2 O VÍRUS

O Senecavirus A (SVA) pertence à família *Picornaviridae* e ao gênero *Senecavirus*. Trata-se de um vírus sem envelope, composto por um genoma de RNA de fita simples e polaridade positiva, com aproximadamente 7.300 nucleotídeos, e envolto por um capsídeo de simetria icosaédrica (PORTILHA, 2023).

A infecção causada pelo patógeno pode ser confundida com outras enfermidades vesiculares que acometem os suínos, como a estomatite vesicular, a doença vesicular suína e o exantema vesicular suíno, sendo que as duas últimas são exóticas no Brasil, conforme o Manual de Investigação de Doença Vesicular do Ministério da Agricultura (BRASIL, 2020).

Dentre essas enfermidades, destaca-se a febre aftosa, de notificação obrigatória e alto impacto econômico, segundo a Organização Mundial de Saúde Animal (OMSA) (2025). A semelhança clínica

entre o SVA e a febre aftosa impõe a necessidade de investigação laboratorial obrigatória, o que pode gerar suspensão temporária de exportações e perdas financeiras (RIEGER, 2022).

2.3 TRANSMISSÃO

A transmissão principal do vírus em suínos ocorre via contato direto entre infectados e suscetíveis, o que é corroborado pela elevada carga viral presente em amostras de fluido vesicular (SILVA *et al.*, 2023). Embora a fase clínica da doença seja resolvida de forma rápida, a excreção viral pode prolongar-se por até 28 dias, permitindo a detecção de partículas infecciosas em secreções nasais (até 7 dias), fezes (até 14 dias) e orais (até 21 dias); ademais, relatos de infecções persistentes em certos animais enfatizam a necessidade de considerar esse fator para mitigar riscos de propagação (RIBEIRO, 2024)

2.4 SINAIS CLÍNICOS

Nos suínos em fase de terminação, o SVA provoca anorexia, letargia e claudicação, acompanhadas pela formação de vesículas no focinho, cavidade oral e bandas coronárias. Também podem ocorrer lesões ulcerativas no sulco coronário, na parede do casco e no coxim plantar (MELLO, 2023).

As vesículas, com diâmetro de 0,5 a 3 cm, surgem cerca de quatro dias após a infecção e evoluem para erosões que cicatrizam em 12 a 16 dias (GIRARDELLO, 2024). Casos leves apresentam apenas eritema cutâneo que desaparece espontaneamente em 2 a 4 dias.

A febre não é uma manifestação típica. A morbidade pode atingir até 30% em suínos de terminação, enquanto a mortalidade geralmente permanece entre 0,2% e 0,5% (GIRARDELLO, 2024).

2.5 DIAGNÓSTICO

O diagnóstico da doença vesicular causada pelo SVA é realizado principalmente por RT-PCR, utilizando amostras como tecido epitelial de lesões vesiculares, fluido vesicular, swabs orais e de lesões na banda coronária de suínos afetados (ZANELLA, 2021).

Complementando o RT-PCR, o isolamento viral do SVA é viável, segundo a ABCS (2021), detectando o vírus na saliva até 21 dias pós-infecção, fezes até 10 dias, transição nasal até 7 dias e urina, via cultivo celular. Outros testes incluem ELISA de competição, RT-PCR convencional e em

tempo real (RT-qPCR) além de sequenciamento genômico completo ou do gene VP1 para identificação de estirpes.

Como se trata de uma doença de notificação obrigatória (síndrome vesicular). O diagnóstico laboratorial de caso provável de doença vesicular deve ser oficial e o material biológico deve, obrigatoriamente, ser processado no Laboratório Federal de Defesa Agropecuária em Minas Gerais - LFDA-MG. (BRASIL, 2025).

2.6 PREVENÇÃO

Atualmente, existem vacinas, tanto comerciais quanto experimentais, que vêm sendo utilizadas na prevenção da doença (SANTOS, 2023). No entanto, as medidas de manejo sanitário permanecem essenciais, devendo abranger ações de controle e profilaxia voltadas aos animais, ao ambiente e à estrutura das granjas, com o objetivo de evitar tanto a introdução quanto a disseminação do vírus nos rebanhos (LEME, 2017). Segundo Ribeiro (2024), as medidas preventivas contra o agente correspondem às práticas gerais de biosseguridade adotadas nas granjas, como o controle de acesso de veículos, pessoas, alimentos, animais e equipamentos.

Em granjas onde o SVA já é um problema, é indicado que sejam seguidos rígidos protocolos de limpeza e desinfecção das instalações e equipamentos, com a utilização dos desinfetantes apropriados na diluição e tempo adequados, além da adoção do sistema *all in/all out*, respeitando o tempo estimado de vazio sanitário (ROCHA, 2022).

Diversos compostos foram testados contra o SVA, como hidróxido e carbonato de sódio, ácido cítrico (0,2%), aldeídos e agentes oxidantes, incluindo hipoclorito de sódio. Estudos avaliaram desinfetantes à base de água sanitária, fenóis e quaternário de amônio com aldeído em diferentes superfícies (cimento, borracha, plástico, aço inoxidável e alumínio) e temperaturas (4 °C e 25 °C). A água sanitária diluída (1:20, 5,25% de hipoclorito de sódio) foi eficaz na inativação do vírus em todas as situações, enquanto o desinfetante fenólico foi ineficaz e o composto com quaternário de amônio e aldeído apresentou efeito intermediário (LEEDOM; LAMBERT; KILLORAN, 2017).

3. MATERIAL E MÉTODOS

O presente estudo caracteriza-se como epidemiológico observacional, descritivo e analítico, com abordagem quantitativa, desenvolvido a partir de registros da Agência de Defesa Agropecuária do Paraná (ADAPAR) referentes às notificações, casos confirmados e localização das ocorrências de Senecavirus A (SVA) no estado do Paraná.

Os dados foram obtidos a partir dos relatórios anuais do e-Sisbravet (Sistema Brasileiro de Vigilância e Emergências Veterinárias), contemplando os atendimentos a notificações de suspeita de síndrome vesicular entre 2020 e julho de 2025. As notificações seguiram os critérios estabelecidos pelo Serviço Veterinário Oficial (SVO) para atendimento in loco, incluindo também os casos descartados por ausência de sinais clínicos compatíveis com síndrome vesicular, inexistência de animais susceptíveis ou identificação de agravos não infecciosos.Nos casos em que a suspeita foi confirmada pelo SVO, procedeu-se à interdição da propriedade e à coleta de amostras clínicas. Todas as amostras coletadas foram inicialmente testadas para febre aftosa, sendo o diagnóstico diferencial para o patógeno realizado apenas quando o material incluía amostras de lesões vesiculares. Quando o envio se restringia a amostras de soro, o teste para SVA não foi conduzido. Dessa forma, o conjunto de dados analisado compreendeu as amostras negativas para febre aftosa que foram subsequentemente testadas para SVA.

Para a análise estatística, foram considerados os 10 municípios com maior densidade de suínos do estado do Paraná, contemplando os casos registrados entre os anos de 2023 e 2024. Essa delimitação visou concentrar a análise nas regiões com maior potencial de disseminação do vírus, permitindo uma avaliação mais sensível da influência dos fatores ambientais e populacionais sobre a ocorrência de casos positivos.

As análises estatísticas foram realizadas no software Jamovi® versão 2.6 (The Jamovi Project, 2024), com base na linguagem R (R Core Team, 2024). Inicialmente, foi conduzida uma análise descritiva das variáveis, com cálculo de médias, desvios-padrão e valores extremos.

A normalidade dos dados foi verificada pelo teste de Shapiro–Wilk e a homogeneidade das variâncias pelo teste de Levene. Diante da não normalidade das variáveis (p < 0,05), aplicaram-se testes não paramétricos quando necessário. Nos modelos paramétricos (ANOVA e regressão linear), os resíduos apresentaram distribuição aproximadamente normal e variância homogênea, permitindo sua utilização.

A correlação entre temperatura média, precipitação acumulada e número de casos positivos foi avaliada pelo coeficiente de Spearman (ρ). Para examinar a influência conjunta das variáveis climáticas e sazonais, ajustaram-se modelos de regressão linear múltipla, considerando o número de casos positivos como variável dependente.

Também foi avaliada a adequação de modelos de contagem (Poisson), confirmando a robustez dos resultados lineares, com resíduos aleatórios e ausência de autocorrelação segundo o teste de Durbin–Watson.

As diferenças entre meses e estações do ano foram testadas por ANOVA de um fator, seguida do teste de Tukey, adotando-se nível de significância de 5% (α = 0,05).

A análise concentrou-se nos dez municípios com maior densidade suína do estado, representando as áreas de maior risco sanitário. Reconhece-se, contudo, que o tamanho amostral reduzido pode limitar a potência estatística, recomendando-se a ampliação futura da série temporal e do número de municípios para aprimorar a robustez dos resultados.

Por fim, trata-se de um estudo retrospectivo, baseado em dados secundários de domínio público, não foi necessária a submissão ao Comitê de Ética em Experimentação Animal (CEEA), conforme estabelece a Resolução nº 1.236/2018 do Conselho Federal de Medicina Veterinária (CFMV). Todos os dados foram analisados de forma agregada e anônima, sem identificação de propriedades ou produtores, assegurando o sigilo das informações e o cumprimento da Lei nº 12.527/2011 (Lei de Acesso à Informação).

4. ANÁLISES E DISCUSSÃO DOS RESULTADOS

4.1 PERFIL DAS NOTIFICAÇÕES E TESTAGENS

Com base nos dados coletados, é possível perceber através da Tabela 1 que a proporção de amostras positivas aumentou progressivamente: 53,4% em 2021 (70/131), 63,4% em 2022 (342/539), 77,6% em 2023 (97/125), 71,3% em 2024 (247/346) e 92% em 2025 (138/150). Esse crescimento pode refletir tanto uma maior eficiência na triagem e coleta das amostras quanto uma intensificação da circulação viral no estado nos últimos anos.

Tabela 1 – Número de notificações de doenças vesiculares e amostras coletadas para análise pelo Serviço Veterinário Oficial (SVO) do Paraná, no an<u>o de 2021 a 2025.</u>

	2021	2022	2023	2024	2025
Parâmetro	Total	Total	Total	Total	Total
Notificações de acordo com os critérios do SVO	885	1051	412	951	539
Descartadas pelo SVO	567	628	213	506	257
Caracterizada suspeita - coleta de amostras	318	1087	199	445	282
Amostras testadas para Senecavirus A	131	539	125	346	150
Amostras positivas para Senecavirus A	70	342	97	247	138
Amostras negativas para Senecavirus A	61	197	28	99	12

Fonte: ADAPAR (2025), organizado pelos autores.

Entre 2021 e julho de 2025, o número de notificações de doenças vesiculares no Paraná apresentou variação expressiva, com o maior registro em 2022 (1.715 notificações), seguido por 2024 (952), 2021 (885) e 2023 (412). Em 2025, até o mês de julho, foram contabilizadas 539 notificações.

Observa-se que a distribuição espacial desses registros se concentra predominantemente na mesorregião Oeste do Paraná, região de alta densidade suinícola e principal polo produtivo do estado (RAMOS *et al.*, 2023). Essa concentração sugere uma associação entre intensidade produtiva e ocorrência de notificações, corroborando o padrão descrito também no Oeste Catarinense, que compartilha características produtivas semelhantes (DEDSA, 2020).

4.2 VARIAÇÃO MENSAL E SAZONALIDADE

A Tabela 2 apresenta a distribuição mensal das notificações de casos de Senecavirus A no estado do Paraná entre os anos de 2021 e julho de 2025. Observa-se a variação no número de notificações ao longo dos meses e dos anos, evidenciando possíveis padrões sazonais e flutuações na incidência da doença no período analisado.

Tabela 2 – Evolução das notificações de SVA no estado do Paraná entre os anos de 2021 e julho de 2025.

Mês	2021	2022	2023	2024	2025
Janeiro	69	57	54	90	148
Fevereiro	46	97	29	86	101
Março	102	230	22	64	91
Abril	88	220	32	82	71
Maio	83	137	52	58	57
Junho	122	109	24	81	41
Julho	84	53	29	56	30
Agosto	54	52	26	50	
Setembro	60	21	22	70	
Outubro	39	20	34	85	
Novembro	72	23	39	129	
Dezembro	66	32	49	100	
Total	885	1051	412	951	539

Fonte: ADAPAR (2025), organizado pelos autores.

Entre 2021 e julho de 2025, foram registradas 3.838 notificações de Senecavirus A (SVA) no Paraná. O maior número ocorreu em 2022 (1.051 notificações), seguido de 2024 (951), 2021 (885), 2025 (539 até julho) e 2023 (412). Em quase todos os anos, verificou-se concentração nos primeiros e últimos meses, com picos em janeiro de 2023 (54) e novembro de 2024 (129). Os meses de menor ocorrência variaram conforme o ano, mas em geral se concentraram entre agosto e setembro, quando os registros foram mais baixos, como setembro de 2023 (22) e agosto de 2024 (50).

Esse comportamento evidencia sazonalidade marcada, com maior frequência de notificações entre o verão e o início do outono (dezembro a maio), período em que o Oeste do Paraná apresenta temperaturas médias superiores a 22 °C e elevados índices de precipitação (IDR-PARANÁ, 2022), condições que podem favorecer a persistência e disseminação viral.

A Tabela 3 demonstra a quantidade mensal de casos confirmados. A análise dos dados permite identificar tendências temporais e variações na positividade dos casos ao longo dos anos, contribuindo para a compreensão da dinâmica epidemiológica da infecção.

Tabela 3 - Registros anuais de casos confirmados de SVA no estado do Paraná entre 2021 e julho de 2025.

Mês	2021	2022	2023	2024	2025
Janeiro	0	28	9	29	29
Fevereiro	0	59	7	23	33
Março	6	75	8	12	30
Abril	3	58	11	30	20
Maio	5	59	11	22	13
Junho	2	23	2	14	8
Julho	1	6	1	10	5
Agosto	1	9	1	0	
Setembro	2	2	6	7	
Outubro	5	5	13	22	
Novembro	25	4	12	59	
Dezembro	20	14	16	19	
Total	70	342	97	247	138

Fonte: ADAPAR (2025), organizado pelos autores

No total, foram confirmados 894 casos positivos de Senecavirus A. O ano de 2022 apresentou o maior número (342 casos), seguido por 2024 (247), 2025 (138 até julho), 2023 (97) e 2021 (70). O de dezembro de 2023 (16) e novembro de 2024 (59 casos) destacaram-se pelos maiores índices julho (2023 e 2024) registrou 11 casos e agosto dos mesmos anos apenas 1. Observa-se um padrão recorrente de elevação nos primeiros meses do ano, indicando períodos de maior circulação viral e coincidindo com os meses de clima mais quente e úmido.

De acordo com Kikuti *et al.* (2024), a combinação de calor e umidade observada nos meses de maior ocorrência pode favorecer tanto a persistência ambiental do vírus quanto a maior atividade de vetores biológicos potenciais, como mosquitos e outros insetos hematófagos. Esses vetores, cuja abundância tende a aumentar nas estações chuvosas especialmente da primavera ao outono, podem contribuir para a disseminação viral, ainda que seu papel na transmissão do SVA demande investigações adicionais.

De modo geral, o clima subtropical úmido característico do Paraná, com verões quentes, poucas geadas e precipitação anual entre 1.500 e 2.500 mm, parece exercer influência direta sobre o padrão epidemiológico observado, reforçando a hipótese de associação entre variáveis climáticas e ocorrência do SVA (INSTITUTO ÁGUA E TERRA, 2020).

4.3 DISTRIBUIÇÃO ESPACIAL E DENSIDADE DE REBANHOS

A Tabela 4 apresenta a distribuição temporal e espacial dos casos positivos para SVA na região Oeste do Paraná, principal polo da suinocultura estadual. Observa-se a formação de um aglomerado espacial concentrado nos municípios de Toledo, Santa Helena, Missal, Nova Santa Rosa e Medianeira, que registraram notificações recorrentes ao longo de todo o período analisado.

Em Toledo, os casos aumentaram expressivamente de 23 em 2021 para 129 em 2022, mantendo valores elevados nos anos subsequentes. Missal e Santa Helena apresentaram comportamento semelhante, com picos acentuados em 2024 e 2025, enquanto Nova Santa Rosa manteve uma circulação contínua do vírus ao longo da série histórica.

Tabela 4 - Casos positivos para Senecavirus A por município do estado do Paraná de 2021 a 2025.

Casos de Senecavirus A		1			
Cidades	2021	2022	2023	2024	2025
Toledo	23	129	20	39	14
Santa Helena	12	36	13	40	21
Missal	5	12	7	49	43
Nova Santa Rosa	8	13	34	34	11
Medianeira	12	27	0	15	19
Maripá	4	3	14	19	5
Marechal Cândido Rondon	2	35	0	3	2
Itaipulândia	2	12	1	10	8
São Miguel do Iguaçu	0	7	2	17	5
Entre Rios do Oeste	0	17	0	0	0
Pato Bragado	0	10	0	0	0
Matelândia	0	1	0	6	2
Ouro Verde do Oeste	1	5	1	1	1
Serranópolis do Iguaçu	0	7	0	1	0
Palotina	0	1	1	5	1
Quatro Pontes	0	7	0	0	0
Ramilândia	0	0	0	3	4
Terra Roxa	0	0	3	1	2
Catanduvas	0	4	1	0	0
Três Barras do Paraná	1	3	0	0	0
Cascavel	0	3	0	1	0

Capitão Leônidas Marques	0	2	0	0	0
Guaraniaçu	0	2	0	0	0
Mercedes	0	2	0	0	0
Capanema	0	1	0	0	0
Céu Azul	0	1	0	0	0
Diamante D'oeste	0	0	0	1	0
Tibagi	0	0	0	1	0
Vera Cruz do Oeste	0	13	0	0	0
Total	70	341	97	247	138

Fonte: ADAPAR (2025), organizado pelos autores.

De acordo com dados da Pesquisa Pecuária Municipal do IBGE, os municípios analisados estão entre aqueles com maior densidade de rebanhos suínos do estado do Paraná. Em consonância com Ran (2023), essa elevada população de suínos pode favorecer a disseminação do SVA, impactando negativamente os níveis de sanidade dos rebanhos. No contexto paranaense, a maioria dos produtores opera por meio de integradas ou cooperativas, que se concentram em regiões com rebanhos densamente distribuídos (DERAL, 2024).

Tal aglomeração espacial, associada a alta densidade de suínos, propicia a circulação e a persistência do vírus, justificando a maior incidência de casos positivos nessas localidades.

4.4 DIMÂNICA TEMPORAL

O Gráfico 1 apresenta a distribuição dos casos confirmados de SVA no estado do Paraná, entre 2021 e julho de 2025. Os dados, provenientes dos registros oficiais da ADAPAR, possibilitam visualizar a variação temporal da enfermidade e identificar padrões sazonais que caracterizam sua ocorrência ao longo do período analisado.

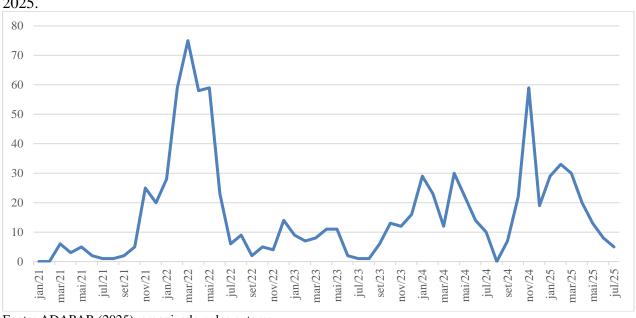


Gráfico 1 - Distribuição mensal dos casos confirmados de SVA no estado do Paraná, até julho de 2025.

Fonte: ADAPAR (2025), organizado pelos autores.

A análise do gráfico indica maiores incidências de casos positivos de SVA durante o verão e início do outono, associadas a condições climáticas quentes e úmidas que favorecem a disseminação viral, com picos críticos em março, abril e maio de 2022, e novembro de 2024. Em contrapartida, nota-se uma redução expressiva no inverno (junho a agosto), o que reforça a hipótese de que a menor umidade e as temperaturas mais baixas possam diminuir a propagação do vírus.

4.5 ANÁLISE ESTATÍSTICA

A análise estatística considerou os casos positivos de SVA registrados no estado do Paraná, avaliando variáveis climáticas (temperatura média e precipitação), bem como a distribuição temporal mensal e sazonal.

O teste de Shapiro–Wilk (p < 0,001) revelou ausência de normalidade nas variáveis, justificando o uso de métodos não paramétricos, como o coeficiente de correlação de Spearman (ρ). A matriz de correlação revelou associação positiva e significativa entre temperatura média e número de casos positivos (ρ = 0,173; p = 0,017), sugerindo que o aumento da temperatura favorece a ocorrência de infecções por SVA.

Em contrapartida, a precipitação não apresentou correlação significativa com os casos (ρ = 0,065; p = 0,371), indicando que a umidade isoladamente não explica a variação dos registros. Observou-se ainda correlação significativa entre temperatura e precipitação (ρ = 0,436; p < 0,001),

demonstrando que meses mais quentes tendem também a ser mais úmidos, o que pode favorecer indiretamente a sobrevivência viral, contudo sem efeito estatístico direto sobre os casos positivos.

As infecções por SVA foram mais frequentes na primavera e no outono, sugerindo maior capacidade de sobrevivência do vírus em ambientes quentes e com baixa umidade (RAN, 2023). Dados de Hoffman *et al.*, (2022) corroboram essa tendência, mostrando que a incidência de SVA nos Estados Unidos é mais elevada durante o verão, enquanto outros patógenos suínos respiratórios apresentam maior ocorrência nos meses mais frios do outono e inverno. Esses achados indicam que, embora o SVA apresente caráter esporádico, fatores climáticos e sazonais podem influenciar parcialmente sua ocorrência, indicando a importância de considerar temperatura e estação do ano na interpretação dos casos observados.

A ANOVA de um fator não identificou diferenças significativas no número de casos entre os meses (F = 1,30; p = 0,229) nem entre as estações do ano (F = 0,464; p = 0,708). Ainda assim, notouse leve aumento nas médias durante o verão e a primavera, sugerindo tendência não significativa de maior ocorrência em períodos mais quentes. Essa ausência de padrão sazonal definido difere de doenças virais suínas clássicas, como a influenza, o que pode reforçar o caráter esporádico e multifatorial do SVA.

No primeiro modelo de regressão linear múltipla, incluindo temperatura média, precipitação e estação do ano, observou-se coeficiente de determinação modesto (R = 0,221; R² = 0,0489), indicando que apenas 4,9% da variabilidade dos casos foi explicada pelas variáveis incluídas.

A temperatura média foi o único preditor significativo ($\beta = 0.0576$; p = 0.008), com efeito positivo sobre a ocorrência de casos. A precipitação não apresentou significância (p = 0.897), e apenas a primavera diferiu do verão (p = 0.039), indicando discreto aumento de casos nesse período.

Com a inclusão da variável "número de notificações", o modelo apresentou melhor ajuste ($R^2 = 0.182$), explicando 18,2% da variabilidade total. Nesse caso, o número de notificações foi o único preditor estatisticamente significativo ($\beta = 0.0765$; p < 0.001), indicando que o aumento da vigilância epidemiológica está diretamente associado à maior detecção de casos.

Entre os meses, apenas novembro apresentou diferença significativa em relação a janeiro (p = 0,004), com leve aumento de registros ao final da primavera.

Os diagnósticos do modelo (Durbin–Watson = 1,98; VIF < 1,5) confirmaram ausência de autocorrelação e multicolinearidade, validando a consistência das análises.

5. CONSIDERAÇÕES FINAIS

Os resultados deste estudo evidenciam que a ocorrência de Senecavirus A (SVA) no estado do Paraná apresenta padrão espacial concentrado na região Oeste, embora casos esporádicos também tenham sido registrados em outras regiões.

A análise descritiva abrangeu o período de 2021 a julho de 2025, permitindo observar a distribuição anual, mensal e sazonal dos casos, assim como os picos de ocorrência em meses mais quentes e úmidos. A análise estatística, limitada aos 10 municípios com maior densidade de suínos entre 2023 e 2024, revelou correlação positiva e significativa entre temperatura média e número de casos positivos, indicando que condições térmicas mais elevadas favorecem a ocorrência do vírus. Apesar da ausência de correlação estatística significativa para precipitação e densidade suína nesse recorte, o padrão temporal sugere que fatores ambientais e produtivos podem influenciar a dinâmica de ocorrência do SVA.

Os achados reforçam a importância de intensificar a vigilância epidemiológica e as práticas de biosseguridade, sobretudo nos períodos de maior risco, correspondentes aos meses mais quentes. Ademais, estudos adicionais que incluam todos os municípios e períodos mais amplos são necessários para compreender de forma mais abrangente os fatores que modulam a disseminação do SVA e subsidiar estratégias eficazes de mitigação e controle da doença.

REFERÊNCIAS

ASSOCIAÇÃO BRASILEIRA DE PROTEÍNA ANIMAL (ABPA). **Relatório anual 2025**. São Paulo: ABPA, 2025.

ASSOCIAÇÃO BRASILEIRA DOS CRIADORES DE SUÍNOS (ABCS). **Manual de boas práticas na produção de suínos**. Brasília, DF: ABCS, 2021.

BRASIL. Ministério da Agricultura, Pecuária e Abastecimento. **Manual de investigação de doença vesicular / Secretaria de Defesa Agropecuária.** – Brasília: MAPA/AECS, 2020.

BRASIL. Ministério da Agricultura e Pecuária (MAPA). **Ficha técnica: febre aftosa**. Brasília: MAPA, Secretaria de Defesa Agropecuária, Departamento de Saúde Animal, set. 2025.

COMEXSTAT. Portal ComexStat. **Ministério da Indústria, Comércio Exterior e Serviços**. Disponível em: https://comexstat.mdic.gov.br/pt/home. Acesso em: 11 out. 2025.

GIRARDELLO, M. D. Soroprevalência do Senecavirus A em rebanhos suínos comercias no estado de Santa Catarina. 2024. Dissertação (Mestrado em Ciência Animal – Área: Sanidade

Animal). Universidade do Estado de Santa Catarina. Programa de pós-graduação em Ciência Animal. Lages.

GOVERNO DO ESTADO DO PARANÁ. **Paraná alcança maior participação da história na produção nacional de suínos.** Agência Estadual de Notícias — AEN, 19 mar. 2025. Disponível em: https://www.parana.pr.gov.br/aen/Noticia/Parana-alcanca-maior-participacao-da-historia-na-producao-nacional-de-suinos?utm_source=chatgpt.com. Acesso em: 08 out. 2025.

HOFFMAN, Kyle S. *et al.* Characterization of Senecavirus A isolates collected from the environment of U.S. sow slaughter plants. **Frontiers in Veterinary Science**, v. 9, e923878, 2022.

INSTITUTO ÁGUA E TERRA. **Mapa de Climas do Paraná**. Curitiba, 2020. Disponível em: https://www.iat.pr.gov.br/sites/agua-terra/arquivos_restritos/files/documento/2020-07/mapa_climas_a3.pdf. Acesso em: 10 out. 2025.

IBGE – Instituto Brasileiro de Geografia e Estatística. Tabela 3939: **Efetivo dos rebanhos, por tipo de rebanho**. SIDRA, 2025.

INSTITUTO BRASILEIRO DE GEOGRAFIA E ESTATÍSTICA (IBGE). **Pesquisa Trimestral do Abate de Animais: resultados completos.** Disponível em:

https://www.ibge.gov.br/estatisticas/economicas/agricultura-e-pecuaria/9203-pesquisas-trimestrais-do-abate-de-animais.html. Acesso em: 11 out. 2025

INSTITUTO DE DESENVOLVIMENTO RURAL DO PARANÁ – IDR-PR. **Paraná alcança em março de 2025 o 2º maior aumento das exportações de carne suína.** Curitiba: IDR-PR, 2025. Disponível em: https://www.idrparana.pr.gov.br/Noticia/Parana-alcanca-em-marco-de-2025-o-2o-maior-aumento-das-exportacao-de-carne-suina. Acesso em: 08 out. 2025.

INSTITUTO DE DESENVOLVIMENTO RURAL DO PARANÁ – IDR-PR. **Agrometeorologia e Clima**. Disponível em: https://www.idrparana.pr.gov.br/Pagina/Agrometeorologia-e-Clima. Acesso em: 08 out. 2025.

KIKUTI, M. *et al.* Senecavirus A incidence in U.S. breeding herds: a decade of surveillance data. Animals, Basel, v. 15, n. 11, p. 1650, 2025.

LEEDOM, L. K. R; LAMBERT, T; KILLORAN, K. **Senecavirus A**. Swine Health Information Center and Center for Food Security and Public Health, 2017.

LEME, R.A. **Senecavirus A**: virose vesicular emergente na suinocultura brasileira. 2017. Tese (Doutorado em Ciência Animal). Universidade Estadual de Londrina. Londrina.

MELLO, E. R. **Senecavirus A:** aspectos epidemiológicos, diagnóstico e implicações para a suinocultura brasileira. 2023. Trabalho de Conclusão de Curso (Graduação em Medicina Veterinária) — Universidade Federal de Lavras, Lavras, 2023.

PARANÁ. Secretaria da Agricultura e do Abastecimento. Departamento de Economia Rural (DERAL). **Boletim Semanal 21/2024 – 23 de maio de 2024**. Curitiba: SEAB/DERAL, 2024.

- PARANÁ. Secretaria da Agricultura e do Abastecimento. Departamento de Economia Rural (DERAL). **Boletim Conjuntural Semana 28/2025 10 de julho de 2025**. Curitiba: SEAB/DERAL, 2025
- PORTILHA, A.V.G. *et al.* Caracterização da diversidade genética do Senecavirus A em suínos no Brasil. *In*: **XXXII CIC Congresso de Iniciação Científica**, Pelotas, 2023.
- RAMOS, R. A. *et al.* Características socioprodutivas dos municípios paranaenses: análise comparativa e agrupamento. **Revista Paranaense de Desenvolvimento**, Curitiba, v. 43, n. 159, p. 41–60, 2023.
- RAN, Xuhua; HU, Zhenru; WANG, Jun; YANG, Zhiyuan; LI, Zhongle; WEN, Xiaobo. Prevalence of Senecavirus A in pigs from 2014 to 2020: a global systematic review and meta-analysis. **Journal of Veterinary Science**, v. 24, n. 3, e48, maio 2023.
- RIEGER, J. S.G. **Senecavirus A:** uma abordagem biotecnológica para a vigilância em doenças vesiculares. 2022. Tese (Doutorado em Biotecnologia e Biodiversidade). Universidade Federal do Mato Grosso do Sul. Programa de Pós-Graduação em Biotecnologia e Biodiversidade da Rede Pró Centro-Oeste. Campo Grande.
- RIBEIRO, B. F. S. **Identificação de novos alvos para diagnóstico de Senecavirus A e produção de vacinas a partir de análises in silico**. 2024. 144 f. Dissertação (Mestrado em Ciência Animal) Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, 2024.
- ROCHA, B.M.M. Desenvolvimento da técnica de imunoperoxidase em monocamada de células para detecção de anticorpos contra o Senecavirus A em amostras de soro de suínos. Dissertação (Mestrado em Ciência Animal). Universidade Federal de Minas Gerais. Programa de pós-graduação em Ciência Animal. Belo Horizonte, 2022.
- ROVID, Anna. **Senecavírus A**. Centro para Segurança Alimentar e Saúde Pública (CFSPH), Iowa State University, 2017. Tradução brasileira, 2019.
- SANTA CATARINA. Departamento Estadual de Defesa Sanitária Animal DEDSA. Boletim Epidemiológico DEDSA nº 003/2020 (Vol. 4): **Análise dos registros de Síndrome Vesicular no Sistema Continental de Vigilância Epidemiológic**a SIVCONT, Santa Catarina, ano de 2019. Florianópolis: CIDASC, 2020.
- SANTOS, A. S. **Principais causas de descarte de suínos de diferentes raças durante seleção de marrãs**. 2025. Trabalho de Conclusão de Curso (Graduação em Zootecnia). Universidade Federal de Sergipe Campus do Sertão, Nossa Senhora da Glória.
- SANTOS, J. C. Identificação e perfil de infecção de Senecavirus A em granjas comerciais de suínos pós ocorrência da doença clínica. 2023. Dissertação (Mestrado em Medicina Veterinária). Universidade Federal de Viçosa. Programa de Pós-Graduação em Medicina Veterinária. Viçosa.
- SILVA, B. L. S *et al.* Senecavirus A (SVA): doença vesicular em suínos no Brasil e no mundo. *In*: **XI Colóquio Técnico Científico de Saúde Única, Ciências Agrárias e Meio Ambiente**, Belo Horizonte, 2023.

SOUZA, H. C *et al.*, Custos de produção de suínos: estudo nos principais estados produtores do Brasil. **RMPF – Revista da Micro e Pequena Empresa**. v. 16, n. 3, p. 72-87, 2022.

VIANA, I. M. S *et al.* Cadeia produtiva na suinocultura: cointegração e transmissão de preços em Santa Catarina. Florianópolis: Geosul, 2025. v. 40. n. 93, p. 158-180, mai./ago. 2025.

VIEIRA, M. V *et al.* The third wave of Seneca Valley virus outbreaks in pig herds in southern Brazil. **Brazilian Journal of Microbiology**, [s. 1.], v. 53, n. 3, p. 1701–1706, 2022.

WORLD ORGANISATION FOR ANIMAL HEALTH (WOAH). Foot and mouth disease. Technical Disease Card. Paris: WOAH, jan. 2025.

WU, H *et al.* The evolution and global spatiotemporal dynamics of Senecavirus A. **Microbiology Spectrum**, v. 10, n. 6, p. 1–15, nov./dez. 2022

ZANELLA, J. R. C. Determinação do desempenho de testes de fluxo lateral para detecção de anticorpos contra o Senecavirus A, mediante ensaios pré-clínicos. **Diário Oficial da União**, Brasília, n. 2, 05/01/2021.